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ABSTRACT Deep convolutional neural networks (CNNs) have shown great potential to provide accurate
depth estimation based on stereo images. Previous work has focused on developing robust stereo matching
architectures, while little attention has been paid on improving the network efficiency. In this paper,
we propose an efficient Siamese CNN architecture that combines the low resolution disparity estimation
and the depth discontinuity aware super-resolution. Specifically, we propose to construct, filter and perform
regression on a low resolution cost volume through the designed stereo matching backbone network.
A fast depth discontinuity aware super-resolution subnetwork is proposed for upsampling the low resolution
disparity map to the desired resolution. Under the guidance of the intensity edge features extracted from the
left color image, depth edge residuals are hierarchically learned to refine the upsampled depthmap. A delayed
upsampling structure is designed to ensure that the computational complexity is proportional to the spatial
size of the input disparity map.We also propose to supervise the first derivative loss of the predicted disparity
map that makes the network adaptively aware of the depth discontinuity edges. Experiments show that the
proposed stereomatching network achieves a comparable prediction accuracy andmuch faster running speed
compared with state-of-the-art methods.

INDEX TERMS Stereo matching network, disparity estimation, depth map super-resolution, depth discon-
tinuity aware loss.

I. INTRODUCTION
Depth estimated from stereo images has been the core
information for vision-based practical applications, such as
obstacle avoidance for robot navigation [1], 3D scene recon-
struction for augmented and virtual reality system [2], and
3D visual object tracking and location [3], [4]. Given a pair
of pre-rectified stereo images, the target of stereo matching is
to accurately compute a disparity value for each pixel in the
reference image. According to the taxonomy concluded by
Scharstein et al. [5], traditional stereo matching algorithms
typically include four consecutively performed steps: match-
ing cost computation, cost aggregation, disparity computation
and disparity refinement.

In recent years, with the rapid development of deep
learning, lots of convolutional neural network (CNN) based
methods have been proposed to solve the stereo match-
ing problem, since the milestone work of MC-CNN [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhua Guo .

Early deep stereo networks are designed to learn similarity
metrics from a large set of cropped image patches [6]–[10].
Regularization or global optimization approaches, such as
semi-global matching (SGM) [11], left-right consistency
checks and Markov Random Field (MRF) [10], are formu-
lated as post-processing models. Later, many deep stereo
networks attempt to directly learn various stereo match-
ing regression functions end-to-end without the need of
adding post-processing. In GC-Net [12], a fully differen-
tiable 4D cost volume (feature channel (C)×max disparity
( 12D)×feature height ( 12H )×feature width ( 12W )) is formed
for the first time. A 3D convolutional architecture is utilized
to filter and refine this 4D representation. Following the
pipeline of GC-Net, PSMNet [13] and GwcNet [14] exploit
multiscale context aggregation on their 4D cost volumes
(C× 1

4D×
1
4H×

1
4W ) by stacking hourglass modules, which

is equivalent to stacking 3D light-weighted encoder-decoder
structures.

Although applying 3D convolutions on the 4D cost vol-
ume can better aggregate neighboring disparities and produce
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lower error rates, the added computational burden and mem-
ory footprint of the additional dimension makes training
and prediction relatively slow, especially for high resolution
stereo image pairs. Currently, there are two ideas that try to
tackle this issue. The first one is to replace the 3D convolution
operator with a differentiable approximation of the classi-
cal optimization method, like the semi-global aggregation
layer proposed in [15]. The second one is to construct a
low resolution cost volume with a large downsampling factor
(e.g. C × 1

8D ×
1
8H ×

1
8W or C × 1

16D ×
1
16H ×

1
16W )

and apply 3D convolutions on this cost volume, like the deep
stereo networks proposed in [16]. Consistent with the second
idea, we also believe that the operation resolution of 3D
convolutions is the key factor that affects the efficiency for
predicting high resolution disparity maps.

In this paper, we propose an efficient end-to-end stereo
matching network that predicts high resolution depth maps
with state-of-the-art accuracy and comparable running speed.
Overall, our proposed deep stereo network filters and
regresses a low resolution cost volume, and hierarchi-
cally upsamples the initial low resolution disparity map to
a higher resolution under the guidance of the left color
image. We draw on the recent research work of depth map
super-resolution and propose a fast depth discontinuity aware
super-resolution subnetwork for upsampling the predicted
low resolution disparity map to the desired resolution. The
super-resolution subnetwork serves as a high frequency hier-
archical upsampling and refinement module that performs
end-to-end joint training with the stereo matching backbone
network. We aim to build a super-resolution subnetwork
that reveals the connections between the intensity edges
of high resolution color image and the depth discontinuity
edges of the disparity map. Specifically, we extract high
frequency information from each channel of the left color
image, and then feed it to a set of downsampling convolu-
tional layers to obtain a guidance pyramid. For every upsam-
pling level, the guidance of corresponding level from the
guidance pyramid is fused with the high frequency infor-
mation extracted from the input disparity map. The high
frequency refinement residuals are learned at the resolution
level of the input disparity map until the deconvolution layer
placed at the end of the subnetwork completes the residual
upsampling, which provides a learnable upsampling kernel
compared to the direct disparity interpolation. The learned
high frequency residuals are added back to the input dis-
parity map to refine the high frequency details missed in
the upsampling process. By doing the residual learning at
the resolution level of the input disparity map, the com-
putational complexity is only proportional to the spatial
size of the input disparity map. Additionally, we also pro-
pose a depth discontinuity aware loss that gives supervi-
sion on the first derivatives of the predicted disparity maps.
Experiments verify that the accuracy of existing end-to-end
stereo matching networks can be further improved using the
proposed depth discontinuity aware loss without modifying
architectures.

Our main contributions can be summarized as below:
Firstly, we propose a fast depth discontinuity aware super-

resolution subnetwork for low resolution disparity map
upsampling and refinement. The proposed subnetwork and
the stereomatching backbone network are jointly trained end-
to-end to enable an efficient and accurate prediction of high
resolution disparity map.

Secondly, we propose to supervise the loss between the
first derivatives of the estimated disparity maps and the first
derivatives of the groundtruth disparity maps. The proposed
depth discontinuity aware loss provides effective supervision
of depth discontinuity edges and only requires groundtruth
disparity maps.

Thirdly, experimental results on several large scale bench-
marks show that the proposed stereo matching network
achieves a comparable prediction accuracy and much faster
running speed compared with the state-of-the-art deep stereo
matching methods.

II. RELATED WORK
This section begins with a brief review of a number of end-
to-end stereo matching networks in recent years. The key
innovations proposed inside these deep stereo models are
identified and discussed. Since our proposed efficient deep
stereo model utilizes a super-resolution subnetwork to restore
the predicted low resolution disparity map into a refined
high resolution disparity map, some recent depth map super-
resolution methods which train end-to-end deep networks are
also briefly introduced. The innovations of our proposed deep
stereo model are discussed against the previous works in the
final subsection.

A. END-TO-END STEREO MATCHING NETWORKS
End-to-end deep stereo networks have not been extensively
studied until the first large scale synthetic stereo datasets
disclosed byMayer et al. [17]. In addition to the release of the
datasets, they also proposed a DispNetC architecture for dis-
parity estimation, which has a contractive part and an expand-
ing part with long-range links. DispNetC explicitly uses a
1D correlation layer that horizontally correlates left and right
features. Using an improved architecture of DispNetC as the
first stage, Pang et al. [18] introduced a multiscale residual
learning scheme (CRL) for the second stage refinement.
Kendall et al. [12] proposed to construct a 4D cost volume
for context aggregation for the first time. In their pioneering
work (GC-Net), 3D convolutions are employed to filter the
cost volume over height × width × disparity dimensions.
They also proposed a differentiable soft argmin operation
to directly regress subpixel disparities from the cost volume.
Chang and Chen [13] proposed the pyramid stereo matching
network (PSMNet), which explores the context aggregation
of the feature extraction stage and cost volume filtering stage
by using a pyramid pooling module and a stacked hourglass
3D CNN, respectively. Guo et al. [14] focused on the forma-
tion of cost volume and considered improving the quality
of cost volume by designing a robust correlation metric.
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They proposed to construct the cost volume by group-wise
correlations (GwcNet). Then the hybrid cost volume, built by
combining feature concatenation volume and group correla-
tion volume, is fed into an improved version of stacked 3D
hourglass modules. Yu et al. [19] proposed a learning-based
cost aggregation sub-architecture that select themost possible
aggregated cost proposals. Zhang et al. [15] proposed two
novel substitution layers (GA-Net) for the computation of
the costly 3D convolutional layer. The first is formulated by
a differentiable approximation of the semi-global matching,
and the second, called the local guided aggregation layer,
functions substantially similar to the 3D convolutional layer
except that it separates the aggregation calculations in the spa-
tial and the depth dimensions. Tulyakov et al. [20] proposed
a novel sub-pixel cross-entropy loss with a MAP estimator
to make their network applicable to different disparity ranges
without re-training (PDS). Poggi et al. [21] proposed to use
a small amount of additional sparse depth measurements
to improve the domain shift ability of pre-trained stereo
networks.

Some work has tried to learn end-to-end stereo match-
ing networks by designing various multitask structures.
Du et al. [22] proposed to learn the foreground-background
segmentation as an auxiliary task to reinforce the disparity
estimation (FBA-AMNet). Song et al. [23] proposed to inte-
grate edge information into the disparity learning process
by utilizing an edge sub-network (EdgeStereo). An edge-
aware smoothness loss is defined to encourage disparities
to be locally smooth and penalizes depth changes in non-
edge regions. Yang et al. [24] employed semantic features
from segmentation and introduced a semantic softmax loss
for disparity estimation (SegStereo).

While most existing deep stereo models put their emphasis
on improving the prediction accuracy, a few efforts focus on
improving the network matching speed for practical applica-
tions. Khamis et al. [16] presented a real-time stereo match-
ing network (StereoNet) that forms a low resolution cost
volume to reduce the computation of 3D convolutions. Their
core ideas are that the cost volume can be filtered at a coarse
resolution, and the regressed low resolution disparity map
can then be hierarchically upsampled to a high resolution
disparity map. Tonioni et al. [25] developed a novel real time
self-adaptive network (MADNet) that address the domain
shift issue by independently training sub-portions of the net-
work. Chabra et al. [26] followed the work of StereoNet,
and proposed a novel disparity refinement network that takes
geometric error, photometric error and unrefined disparity as
input and produces the refined disparity map (StereoDRNet).

B. END-TO-END DEPTH MAP SUPER-RESOLUTION
NETWORKS
For the problem of depth sensing, it is desirable to upsam-
ple the low resolution depth map provided from a low-
cost depth camera by employing super-resolution techniques.
Recently deep learning-based super-resolution methods like
the SRCNN [27] and FSRCNN [28] proposed by Dong et al.

have drawn much attention due to superior performance. But
unlike the general image super-resolution problem, the depth
map super-resolution has its own characteristics, e.g. less
texture and sharp boundary. Typically, methods of depth
map super-resolution can be divided into two categories:
the methods with only depth maps as input [29], and the
methods using low resolution depth maps and high resolution
color images [30]–[35]. Since the high resolution color image
aligned to the depth map is available in the setting of stereo
matching, we only review a few end-to-end depth map super-
resolution networks that takes a high resolution color image
as a guidance.

Hui et al. [30] proposed a multi-scale guided network
(MSG-Net) for depth map super resolution that complements
low resolution depth features with high resolution intensity
features using a multi-scale fusion strategy. Zhao et al. [31]
designed a conditional generative network (CDcGAN) for
resolving the problem of simultaneous color image and depth
image super-resolution. Ni et al. [32] proposed a dual-stream
CNN that integrated the color and depth information. Edge
map generated by the high resolution color image and low
resolution depth map is taken as additional information for
disparity refinement. Song et al. [33] exploited the depth field
statistics and the local correlation between depth image and
color image for the further refinement of the learned depth
image. Zhou et al. [34] observed that color images help to
learn the super-resolution network of depth maps contami-
nated by noises. Wen et al. [35] proposed a coarse-to-fine
CNN architecture and presented a data-driven filter method
to approximate the ideal filter for depth super-resolution.

C. INNOVATIONS COMPARING WITH PREVIOUS
DEEP STEREO MODELS
Our work follows state-of-the-art stereo matching deep net-
works such as GC-Net [12], PSMNet [13], and GwcNet [14],
all of which build robust 4D cost volumes and apply 3D
convolutions for context aggregation. However, the high com-
putation burden brought by the 3D convolution operations
makes it hard for existing networks to find a good balance
between inference speed and prediction accuracy. In this
paper, we propose an end-to-end CNN architecture that com-
bines the low resolution disparity estimation and the depth
discontinuity aware super-resolution. The initial noise dis-
parity map is regressed from the low resolution cost volume,
which only consumes a low computation cost. Then the initial
low resolution disparity map is gradually upsampled to a
high resolution under the guidance of corresponding left color
image. Comparing to the deep stereo models exploiting aux-
iliary task, such as FBA-AMNet [22] and EdgeStereo [23],
we propose to learn a subnetwork of high frequency features
from the high resolution color image that provide neces-
sary high frequency details for the super-resolution process.
We regard the super-resolution of low resolution depth map
as a high frequency cascade refinement process, which
benefits from the concept of spectral decomposition from
MSG-Net [30]. At every scale, the high frequency residuals
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FIGURE 1. The architecture of our efficient stereo matching network (ESMNet). Each subnetwork is denoted by a different color and
separated by the black dashed line. In the hourglass feature extraction subnetwork and the low resolution cost aggregation
subnetwork, we have annotated the resolution level and the number of feature channels of each convolution layer. The black circle
denotes the operation of extracting high frequency information for the color image and the disparity maps.

are learned in the super-resolution subnetwork and then added
back to the upsampled depth map to rectify the incorrect high
frequency component. This structure of explicit learning high
frequency residuals differs from the DispResNet in CRL [18],
the Residual Pyramid in EdgeStereo [23] and the refinement
structure in StereoNet [16] and StereoDRNet [26]. Finally,
different from the l1 loss adopted in [12], [18], [19], [24]
and the smooth l1 loss adopted in [13]–[15], [22], the end-
to-end learning of our deep stereo model is supervised by our
proposed depth discontinuity aware loss, which gives extra
supervision with first order derivatives about the output depth
maps. The difference between our super-resolution subnet-
work and the existing depth map super-resolution models is
that not only should the depth map be upsampled to recover
the details of the depth discontinuous edges, but also the
smooth regions of the depth continuity should be refined.

III. EFFICIENT STEREO MATCHING NETWORK
In this section, we first introduce the architecture of our
efficient stereo matching network, and named ESMNet for
convenience. Then the proposed depth discontinuity aware
super-resolution subnetwork is described in detail. Finally,
the proposed first order derivative loss that makes the network
adaptively aware the depth discontinuity edges is discussed.

A. NETWORK ARCHITECTURE
Fig. 1 illustrates the architecture of our ESMNet. Each sub-
network that functions similarly to the concluded steps in [5]
is separated by the black dashed line. The stereo match-
ing backbone network adopt the designing principles from
StereoNet [16] that mainly includes a low resolution cost vol-
ume aggregation module and a hierarchical disparity upsam-
pling module. However, we make several key modifications

that help to improve the stereo matching accuracy with no
decrease of running speed. The details of the proposed stereo
matching backbone architecture are listed in the Table 1.

For the feature extraction Siamese subnetwork, we use
a hourglass shaped architecture to encode global context
information. As a strong competitor for hourglass architec-
tures, atrous convolution has been widely applied to encode
multiscale contextual information for stereo matching, e.g.
the AM module proposed in AMNet [22]. But we aim to
design a computationally efficient feature extractor by reduc-
ing the feature resolution. The input color image pair can be
quickly reduced to a very low level of operating resolution
by continuous downsampling convolutions. As the resolution
decreases, we increase the feature channels moderately for
each resolution level to encode more features. Long range
skip connections are added between the encoder part and the
decoder part to enable information complement. The decon-
volution operator is utilized to restore the feature resolution
to the desired resolution level. For the first three successive
downsampling convolution layers, the kernel size is set to
5 × 5 to obtain a relative rich local patterns. For the rest
three downsampling convolution layers, the kernel size is set
to 3 × 3. In total, we have six downsampling layers. For
every downsampling convolution layer, the stride is set to
2. Batch normalization and ReLU activations are applied.
A 3 × 3 convolution layer without batch normalization or
activation is applied as the output layer of the hourglass
feature extraction subnetwork. Finally, this feature extraction
subnetwork outputs intermediate semantic features of size
C × 1

8H ×
1
8W . Thus, the total downsampling factor is 23.

For the cost volume formation, we construct a hybrid
metric volume that takes in the coarse stereo correspon-
dences calculated by the group-wise correlation metric
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TABLE 1. Structure details of the proposed stereo matching backbone
architecture. H , W represents the height and the width of the input
image. BN denotes the batch normalization. C denotes the number of
output channels for the convolution layer. S1/2 denotes the convolution
stride. DConv denotes the deconvolution operation.

(proposed in [14]) and the absolute distance metric. The
hybrid metric volume can provide an good initial guess
for stereo correspondences and makes the training converge
faster than the classical left-right feature concatenation based
cost volume [12], [13], [19]. LetC denotes the number of out-
put feature channels in the feature extraction subnetwork. The
left features Fl and right features Fr are evenly divided intoG
groups along the feature channel dimension. The correlation
sub-volume is computed at every group g and disparity level
d , which is

Ccorr (g, d, h,w) =
1

C/G

〈
Fgl (h,w),F

g
r (h,w− d)

〉
(1)

where 〈·〉 denotes the inner product. The absolute distance
metric is computed at every feature channel c and disparity
level d , which is

Cdis(c, d, h,w) = −
∣∣Fcl (h,w)− Fcr (h,w− d)∣∣ (2)

Finally, the two metric sub-volumes are stacked along the
channel dimension to form the hybrid metric volume, which
has a size of (C + G)× 1

8D×
1
8H ×

1
8W .

Typically, it is necessary to filter and refine the constructed
coarse cost volume by applying the convolution operation
along the height, width and disparity dimensions. After a
series of filtering and aggregation operations, the coarse

cost volume that contains non-smooth and incorrect disparity
noises can be refined. We find that 19, 24 and 30 3D convo-
lutional operations are used for the cost volume aggregation
in GC-Net [12], PSMNet [13] and GwcNet [14], respec-
tively. Moreover, some of the 3D convolutional operations
are conducted at a relative higher resolution (≥ 1

4H ×
1
4W ),

which occupy a considerable amount of computation time.
In contrast, we apply a limit number of 3D convolutional
operations at a very low operation resolution to reduce the
time of cost aggregation. As shown in Fig. 1, we make
some modifications to the hourglass structure proposed by
GwcNet. For the pre-hourglass convolution, we only use
one layer of 3D convolution to fuse and transform metric
representations. Then two 3D hourglass modules are stacked,
each of which contains 9 3D convolutions. For each hourglass
module, the input cost volume is first filtered at the resolution
of 1

8W ×
1
8H by a single 3D convolution layer. Then it

is continuous downscaled to the resolution of 1
32W ×

1
32H

by four 3D convolutions. Two 3D deconvolution layers are
responsible for upsampling the downscaled cost volume. One
1×1×1 3D convolution layer is utilized as a skip connection
after each deconvolution operation. Overall, our design main-
tains the operation resolution of 3D convolution at a very low
level, which consumes less computation time.

The initial low resolution disparity map is regressed from
the filtered cost volume by using the disparity regression
operation [12]:

d0 =
dmax∑
d=0

d × σ (CA(d)) (3)

where σ (·) is the softmax operation, and CA is the cost vol-
ume filtered by the low resolution cost aggregation module.

B. DEPTH DISCONTINUITY AWARE SUPER-RESOLUTION
SUBNETWORK
Fig. 2 gives a more detailed illustration of the proposed
fast super-resolution subnetwork. The structure details are
listed in Table 2. As discussed in the related work section,
we adopt the spectral decomposition idea from the work of
depth map super-resolution [30]. For depth maps, the high
frequency information corresponds to the depth discontinuity
edges and the low frequency information corresponds to the
depth flat regions. Different upsampling strategies for differ-
ent frequency components are adopted in the proposed super-
resolution subnetwork. Recent works have pointed out that
edge cues from the color image have semantic connections
with depth discontinuity edges from the depth map. There-
fore, we perform an early frequency spectrum decomposition
from both of the left color image and the depth maps. The
high frequency components extracted from both of the color
image and the depth map are feed into a subnetwork for
learning depth discontinuity residuals. The learned residu-
als are then added back to the bilinear upsampled depth
map for high frequency refinement. From the perspective of
network structure, the proposed super-resolution subnetwork
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FIGURE 2. The depth discontinuity aware super-resolution subnetwork. Depth maps are colored for better visualization. The
first derivatives of each depth map in the x and y directions are extracted by applying the Sobel kernel.

TABLE 2. Structure details of the proposed depth discontinuity aware
super-resolution subnetwork. Dil denotes the convolutional dilation rate.

performs high frequency residual learning at the resolution
level of the input disparity map, and then completes upsam-
pling using the deconvolution layer placed at the last layer
of the network. Thus, the computation time of the super-
resolution subnetwork is proportional to the input disparity
map resolution, rather than the output disparity map res-
olution. For example, the residual pyramid [23] and the
hierarchical refinement [16] structures are all learned in the
latter way. This delayed upsampling strategy allows the entire
network to operate efficiently in real-time.

More specifically, the operation of extracting high fre-
quency information is defined as follows:

∇(d) = conv2d(d,w) (4)

where the conv2d represents the 2D convolution and the w
denotes the Sobel kernel:

wx =

1 0 −1
2 0 −2
1 0 −1

wy =
 1 2 1

0 0 0
−1 −2 −1

 (5)

Applying the operation defined by (4) to each channel of
the left color image, a total of six intensity edge maps can
be obtained. The intensity edge maps are sent into three sets
of downsample blocks to obtain a pyramid of intensity edge
features. Each set of the downsample block contains two 3×3
convolution layers. Similarly, two depth edge maps can be
obtained by applying (4) to the input disparity map for each
super-resolution scale. 32 features of the depth edge maps are
extracted and then stacked with the intensity edge features
of the corresponding resolution level. The stacked features
are first filtered with a convolution kernel of 32 channels,
and then sent to six dilation residual convolution blocks for
further depth edges nonlinear mapping. The dilation residual
convolution block consists of two 3 × 3 convolutional lay-
ers with a specified dilation factor. We set the dilation fac-
tors as [1, 2, 4, 8, 1, 1] to incorporate multiscale contextual
information. The last layer is a deconvolution layer which
upsamples and aggregates the learned features with a set
of deconvolution filters. For every super-resolution scale,
we set the deconvolution stride as 2 to avoid introducing obvi-
ous checkerboard artifacts. Finally, the output of the super-
resolution subnetwork is a one dimension high frequency
residuals that is then added to the bilinear upsampled low
resolution disparity map.

C. DEPTH DISCONTINUITY AWARE LOSS
In recent years, researchers have trained a variety of
deep stereo networks in a fully supervised manner using
large scale labeled depth data. Most architecture designs
directly minimize depth value differences between the pre-
dicted disparity maps and the groundtruth disparity maps,
defined by:

Lr =
1
N

N∑
n=1

L
(
d̂n − dn

)
(6)

d̂n and dn are the groundtruth disparity value and predicted
disparity value for the valid pixel n, respectively. Typically, l1
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measured regression loss is adopted in the work of [12], [18],
[19], [24], which is defined by the l1 norm L(x) = ‖x‖1.
Smooth l1 loss is adopted in the work of [13]–[15], [22],
which is defined by L(x) = 0.5x2ε(1 − |x|) + (|x| − 0.5)
ε(|x|−1), where ε(·) is a 0-1 step function. However, it shows
that each disparity pixel is optimized independently and
equally weighted. Inner connections between disparity pixels
have not been fully considered.

In order to exploit the local disparity pixel patterns for
explicit supervision, we propose to calculate the first order
derivatives on the output disparity maps. In a given dispar-
ity map, overlapped regions of different depths form depth
discontinuity edges. These edges describe the boundaries of
each disparity region and can be detected using a simple
gradient detector. We utilize the Sobel kernel defined by (5)
and the 2D convolution operation defined by (4) to find the
3x3 local patterns of the disparity map. By learning from
the groundtruth depth discontinuity edges, end-to-end stereo
networks can get explicit supervision, which is defined by:

Ld =
1
N

N∑
n=1

L
(
∇d̂n −∇dn

)
(7)

In practice, we calculate the loss of the first derivatives in the
x and y directions, respectively. We minimize the following
composite loss function for training the proposed deep stereo
network:

Loss =
K∑
k=0

Lkr + αL
k
d (8)

where K denotes the total super-resolution scales, and k = 0
denotes the raw disparity map, α controls the weight for
the Ld loss. The robust loss function proposed by [36] is

adopted, which gives L(x) =
√( x

2

)2
+ 1 − 1. By adopting

the above composite loss, we are able to guide the network
towards discovering depth discontinuity edges in early train-
ing epochs. In later training epochs, the depth discontinuity-
aware loss decrease gradually and the network turns to focus
onminimizing the depth estimation error in depth flat regions.

IV. EXPERIMENTS
In this section, we evaluate our proposed efficient stereo
matching network on the Scene Flow dataset [17] and the
KITTI datasets [37], [38]. Datasets and implementation
details are described first. Then we show the effectiveness of
the improvements through ablation studies and give perfor-
mance comparison with a number of recent state-of-the-art
methods on the stereo matching benchmarks.

A. DATASETS AND EVALUATION METRICS
Scene Flow dataset [17] provides 35454 training and
4370 testing synthetic stereo frames with dense disparity
groundtruth. We train our models on the final pass of Scene
Flow dataset since it involves more post-processing effects
such as motion blur, sunlight glare and gamma curve manip-
ulation. KITTI 2012 [37] provides outdoor driving recordings

that comprises 194 training and 195 testing images pairs.
KITTI 2015 [38] provides 200 training and 200 testing image
pairs. Both KITTI datasets give semi-dense groundtruth dis-
parity maps. For the KITTI 2015 dataset, the training set is
split into 180 training image pairs and 20 validation image
pairs. For the KITTI 2012 dataset, the training set is split into
180 training image pairs and 14 validation image pairs.

For the Scene Flow dataset, we use end-point error (EPE)
as the evaluation metric, which is mean average disparity
error in pixels. For the KITTI 2012 dataset, the percentage of
pixels with error larger than the specified threshold and EPEs
for both non-occluded (Noc) and all (All) pixels are reported.
For the KITTI 2015 dataset, the percentage of disparity out-
liers D1 is reported for background (bg), foreground (fg)
and all pixels. The outliers are defined as the pixels whose
disparity errors are larger than 3 pixels or 5% groundtruth
disparity.

B. IMPLEMANTATION DETAILS
All experiments are implemented with PyTorch. The hard-
ware platform is a desktop PC with Intel Core i7-8700K
CPU @ 3.7GHz, 32GB RAM and a single NVIDIA GTX
1080Ti GPU with 11 GB memory. All the proposed mod-
els are optimized using the RMSprop algorithm. For the
Scene Flow dataset, exponentially-decaying learning rate
starts from 0.001. The multiplicative factor of learning rate
decay is set to 0.9. The batch size is set 4 to maximize
the use of GPU memory. We randomly crop patches of size
960×512 from the original stereo images and then feed them
to the network. Image intensities are normalized to the range
[−1, 1]. The maximum disparity value is set to 192. The
training process is iterated 25 epochs for every evaluation.
For KITTI2012 and KITTI2015, we fine-tune the network
pretrained on the Scene Flow dataset for another 500 epochs.
The batch size is set to 2. The initial learning rate is 0.001 and
is down-scaled by 10 after 300 epochs. Training image pairs
are cropped into 256 × 512, and testing image pairs are
padded into 384× 1280. The models with the best validation
performance on KITTI 2012 and KITTI 2015 are submit to
the KITTI server for test set evaluation.

C. ABLATION STUDIES ON SCENE FLOW
In this subsection, we evaluate different model settings and
analyze the effectiveness of the proposed architecture in
details. The ablation experiments are conducted on the Scene
Flow test set. The architecture with the specified number
of low resolution hourglass module is denoted with a suffix
Hr. The architecture with the specified number of super-
resolution module is denoted with a suffix SR. If the out-
put resolution of the specified super-resolution module does
not match the final resolution, a bilinear upsampling is per-
formed.

Firstly, we compare different choices of the α value
in Table 3. Only one low resolution hourglass module is
utilized in the cost volume aggregation stage, i.e. Hr1. The
speed for using different number of super-resolution modules
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FIGURE 3. Scene Flow test set qualitative results. The error maps of three super-resolution levels are compared. Disparity maps are
colored for better visualization.

TABLE 3. Performance comparisons of three models using different α

settings. Results are reported on the Scene Flow test set.

is also evaluated. From Table 3 we may find that the best
performance is achieved at α = 0.45 using the architecture
of ESMNet-Hr1SR3. By setting the α = 0, it means that the
models are trained without the explicit supervision of depth
discontinuity edges. Comparing the evaluation performance
of α = 0 and α > 0 in Table 3, it suggests that the proposed
depth discontinuity aware loss further reduces the prediction
errors of the proposed models. In addition, we have only cas-
caded up to 3 super-resolution modules, namely SR1, SR2,
and SR3, since the total downsampling factor is 23. It can
be seen from Fig. 3 that by cascading more super-resolution
modules, the high frequency details of depth discontinuity
edges can be hierarchically recovered, and the depth value
noises in depth flat regions can be smoothed, thus, greatly
reducing the prediction errors. By timing the evaluation mode
of the proposed models, ESMNet-Hr1SR1 achieves a slightly
less accurate real-time inference at the 720p resolution level.
ESMNet-Hr1SR3 takes 23ms longer than ESMNet-Hr1SR1,
but it has achieved state-of-the-art accuracy with near real-
time performance (17.2FPS).

As shown in Table 4, we further validate the effective-
ness of the proposed depth discontinuity aware (DDA) loss

TABLE 4. Retraining performance comparisons of three algorithms using
the proposed depth discontinuity aware (DDA) loss. Results are reported
on the Scene Flow test set.

on the other two state-of-the-art stereo matching architec-
tures. We utilize the released codes of GwcNet and PSMNet,
and conduct retraining on the local PC. Due to the limited
computing resources, both methods use a batch size of 2.
Only one GPU is allocated for the retraining of two methods.
The α value is set to 0.35 for the retraining of GwcNet.
The weights of four output modules set in GwcNet are also
applied for calculating the corresponding DDA losses. The
retraining process of GwcNet is iterated with the number of
epochs specified in the original paper, i.e. 16 epochs. For the
PSMNet, the α value is also set to 0.35. We iterate the retrain-
ing process of PSMNet with 10 epochs, as specified in the
original paper. By retraining using the proposed loss without
modifying architecture designs, the prediction accuracy of
the selected two deep stereo models, GwcNet and PSMNet,
have been further improved by 11% and 9.9%, respectively.
Furtherly, we plot the retraining error curves of three models
in Fig. 4 to illustrate the effectiveness of the proposed loss.
It shows that the error curves of training with DDA loss have
a fast decreasing speed in early training epochs. Through-
out the retraining process, the proposed DDA loss shows a
consistent effect in reducing training errors. The compari-
son results from Table 4 and Fig. 4 imply that the training
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FIGURE 4. Retraining error curves of three methods, i.e. the proposed ESMNet, GwcNet, and PSMNet, respectively. EPE errors are
reported on the Scene Flow test set after every training epoch.

TABLE 5. Performance comparisons with state-of-the-art deep stereo
matching networks. Results are reported on the Scene Flow test set.

process of stereo matching network can be better guided by
mining the intrinsic local patterns between pixels, such as
minimizing the differences between the first derivatives of
the disparity maps and the first derivatives of the groundtruth
disparity maps.

Finally, we compare the performance of three proposed
models with 11 state-of-the-art end-to-end stereo matching
networks, listed in Table 5. For the architectures following
the pipeline of forming 4D cost volumes and applying 3D
convolutions, we also list the number of 3D convolution
layers used for each model for comparison. As can be seen
from the performance of the proposed three models, i.e.
from Hr1 to Hr3, increasing the number of 3D convolutional
layers can improve the accuracy of stereo matching, but at
the cost of a increase in inference time. Since we propose
to perform 3D convolution operations at a low resolution
level, the added computation time is very limited. It should be
noted that the evaluation performance of ESMNet-Hr3SR3 is
slightly inferior to the performance of ESMNet-Hr2SR3. This
may be because the ESMNet-Hr3SR3 model (3.2M parame-
ters) has more parameters than the ESMNet-Hr2SR3 model
(2.4M parameters), requiring more training epochs for opti-
mal performance. Considering the inference speed and the
amount of model parameters, only two low resolution hour-
glass modules are adopted for the proposed efficient stereo
matching network. Additionally, our proposed models are

much faster than the existing stereo matching algorithms
under comparable inference accuracy. For example, the pro-
posed ESMNet-Hr1SR3 are nearly 5 times faster than the
recent StereoDRNet [26] method under similar prediction
accuracy.

D. PERFORMANCE ON KITTI DATASETS
After training on Scene Flow dataset, we fine-tune the
ESMNet-Hr2SR3 model on the KITTI 2015 and KITTI
2012 datasets, respectively. Then we submit the fine-tuned
model to the KITTI website for test set evaluation. For
these two datasets, we compare the proposed model with
12 recent deep stereo matching models, namely MC-CNN-
acrt [6] (CVPR2015), LRCR [39] (CVPR2018), Yu et al. [19]
(AAAI2018), AMNet [22] (2019), GC-Net [12] (ICCV2017),
EdgeStereo [23] (ACCV2018), CRL [18] (ICCV2017), PSM-
Net [13](CVPR2018), GwcNet [14] (CVPR2019), Disp-
NetC [17] (CVPR2016), StereoNet [16] (ECCV2018) and
MADNet [25] (CVPR2019). The comparison results are
listed in Table 6 and Table 7. To highlight the efficiency of the
proposed architecture, we sort the tables in descending order
according to the average running time spent for one testing
image pair.

From the tables we may find that the performance of our
ESMNet ranks middle level in terms of prediction accuracy.
Our proposed architecture lost necessary details by filtering
the cost volume at a relative low resolution level, result-
ing a relative less competitive performance in comparison
with recent state-of-the-art methods. The lack of sufficient
groundtruth disparity data also limits the performance of the
proposed model, which not only considers the loss of dispar-
ity values, but also calculates the loss of first derivative of the
disparity values. However, our proposed ESMNet speeds up
the inference of existing deep stereo networks, especially for
the architectures utilizing a series of 3D convolutional layers
at the stage of cost aggregation.

For example, on KITTI 2015 dataset, ESMNet is about
13 times faster than GC-Net with similar generalization per-
formance (2.95%/2.72% vs 2.87%/2.61%) and the number
of 3D convolution layers (20 vs 19). Comparing with Disp-
NetC, ESMNet improves about 1.39%/1.33% in D1-all under
the same running speed. Moreover, comparing to the base-
line real-time architecture StereoNet and the recent real-time
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TABLE 6. Performance comparisons with state-of-the-art deep stereo matching networks on the KITTI 2015 test set. All deep stereo networks are sorted
in descending order of running time.

TABLE 7. Performance comparisons with state-of-the-art deep stereo matching networks on the KITTI 2012 test set. All deep stereo networks are sorted
in descending order of running time.

FIGURE 5. KITTI 2015 test set qualitative results. The left column shows the left input image of the stereo image pair. For each input
image, the disparity maps obtained by the proposed ESMNet, the recent MADNet [25] and GC-Net [12] are illustrated above
corresponding error maps.

architecture MADNet, our ESMNet achieves a relative large
performance gain of 38.9% and 36.7%/36.3% in terms of
D1-all, while runs in comparable speed. This further proves
that the proposed depth discontinuity aware subnetwork
learns a much effective hierarchical super-resolution function
that runs comparable speed with recent real-time architecture
designs.

As for the KITTI 2012 dataset, we cannot find the entries
of LRCR, CRL, EdgeStereo, StereoNet and MADNet on the

KITTI 2012 leaderboard. Comparing with the listed recent
state-of-the-art methods, our methods also gives a middle
level performance in terms of prediction accuracy. The pro-
posed ESMNet surpasses DispNetC with a relative improve-
ment of 47%, 45.6% and 41% in terms of 2 pixel, 3 pixel and
5 pixel thresholds, respectively.

Finally, Fig. 5 and Fig. 6 illustrate some visualization
examples of the disparity maps estimated by the proposed
ESMNet, MADNet, DispNetC, and GC-Net, together with

VOLUME 7, 2019 159721



C. Guo et al.: Learning Efficient Stereo Matching Network With DDA Super-Resolution

FIGURE 6. KITTI 2012 test set qualitative results. The left column shows the left input image of the stereo image pair. For each
input image, the disparity maps obtained by the proposed ESMNet, DispNetC [17] and GC-Net [12] are illustrated above
corresponding error maps.

the corresponding error maps. These results were reported
by the KITTI server. It shows that ESMNet yields more
robust results along depth edges. In general, the proposed
ESMNet makes a more practical attempt towards real-time
stereo matching with acceptable depth prediction accuracy.

V. CONCLUSION
In this paper, we present ESMNet to address the issue of
fast stereo matching by designing a new end-to-end Siamese
convolutional neural network architecture. We follow the
classic pipeline of forming a 4D matching cost volume, and
applying 3D convolutional filtering operations to perform
cost aggregation. In order to alleviate the computation burden
of 3D convolution operations on high resolution cost volume,
we propose to filter and regress on a low resolution cost vol-
ume, and then upsample the low resolution disparity map to
the desired resolution via the depth discontinuity aware super-
resolution subnetwork. We regard the super-resolution pro-
cess of low resolution disparity as a high frequency cascade
refinement process, which explicitly learns a residual map-
ping function from intensity edges to depth edges. We also
propose to supervise the first derivative loss of the predicted
disparity map that makes the network adaptively aware the
depth discontinuity edges. Experiments on stereo matching
datasets verify that ESMNet is capable of predicting high
resolution disparity maps at a near real-time frame rate and
has a comparable accuracy comparing to the state-of-the-art
methods.
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