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ABSTRACT The intermittent nature of wind energy raised multiple challenges to the power systems
and is the biggest challenge to declare wind energy a reliable source. One solution to overcome this
problem is wind energy forecasting. A precise forecast can help to develop appropriate incentives and well-
functioning electric markets. The paper presents a comprehensive review of existing research and current
developments in deterministic wind speed and power forecasting. Firstly, we categorize wind forecasting
methods into four broader classifications: input data, time-scales, power output, and forecasting method.
Secondly, the performance of wind speed and power forecasting models is evaluated based on 634 accuracy
tests reported in twenty-eight published articles covering fifty locations of ten countries. From the analysis,
the most significant errors were witnessed for the physical models, whereas the hybrid models showed the
best performance. Although, the physical models have a large normalized root mean square error values but
have small volatility. The hybrid models perform best for every time horizon. However, the errors almost
doubled at the medium-term forecast from its initial value. The statistical models showed better performance
than artificial intelligence models only in the very short term forecast. Overall, we observed the increase in
the performance of forecasting models during the last ten years such that the normalized mean absolute error
and normalized root mean square error values reduced to about half the initial values.

INDEX TERMS Deterministic, wind speed, wind power, forecasting accuracy, normalized statistical
indicators.

I. INTRODUCTION
In recent years, wind power is the most competitively priced
technology in many markets. According to Global Wind
Energy Council (GWEC) Annual Report 2018 [1], the cumu-
lative wind power installed during 2001 to 2018 is 591 GW
that is expected to reach 908 GWby the end of 2023 as shown
in Fig. 1. Despite providing more than half of renewables
growth [2], the intermittent nature of wind raised multiple
challenges to the power systems and is the biggest challenge
to declare wind energy a reliable source.

The challenges that raised to the power system due
to the intermittent nature of wind includes planning and
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FIGURE 1. Cumulative installed wind power for 2001-2018 and forecast
for 2019-2023 according to GWEC [1].

operational difficulties, quality of power, and standard of
inter-connections. For example, the system operator needs
to allocate additional energy reserves in case any power
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fluctuation occurs between programmed and actual power
produced. This additional reserves would increase the oper-
ational costs, which subsequently increases the final energy
prices [3]. Albadi and Saadany discussed a detailed review of
wind power intermittency impacts on power systems [4].

One solution to overcome this problem is wind energy
forecasting. A precise forecast would help to develop appro-
priate incentives and well-functioning hour-a-head or day-
ahead electric markets [5]. Reliable forecasts help system
operators to integrate wind energy into the grid with lesser
complications. Literature suggests that accurate wind speed
and power forecasting is a significant factor for various wind
applications varying from siting till integration [6]. Even
Liu et al. [7] predicted wind for railway warning systems for
train protection. Some of the standard applications discussed
in the literature are siting and designing of wind farm, grid
integration and operations (dispatch planning, unit commit-
ment decisions, farm regulations, maintenance scheduling,
energy storage, reserve planning), stability (power stabil-
ity, reducing breakdown probability) and revenue genera-
tion (tariff in the electricity market, electricity bidding and
trading).

Forecasting is a way of predicting future events and
is seen as a method of extrapolation. Forecasting process
includes defining a problem, collecting data, analyzing data,
selecting and fitting model to a set of data, validating
the model using new data, model deployment, and per-
formance evaluation [8]. Wind energy forecasting depends
on cross-disciplinary approaches, including mathematics,
statistics, meteorology, and power systems engineering [9].
There are two subcategories of wind speed and power
forecasting: deterministic and probabilistic. Deterministic
forecasting helps in evaluating point forecast for a specific
time horizon while the probabilistic forecasting provides
confidence intervals for the uncertainty of wind energy.
As mentioned by Liu et al. [10], deterministic forecasting
is the principal research direction of many scholars. There-
fore, deterministic wind speed and power forecasting is the
study focus of this review paper. Comprehensive reviews
on probabilistic wind power forecasting are available in the
literature [11], [12].

A. OBJECTIVES AND MOTIVATIONS
The motivation of this study is twofold. In recent years,
various review papers are available on wind energy fore-
casting. Foley et al. [13] presented a review of the physical
and statistical models. Tascikaraoglu and Uzunoglu [14]
and Xiao et al. [15] reviewed the hybrid wind forecasting
models based on weighted, decomposition (pre-processing),
feature & optimization, and error processing (post-
processing) approach. Qian et al. [16] further discussed the
three structures of decomposition (pre-processing) approach,
whereas Bokde et al. [6] reviewed the Empirical Mode
Decomposition (EMD) based hybrid models. All these
reviews are of significant importance in the field. However,
in recent years, many models are updated. For example,

Wind Power Prediction Tool (WPPT) was analysed as a
statistical model earlier [13]; however, WindFor has replaced
WPPT, which is the combination of advanced learning
methods with a physical model [17]. Similarly, a compre-
hensive review of probabilistic wind power forecasting is
presented [11], but no comprehensive study covering recent
developments in deterministic forecasting methods has
carried out.

Secondly, the papers published are limited to a specific
site(s). The datasets are non-identical, and forecasting model
is different in step size and location, which limits the com-
parison and applicability of the suggested model for the other
regions. For comparative analysis and general conclusions,
it is necessary to test the model performance for numerous
case studies with diversified climatic regions. Some other
review papers also mentioned the same perspective, but no
detailed study was carried out.

In contrast with recent review papers, the major contri-
bution is to present a comprehensive review of determinis-
tic wind speed and power forecasting models from all the
major perspectives. We explore the detailed classifications
of wind speed and power forecasting and discussed the per-
formance and limitations of forecasting models adopted in
recent years. Also, we relate the performance and trend of
recently developed forecasting models to present the perfor-
mance of deterministic wind forecasting models for power
generation. The motivation of this study is the review article
of Blaga et al. [18], in which authors presented a detailed
review of the performance evaluation of solar irradiance
forecasting models based on available statistical indicators.
After analyzing a large number of papers published between
2010-2019, twenty-eight papers ([57]–[58], [61], [72],
[77]–[79], [82]–[83], [91], [97]–[114]) were shortlisted based
on following criteria: the model performance is reported in
terms of normalized mean absolute error (nMAE), and nor-
malized root mean square error (nRMSE). In case the results
are not presented in normalized values, then the statistical
indicators of wind data must be listed in the paper. The nor-
malized values help for inter-comparison analyses. After the
selection of papers, we analysed a total number of 634 entries
consisting of pair of nMAE and nRMSE. We investigated
the study from three perspectives: forecasting models, time
scale and performance trend over time. A brief description
of shortlisted papers is enlisted in Table 3. First, we shall
introduce the major classifications of the existing wind speed
and power forecasting models in the next section. Later on,
we shall analyse the performances of wind energy forecasting
models, reported in shortlisted research articles, in section III
to present inter-comparison analyses.

II. DETERMINISTIC WIND SPEED AND POWER
FORECASTING CLASSIFICATION
In this section, we classify wind speed and power forecasting
according to input data, time-scale, power output and fore-
casting method. Fig. 2 presents the overall classification of
deterministic wind speed and power forecasting.
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TABLE 1. Available global and regional NWP models.

FIGURE 2. Detailed classification of deterministic wind speed and power
forecasting.

A. INPUT DATA
There are two subclasses according to input data: Numerical
Weather Prediction (NWP) input and historical time series
data.

Meteorologists have developed NWP models to simulate
the Earth’s atmosphere to predict the weather. NWP model
is a numerically approximate solution, based on equations
associated with atmospheric processes and it changes. The
primary equations are conservation of mass, conservation of
energy, conservation of momentum, conservation of water
and equation of state [19]. In NWPmodels, the atmosphere is
divided into 3D cubes having a horizontal and vertical model
resolution. The horizontal resolution presents orography,
whereas vertical resolution presents weather phenomenon.
The size of the resolution profoundly influenced the model.
For example, a coarse resolution provides only limited details

of valleys and height of mountains. The higher resolution
provides better prediction but on a cost ofmore computational
time. NWP models are available for both global and regional
level. Table 1 presents a description of some of the available
NWP models.

Most statistical methods use historical time speed data to
correlate the wind speeds of the site. A mast is installed at
the wind farm with at least one anemometer mount at the
hub height to measure a minimum of six months data. Also,
meteorological departments of countries and some global
sources managed to record the data.

The primary benefit of NWP input is their applicability
to predict long term horizon. The models using NWP data
can provide forecasts for several days as well as several wind
farms. Commercial procedures and software are available for
NWP models. However, these models loss their applicability
as the prediction horizon decreases, especially to predict very
short termwinds. One possible reason for this is the highwind
variation that affects the model performance. Also, these
models are complex to construct and need higher time to
operate. In case of insufficient grid resolution, NWP models
might contain systematic errors due to lack of handling sub-
grid phenomena or physical parameterization.

In contrast to NWP data, time-series data requires lesser
computational resource and time to model and operate. The
traditional approach for long term forecasting is to use
Measure–Correlate–Predict (MCP) approach.MCP approach
takes into account the wind speed measurements at the wind
farm and correlates with long term meteorological station
data using a linear regression technique. However, several
problems are associated with time-series data; the planning
of meteorological mast, availability of suitable and calibrated
weather station, and precise measurements from the meteo-
rological station. Most importantly, the high cost associated
with the weather stations resulting in a limited number of
meteorological stations run in many countries.
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B. TIME-SCALES
The time scale for a forecast depends on end-user require-
ments, technical conditions and regularity situations. The
forecasting limits, according to time scales, are not well
defined in the literature. However, keeping in view the lit-
erature, we divide the time horizon into four categories:
Very short term forecasts (0-30 min), short term forecasts
(30 min - 6 hours), medium-term forecasts (6 hours - 1 day
ahead) and long term forecasts (>1 day ahead) [20], [21].

Very short term forecasts vary from few seconds to
30 minutes ahead. The major applications include wind
turbine regulation and control strategies, electricity market
clearing and real-time grid operation. These forecasts are pos-
sible based on time series data and do not require NWP data.
Short term forecasts comprise of 30 minutes to 6 hours ahead.
This category factored into economic load dispatch planning,
operational security in the electric market and load decisions
for increments. Online measurement data from the meteoro-
logical station, numerical weather prediction (NWP) or com-
bination of both is used as input data, expecting that the
weather condition will remain the same in short time horizon.
However, the impact of NWP data is the least. Medium-
term forecasts cover 6 hours to one day ahead and applied
for decision making of unit commitment, reserved require-
ment and generator operation. NWP data is necessary for
the medium-term forecast. Long term forecasts comprise of
one day or more ahead. These forecasts use in maintenance
scheduling, optimizing operational cost and feasibility study
for designing a wind farm. Long term forecast necessarily
requires NWP data for accurate estimation. In most of the
literature, the performance of forecasting models is evaluated
based on mean absolute percentage error (MAPE), mean
absolute error (MAE), and root mean square error (RMSE).
MAPE is a relative error and evaluates the ratio between
residuals and actual values. A smaller error in the lower
winds may have a smaller effect on MAPE may have a larger
effect or a larger error in the higher winds MAE determines
the difference between the actual and the estimated values.
This performance evaluator is more robust to large errors.
RMSE also evaluates the model dispersion but is very sen-
sitive to the large errors due to the squared values.

The performance accuracy decreases as the time horizon
increases.MAE for 40min, 50min and 1 hr ahead predictions
was reported as 6.419 m/s, 7.085 m/s and 7.712 m/s [29].
Even in some cases, a lesser increase in forecast length results
in a greater reduction in forecast accuracy. The MAPE for
10 s forecast length was 5.92 %, which increased to 7.81%
for 20 s [30].

C. OUTPUT
There are two ways to get the forecast output. The first way is
to forecast wind power generation directly from supervisory
control and data acquisition (also termed as direct method).
The second method is to forecast wind speed first, and then
power curves are used to convert these forecasts into wind
power as a next step (also termed as indirect method).

Kusiak et al. [31] applied the kNN model for both of
the cases and concluded that the direct model offers bet-
ter prediction performance than the indirect model. For the
same dataset, MAE varied from 8.41% to 11.49% for direct
method, whereas MAE varied from 9.67% to 12.72% for
indirect method. Similarly, Renani et al. [32] also compared
both direct and indirect approaches for a case study of a
wind farm in Northern Iran. The analysis showed that errors
increased by more than 100%. More specifically, the MAPE
for 5 min, 15 min, 30 min and 60 min was 1.47%, 1.37%,
1.30% and 1.48% respectively in case of direct prediction
which increased to 3.41%, 3.17%, 3.22% and 3.62% respec-
tively in case of indirect prediction. The larger errors were due
to the integration of two errors: one at wind speed prediction
and second at wind power prediction. However, according to
the argument of Zhu and Genton [33], the indirect method
is a better approach than the direct method as the nearby
wind farms with different wind turbines will experience the
same wind speed. Therefore, it is better to convert the stan-
dard wind speed forecasts to their respective power curves,
instead of performing individual wind farm power forecasts.
Hong et al. [34] also supported the argument and discussed
that wind power is dependent on multiple factors, including
orography, wind speed, direction, and wake effects. Also,
the rapid fluctuations and randomness in wind power data
of a single wind farm will not guarantee to mine the wind
regularity. Therefore, it is better to apply an indirect method
which does not require correlation analysis of windwith other
factors.

D. FORECASTING MODEL
1) PERSISTENCE METHOD
Persistence method (also termed as ‘Naïve Predictor’) is
based on a high correlation between the present and imme-
diate future wind speed. In this method, the wind speed at a
time (t+1t) is assumed to be the same as was at the time (t),
i.e.

v (t +1t) = v(t). (1)

The persistence method shows good accuracy when dealing
with very short term forecasts. Wegley et al. [35] analysed
three forecasting models: persistence, autoregressive (AR)
and generalized equivalent Markov (GEM) on spring sea-
son data of Oklahoma City for 10, 30 and 60 minutes time
interval and concluded that persistence method is superior in
the 10-minute time interval. Authors suggested that AR and
GEM can upgrade for further improvement, but persistence
cannot. Also, the accuracy of the persistencemethod degrades
rapidly as time increases. The method is served as a bench-
mark to compare improvement for newly developed forecast
models [5], [36].

2) PHYSICAL METHOD
The physical method requires meteorological and other fac-
tors such as pressure, temperature, local surface roughness,
obstacles, and wind turbines power curves for prediction.
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FIGURE 3. Flowchart for the physical method.

The physical methods are of two types: DiagnosticModel and
Computational Fluid Dynamics (CFD) model. Diagnostic
models [13] use parameterizations of boundary layer whereas
CFD models simulate the wind flow fields dynamically.
Diagnostic models are suitable for flow over flat terrain,
whereas CFD models are appropriate for flow over complex
terrain [37], [38].

The commercial methods for wind power forecasting use
NWP wind forecasts as the input data and then carry out
the necessary refinement of these output data (wind speed
forecast) to the on-site conditions. The physical methods use
a mesoscale or microscale model for the downscaling [39]
for interpolating wind speed forecasts to the hub height of
the wind farm. The attainable resolution and range of domain
size differentiate the meso and micro model. The forecasted
wind speed is used to estimate power. The easiest way is
to utilize the manufacturer’s power curve. Also, the Model
Output Statistics (MOS) approach corrects the scaling errors.
Fig. 3 illustrates the overall process.

Physical models incorporate orography, thus enables phys-
ical behavior understanding. These models generate regional
and global forecasts using initial conditions to solve complex
numerical systems. The historical data is of lesser importance
in such models. However, to accurately predict the winds, it is
necessary to have extensive information on surface rough-
ness and characteristics of wind farms. Thus, these models
need extensive efforts to set up. Table 2 provides details of
some commercially available physical wind power forecast-
ing models.

3) STATISTICAL METHOD
Statistical methods use time-series data to find out the rela-
tions generally by recursive techniques [14]. These models
are easy and cheaper to build and provide precise predictions
when dealing with short term forecasting. NWP input is
optional for these models, as shown in Fig. 4. The accuracy
of the statistical model degrades as time increases. These
models are based on patterns and do not use any prede-
fined mathematical model [5]. Statistical methods include

FIGURE 4. Flowchart for the statistical method.

autoregressive moving average (ARMA) [40], autoregressive
integrated moving average (ARIMA) [41], fractional-
ARIMA [42], seasonal-ARIMA [43], ARMA with exoge-
nous input (ARMAX) [44], grey predictors [45], and
exponential smoothing [46].

ARIMA models are the most commonly used statistical
models. The general non-seasonal model structure form is
ARIMA (p, d, q) where p is the order of autoregressive (AR)
part, d is the degree of differencing taken to make time-
series stationary, and q is the order of moving average (MA).
The linear expression of ARIMA (p, d, q) is expressed in the
form:

yt = c+
(∑p

i=1
φiyt−i +

∑q

j=1
θjεt−j

)
, (2)

where c is the constant term, φi is the coefficient of the
ith autoregressive parameter, θj is the coefficient of the jth

moving average parameter, yt−i is the value at a time (t − i),
and εt−j is the error between the predicted value and actual
value at (t− j). ARIMA is a three-step iterative process. First,
a tentative model is identified by analysing the time series
data. Second, the unknown parameters are estimated. Third,
the adequacy of the model is inspected through residual anal-
ysis. The residual analysis assists in performing the diagnos-
tic checks or in specifying the potential improvements.

In comparison with physical models, statistical models do
not require any real insight. Therefore, these models are easy
to build and fast to calculate. However, for these models,
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TABLE 2. Description of commercially available physical, statistical and combined models.

the performance is highly dependent on the accuracy of the
available data. Also, the lesser number of observations can
limit the model performance. Furthermore, statistical models
cannot deal with nonlinear conditions. Table 2 describes some
commercially available statistical models.

Both the physical and statisticalmethods have performance
limitations in different time horizon. Physical models predict
a long-term wind precisely whereas the statistical models
have high precision in short-term prediction. Therefore a
combination of both will improve the performance of wind
power forecasting. Physical models predict the long term
trend, whereas statistical models improve the precision of
local prediction. Table 2 provides details of some commer-
cially available combine models.

4) ARTIFICIAL INTELLIGENCE/ MACHINE LEARNING
METHODS
Artificial Intelligence/ Machine Learning (AI/ML) tech-
niques are themost popular method for wind speed and power
forecasting. These techniques train past data to find out the

relationship between input and output wind-speeds. Common
AI techniques include Artificial Neural Network (ANN) [54],
Support Vector Machine (SVM) [55], and Adaptive Neuro-
Fuzzy Inference System (ANFIS) [56]. The most commonly
used AI model is ANN.

ANN is motivated by the way the human brain would
solve the problem. The general form of ANN is a black-box
approach and is used to handle non-linear data. A typical
ANN has three layers: input layer (the original predictors),
one or more hidden layer (set of constructed variables) and
output layer (the responses).

Each variable in the layer is termed as a node. In the
first step, a weight is used to measure the strength of each
connection. The input nodes are multiplied by associative
weights, and the net is summed up as in (3):

net = w1x1+w2x2+w3x3 + . . .+ wnxn =
∑n

i=1
wixi. (3)

Next, an activation (or transfer) function f is chosen to
transform the net signal of each node i. Mathematically,
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the output form is:

output = f (net + b), (4)

where b is the bias term, also called the activation threshold
for the corresponding node. It is an offset value that regulates
the signal and is same as the intercept term in the regression
model. The activation function is typically a non-linear and
the selection depends on the nature of the response variable.
The commonly used activation function is logistic or hyper-
bolic tangent function.

SVM is based on the Statistical Learning Theory (SLT)
and Structural Risk Minimization (SRM). SVM for data
regression (SVR)maps the input data into a high-dimensional
feature space through nonlinear kernel function and then
generates a linear regression function in this hyperspace. The
linear regression function is expressed as in (5):

f (x) =
∑n

i=1
wiϕi (x)+ b, (5)

where w is the associative weight, b is the bias term and
ϕ (x) is the mapping function that maps x into high dimen-
sional feature space. The regression is then expressed by the
optimization problem and is solved by the quadratic program-
ming technique. Finally, the estimation function is obtained
as in (6):

f
(
x, α, α∗

)
=

∑n

i=1

(
α − α∗

)
k(x i, x)+ b, (6)

where α and α∗ are the Lagrange multipliers and k(x i, x)
is the kernel function. Different kernel functions are used
in SVM models. The commonly used kernel function is a
Radial Basis Function (RBF). There are other variants of SVR
employed in wind speed and power forecasting including
Least Square SVM (LSSVM) [57], Twin SVR (TSVR) [58]
and Reduced SVM (RSVM) [59].

ANFIS is a class of adaptive multilayer feedforward net-
work that integrates fuzzy logic principles and neural net-
works. It develops fuzzy rules with suitable membership
functions to produce required inputs and outputs. The ANFIS
model has five layers: fuzzification, rule evaluation, normal-
ization, defuzzification and summation. Initially, the system
designer sets the learning rules and membership functions
based on expertise, and later ANFIS adjusts the rules and
functions tominimize the output error index.Most commonly
utilized membership function is bell-shaped.

Other than traditional machine learning models, extreme
learning and deep learning is gaining much more attention in
wind speed and power forecasting. These advanced learning
model showed higher accuracy and can learn more complex
nonlinear relations. Some notable architectures of deep learn-
ing utilized in wind speed and power forecasting includes
Deep Belief Network (DBN) [60] and Long Short Term
Memory (LSTM) [61].

Extreme Learning Machine (ELM) is a type of feed-
forward neural network with a single hidden layer. It has bet-
ter generalization performance and higher convergence speed
than the traditional neural network. In ELM, the input weights

and hidden biases are generated randomly without iterative
tuning. Therefore, the output weights between hidden and
output layers are determined as finding the least square solu-
tion to the given linear system. Other variants of ELM uti-
lized in wind speed and power forecasting include Hysteresis
ELM (HELM) [61], Online Sequential ELM (OSELM) [62],
Stacked ELM (SELM) [63], Regularized ELM (RELM) [64],
and Weighted RELM (WRELM) [65]. Reference [66]
discussed in detail the trends in ELM.

DBN is a multi-layered stochastic generative model, con-
structed by stackingmultiple Restricted BoltzmannMachines
(RBMs) [67]. RBM is an undirected bipartite graphical model
in which visible observations (v) are connected to stochastic
binary hidden units (h) using undirected weighted connec-
tions (wij) [68]. It is characterized by the energy function
E(v, h), defined as in (7):

E (v, h) = −
∑n

i=1

∑m

j=1
wijvihj−

∑n

i=1
aivi−

∑m

j=1
bjhj

(7)

where ai and bj are the biases, and n and m are the numbers
of neurons in the visible and hidden layers, respectively. The
joint probability distribution of visible and hidden layers is
expressed as in (8):

p (v, h) =
e−E(v,h)∑

v
∑

h e
−E(v,h) (8)

For RBM, the individual activation probability of hj or the
conditional probability of vi is expressed as:

P
(
hj = 1| v

)
=

1

1+ exp
(
−
∑n

i=1 wijvi − bj
) (9)

P (vi = 1| h) =
1

1+ exp
(
−
∑m

j=1 wijhj − ai
) (10)

The unknown parameters can be determined by training the
model.

Deep Boltzmann Machine (DBM) is also based on stacked
RBM and is applied in wind speed and power forecast-
ing [69]. In contrast with DBN, all connections are undi-
rected in DBM. In DBN, the top two layers have undi-
rected connections, whereas the lower layers have directed
connections [70].

LSTM is a variant of Recurrent Neural Network (RNN)
and has a stable and excellent ability to solve long-term
dependencies. In LSTM, the traditional node of the hidden
layer is replaced by a memory cell (a core component of
LSTM). The memory cell acts as an accumulator of state
information. LSTM has three gates: input (write), output
(read) and forget (reset), through which the state information
is updated as: The information of incoming input will be
accumulated to the cell if input gate is activated. The prior
cell status will be forgotten if forget cell is activated. The
latest cell output will be propagated to the final state if the
output gate is activated.

In comparison with statistical models, AI/MLmodels have
stronger nonlinear estimation ability. However, the problems
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associated with AI/MLmodels are slower convergence speed,
overfitting, computational complexity, slow speed and gen-
eralization problems. Most commonly used AI/ML model is
ANN that exhibits overtraining. When the training capac-
ity is too large, it allowed too many iterations that caused
over-training.

Both the statistical and AI/ML methods have limited
applicability and thus limited prediction accuracy. Therefore,
combining both statistical and AI/ML models have better
prediction accuracy.

5) HYBRID METHOD
Hybrid forecasting methods take advantage of combining
different forecasting methods to improve the performance
of the final forecast. An individual model has limited per-
formance in multiple situations. The hybrid model provides
superiority as it utilizes capabilities of the individual model
and therefore saves time with the better performance [14].
We used the same definition of hybrid models as discussed
by Tascikaraoglu and Uzunoglu [14] and Xiao et al. [15].
The subclasses of hybrid methods include weighted method,
preprocessing or decomposition method, feature selection or
optimization method, and postprocessing or error processing
method.

In the weighted method, a weight coefficient is assigned
to each individual model forecast based on model effective-
ness. There are two different arrangements of the weighted
method hybrid model: Fixed weight and Variable Weight.
The coefficient can be calculated in different ways. This may
be weighted average [71], weighted median [71], or varied
weights based on optimization algorithm [72]. According
to a study conducted by Li et al. [72], the variable weight
forecasts show better performance than fixed weight fore-
casts. The variable weight combination forecasting model
can better adapt to changes in the sample, and match the
weight of the sample points in the corresponding model.
Multiple optimization algorithms are utilized to determine
the optimal weights. Zhang et al. [73] applied CLSFPA
(Flower Pollination Algorithm with Chaotic Local Search) to
calculate optimum weights with NNCT (No Negative Con-
straint Theory) and compared the results of the combined
model with other single prediction models (BPNN, RBFNN,
ENN, GRNN, WNN and ARIMA) at four sites. Similarly,
Li et al. [72] used BA (Bat Algorithm) with NCFM (Novel
Combined ForecastingModel), Xiao et al. [15] applied CPSO
(Chaos Particle SwarmOptimization) andGA (Genetic Algo-
rithm) with NNCT whereas Okumus and Dilner [74] used
LSM (Least Square Method) with FNN and ANFIS. All
these models showed better performance than the individual
prediction models. Instead of focusing on a single objective
optimization algorithm, some researchers have focused on the
multi-objective optimization algorithm. Niu and Wang [75]
have applied MOGOA (Multi-Objective Grasshopper Opti-
mization Algorithm) to calculate weight coefficient and com-
pared the results with models based on CS (Cuckoo Search)
algorithm and FA (Firefly Algorithm). Results showed that

MOGOA based model performed very well for the consid-
ered five sites at 10 min, 20 min and 30 min prediction ahead
followed by FA and CS.

Most of the hybrid models reported in the literature
are decomposition-based approaches. In the decomposition
method, pre-processing techniques are applied to decompose
the non-stationary time series data into stationary subseries.
Decomposition approaches widely reported in the literature
including Wavelet Transform (WT) [58], Wavelet Packet
Decomposition (WPD) [76], EmpiricalModeDecomposition
(EMD) [72], variants of EMD including Ensemble EMD
(EEMD) [77], Fast EEMD (FEEMD) [64], Complementary
EEMD (CEEMD) [78], Complete EEMD with Adaptive
Noise (CEEMDAN) [73], Improved CEEMDAN (ICEEM-
DAN) [79], Intrinsic Time Scale Decomposition [80],
Seasonal Adjustment Methods [81], Variational Mode
Decomposition (VMD) [82], OptimizedVMD (OVMD) [83],
Empirical Wavelet Transform (EWT) [84], and Improved
EWT (IEWT) [85]. There are two subtypes of decomposition:
primary and secondary. In the primary arrangement, a decom-
position model is used to decompose the non-stationary time
series data into several stationary subseries at the time series
and then a separate prediction model is on each subseries.
In the latter arrangement, a secondary decomposition model
is used to decompose further the most non-stationary sub-
series. The further method would be the same as the first
arrangement. It is not necessary to use the same predic-
tion model for the decomposed series. Han et al. [86] used
Wavelet decomposition with ARMA and LSSVM to predict
high and low-frequency subseries. Similarly, Zhang et al. [87]
applied EEMD decomposition with SARIMA and ANFIS for
periodic and nonlinear components modelling.

Feature selection and optimization technique are applied to
remove the redundant data, thus improves the model perfor-
mance. Several optimization algorithms are reported in the lit-
erature. Wang et al. used GA to optimize BP [88], Meng et al.
used CSO (Crisscross Optimization) to optimize BP [89],
Liu et al. used GA and MEA (Mind Evolutionary Algorithm)
to optimize MLP (Multi-Layer Perceptron) [90], Kong et al.
used PSO to optimize RSVM [59] and Osório et al. [91]
used EPSO (Evolutionary PSO) to optimize ANFIS. Feature
selection for unsupervised learning can further classify into
two methods: wrapper and filter. The wrapper approach uses
a search algorithm to rank the feature subset. This method
requires a prediction model performance. The subset that
shows the best prediction performance is selected as the final
feature subset. The filter method uses arithmetic analysis and
does not require prediction model performance. Therefore,
filter methods are faster than wrapper methods, but the per-
formance is worse than the wrapper method. This argument
is supported by the study conducted by Carta et al. [92].
In this study, the authors analysed both Wrapper and Filter
method for a case study of Spain. CfsSubsetEval is used
as filter whereas WrapperSubsetEval is used as a wrapper
method. Analysis of two years of data for five stations showed
that the wrapper approach provided lower mean errors than
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the filter method in all of the cases. It was also concluded
that the wrapper method is more significant when non-linear
relation between features increases such as wind direction
significance in complex terrain. This improved performance
is achieved on a cost of higher computational time. On the
other hand, if this relation is not of the higher-order, then the
Filter method has the advantage of lower computational time
without losing prediction accuracy. Some studies discussed
combine method of wrapper and filter, thus take advantages
of both methods. It uses filter algorithm information to accel-
erate wrapper algorithm convergence [82].

Studies based on post-processing techniques considered
the influence of error factors on the performance of themodel.
The purpose is to analyse the errors after primary predic-
tion model and then incorporate a post-processing model.
The results of the post-processing model help to improve
the initial forecast results in producing the final forecasts.
Hao and Tian [93] discussed a two-stage forecasting model
in which error factor is considered. In the first stage, VMD
is used as the decomposition model and ELM optimized by
MOGWO (Multi-Objective Grey Wolf Optimization) is used
as a prediction model for the forecasting error. In a second
stage, the nonlinear ensemble method is developed to inte-
grate variational modes and forecast error predictors to get
the final forecast. Comparisons are made between individual
statistical and ANN models, a single decomposition model
and the proposed model. The proposed model significantly
increased the model accuracy.

References [14], [15], [20] provide details of sub-classes
of hybrid models.

III. METHODOLOGY
A. PERFORMANCE INDICATORS
The forecast results are comprehensively evaluated based on
several performance indicators. Jiang et al. [77] discussed
three aspects of evaluation metrics: accuracy, stability and
direction. MAE and RMSE are used to evaluate the accuracy,
variance to measure the stability and direction-accuracy to
estimate correctness. However, most of the studies inferred
the results based on accuracy indicators only. The commonly
used mean absolute error and root mean square error are
defined as in (11) and (12), respectively.

MAE =
1
N

∑N

i=1

∣∣yi − ŷi∣∣ , (11)

RMSE =

√
1
N

∑N

i=1

(
yi − ŷi

)2
, (12)

where N is the number of entries, yi is the ith measurement,
and ŷi is the ith forecasted value. The average of measured
values is denoted by ȳ. These performance indicators evaluate
quantitative measures and have similar physical units as the
dependent parameter.

Inner-comparison of results, published in terms of absolute
values, is not possible due to non-identical datasets. For
comparing the accuracy results, it is necessary to convert
the absolute values in normalized values. There are different

normalization techniques available. The most common refer-
ence quantity is the mean value (µ) as:

µ =
1
N

∑N

i=1
yi. (13)

Other reference quantities include present value (yi), devi-
ation from average (|yi − ȳ|) and dynamic characteristics
(|yi − yi−1|) as reported by Gensler et al. [94]. In this study,
we select all the choices of normalization. The accuracy
sets, where normalized values are not available, we use
mean value as the reference quantity: nMAE = MAE/µ and
nRMSE = RMSE/µ.

Vargas et al. [95] presented a systematic review for wind
power generation based on citation network analysis (CNA).
According to the study, physical models had aroused during
the 90’s whereasAI/ML and hybridmodels have been emerg-
ing since the last decade. Also, most studies used hourly
data frequency and more than half studies implement wind
speed as input and output variable. Almost two-thirds of
the studies are related to China. After analysing 143 articles
spread over 33 years (1985-2018), the authors concluded that
wind energy studies started growing considerably after 2010.
Keeping in view this analysis and the procedure adopted by
Blaga et al. [18], the following criteria are set for the selection
of paper:

1) The publishing year of the paper must be in between
2010-2019.

2) The model performance is reported in terms of nor-
malized Mean Absolute Error (nMAE) and normalized
Root Mean Square Error (nRMSE).

3) In case the results are not presented in normalized
values, then the statistical indicators of wind data must
be listed in the paper.

We shortlisted twenty-eight papers for the analysis. The
final database comprises of 634 entries spread over 50 loca-
tions covering ten countries. The description of selected
papers is given in Table 3, and the overall summary is pre-
sented in Fig. 5 [96]. The papers are listed according to the
publication year.

B. PERFORMANCE ANALYSIS OF THE DATASET
Fig. 6a summarizes the performance of prediction models
in terms of averaged values. The statistical indicators are
averaged over all entries of that specific paper. The 28 circles
refer to 28 papers (as indexed in Table 3), the diameter of
the circle reflects the number of data entries, and the color
of the circle indicates the year of publication. For example,
index 7 shows that the paper published in 2014with 15 entries
having averaged nMAE = 13.31% and averaged nRMSE =
19.04%. Fig. 6a also shows the variability in data as some
averaged values contain smaller nRMSE but larger nMAE
and vice-versa. For example, index 19 and 20 both published
in 2017 having almost the same number of data entries but
contradictory averaged results. The averaged nMAE, and
nRMSE values for index 19 is 3.19% and 5.33% respectively
whereas averaged nMAE and nRMSE values for index 20 is
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TABLE 3. Description of the papers included in the study.

9% and 7.18% respectively. Also, the number of entries is
significant in some articles, whereas few of them shows
only a handful of data. From descriptive statistics, the 95%

confidence interval (CI) for the mean, for averaged nMAE
and nRMSE varies between 6.73% to 10.07% and 8.276%
to 12.550% respectively. Similarly, the 95% confidence
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FIGURE 5. Overall Summary of the selected 28 papers based on forecasting classification. The percentages (%) indicate the frequency of data
implemented for each sub category out of 634 data entries.

interval (CI) for the median, for nMAE and nRMSE varies
between 6.14% to 9.41% and 7.548% to 12.085% respec-
tively. Fig. 6b shows a two-dimensional histogram. The width
and height of the bar show the relative size of datasets for
forecasting horizon and predicting models respectively. For
example, the Artificial Intelligence and Machine Learning
(AI/ML) models comprised 38% of all data entries for which
48% is very short term, 36% is short term, 3% is the medium
term, and 13% is long term.

Visual inspection displays that the physical models were
used only for medium and long term forecasts, whereas sta-
tistical models hardly used for long term forecasts. In general,
most of the work was done for very short term and short term
forecasts using AI/ML and hybrid models. The number of
data entries for AI/ML and hybrid models are considerably
more significant than the others. This number is due to the
eligibility criteria for the selection of papers. The authors

of these papers either provided the mean values of input
data or the normalized values of the output data in their
studies.

Fig. 7a displays model performance per forecasting
method and Fig. 7b per time scale. Visual inspection of Fig. 7a
indicates that the physical models have the largest errors,
whereas hybrid models have the smallest one. Also, the per-
formance of AI/ML models is better than statistical models.
From Fig. 7b, it is as per expectations that the performance
decreases as the time horizon increases.

If we compare the interdependence of both graphs,
we analyse that the most substantial errors are witnessed for
the physical models because these models are applied primar-
ily for medium-term and long term forecasts. On the other
hand, the hybrid models are applied mostly for the very short
term, and short term forecasts and therefore, these models
showed the best performance. Persistence model and AI/ML
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FIGURE 6. a) Illustrative plot presenting the performance of the model reported in the selected papers, b) 2-dimensional
histogram presenting the qualitative picture of datasets.

models show close results. This unexpected output is due to
the significant number of entries for AI/ML models. AI/ML
models contain seven times more data than persistence mod-
els. Especially for long term forecast, AI/ML models contain
four times more data entries than persistence models. Fig. 7a
and 7b are generated based on averaged values which do not
provide in-depth knowledge for the spread of error. Box and
whiskers plot (Fig. 8) and standard deviation present the
spread of errors more clearly.

In box and whisker plots, the lower and upper values of
the box indicate the interquartile range (IQR) corresponds
to 25th and 75th percentile, whereas the whiskers extend to
1.5 times the IQR. The standard deviation is a measure used
to quantify the amount of variation or dispersion of a dataset

and is defined as:

σ =

√
1
N

∑N

i=1
(yi − µ)2. (14)

From Fig. 8a and 8b, the length of the whiskers are the
largest for the persistence model (IQRnMAE = 6.6434%,
IQRnRMSE = 8.1072%). It shows that the variation range of
error is largest for the persistence model. In terms of median
values, persistence is the same as AI/ML models. However,
the spread of errors is 12% more in the case of nMAE and
13% more in the case of nRMSE for the persistence model.
It proves our previous argument that despite having close
results in Fig. 7a, AI/ML models perform better than per-
sistence. The length of the whiskers for the physical model,
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FIGURE 7. The performance of a) prediction models, b) time scale,
in terms of averaged values.

statistical model the physical models are nearly 2.5 times,
and statistical models are 1.8 times higher than the hybrid
models, respectively. It shows that the best performance is
of hybrid models. Although and hybrid model is almost the
same, the median values of the physical models have a larger
mean value of nRMSE (µnRMSE = 19.43%) but have small
volatility (σnRMSE = 3.29). It shows that the model errors
are systematic and not stochastic. Hence, post-processing the
errors will further improvemodel accuracy. Out of all models,
10% outliers found for statistical models, 2.5% for AI/ML
models and 4% for hybrid models. Mainly, the outliers are
due to medium term and long term forecast. Similarly, from
Fig. 8c and 8d, the whisker length shows that the accuracy
decreases as the forecast horizon increases. In terms of nMAE
median values, very short term forecast has a value of 6.73%
that increases to 6.9% and 7.77% for short term and medium
term forecast. Finally, the long term has the largest value
of 12.24%. Based on previous analysis, here we again observe
that the long termmodels have a larger mean value of nRMSE
(µnRMSE = 15.86%) but small volatility (σnRMSE = 5.74).
It again shows that the model errors are systematic and not
stochastic. Thus, post-processing the errors will increase the
model performance. In general, hybrid models outperform all
the models.

FIGURE 8. Performance indicators (a) nMAE (b) nRMSE, for forecasting
model, (c) nMAE (d) nRMSE, for time scale.
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TABLE 4. Performance of forecasting models according to time horizon and impact of input data on forecasting accuracy.

FIGURE 9. Statistical indicators with respect to the time horizon.

Fig. 9 indicates the dependence of statistical errors on
the time horizon. Before interpreting the results, the reader
may note that the number of entries is non-uniform in time
horizon. Themost significant subset is available for very short
term forecasts. Also, the time steps are not equidistant. The
available time horizons include 1 min, 3 min, 5 min, 7 min,
10 min, 15 min, 20 min, 30 min, 45 min, 1 hr, 2 hr, 3 hr, 4 hr,
5 hr, 6 hr, one day, two days and one week.

Persistence model performs the worst even in the very
short term forecast. The performance of statistical models is
excellent in the very short term such that it outperforms the

FIGURE 10. Linear trend of statistical errors with respect to publication
year.

AI/ML model (see 10 min). At 30 min, both of the models
show almost the same results. From 1 hr onwards, the errors
of statistical models start to increase, on average, by a fac-
tor 1.19. The data for physical models is only available for
medium-term and long term forecast. The performance of
the physical model outstrips persistence and statistical model,
show the close result with AI/ML model and underperform
the hybrid models. Overall, the hybrid models perform best
for every time horizon. However, the errors almost doubled
at the medium-term forecast from its initial value.

Among all discussions, it should be noted that model
accuracy comparison between different techniques cannot be
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entirely justified until the same data set and the same level
of effort is utilized. However, based on available studies,
the performance of forecasting models according to time
horizon and the impact of input data on forecasting accuracy
is shown in Table 4. It is concluded that the best-suited
models, among all, which work well for any time horizon
and with any input data, are hybrid models. More specifically,
the decomposition model with an optimization algorithm or
error factor outperforms all the model when dealing with the
short term forecast.

According to the analysis of Vargas et al. [59], wind power
generation started growing substantially from the last decade.
Therefore, it is a topic of interest to quantify the overall
improvement of forecasting performance. Fig. 10 presents
the linear trend of statistical errors with respect to publica-
tion year on a semi-logarithmic scale. The negative trend
shows that the errors reduced every year. The slope (m) of
regression line fitted to the log (nMAE) is m = −0.069
and for log (nRMSE) is m = −0.0704. It shows that the
nMAE decreases with a factor of exp (−0.069) = 0.94 every
year. So, during the whole decade, nMAE drops to a factor
of 0.533.

Similarly, the nRMSE drops with a factor of
exp (−0.0704) = 0.93 every year. So, during the whole
decade, nRMSE drops to a factor of 0.49. It denotes that
during the last ten years, the errors are reduced to about half
the initial values.

IV. CONCLUSION
This paper reviewed the recent developments reported in the
literature for deterministic wind speed and power forecast-
ing. We classified and discussed the forecasting models as
input data, time scale, power output, and forecasting meth-
ods. There is always a shortcoming of comparing different
forecasting models. The studies available in the literature are
not of identical datasets and authors have used data based on
availability. Therefore, in each case study, the data is different
in the forecasting horizon, model formation and location.
The present study overcame this limitation and associated
the performance and trend of recently developed forecasting
models. Following conclusions are drawn from the detailed
analysis:
• From descriptive statistics, the 95% CI for the mean, for
averaged nMAE and nRMSE varies between 6.73% to
10.07% and 8.276% to 12.550% respectively. Similarly,
the 95% CI for the median for nMAE and nRMSE
varies between 6.14% to 9.41% and 7.548% to 12.085%
respectively.

• In terms of median values, persistence is the same as
AI/ML models. However, the spread of errors is more
for the persistence model. Therefore, AI/ML models
perform better than persistence, which is not expected
from the illustrative plot.

• The most significant errors are witnessed for the phys-
ical models because these models are applied primarily
for medium-term and long-term forecasts.

• The physical models have large nRMSE values but
small volatility. Therefore, we conclude that the model
errors are systematic and not stochastic. Hence, post-
processing the errors will further improve model
accuracy.

• Overall, the hybrid models perform best for every time
horizon. However, the errors almost doubled at the
medium-term forecast from its initial value.

• Based on the available dataset, the performance
increased during the last ten years. On average, the errors
are reduced to about half the initial values.

Improving the performance of wind forecasts is still a
challenge for the researchers. A detailed study is required in
this context to cover datasets from different climatic zones
to analyse the performance of different forecasting models.
The comprehensive review presented in this paper would
help professionals and researchers to improve forecasting
accuracy and to come up with more precise wind energy
forecasts.
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