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ABSTRACT Underwater imaging has always been a challenge due to limitations imposed by scattering and
absorption nature of the underwater environment. The light would be highly degraded after reflection and
propagation in the water medium. Being an advanced imaging technique, Single-pixel Imaging (SPI) is appli-
cable to acquire object spatial information in low light, severe backscattering, and high absorption conditions.
Combination of Compressive Sensing (CS) and SPI can overcome the limitation of SPI algorithms such
as long data-acquisition time, low reconstruction efficiency and poor reconstruction quality. In the current
research, an underwater SPI system based on CS is established to reconstruct our two-dimensional (2D)
transparent object. We have systematically investigated the influence of water turbid degree, measurement
pattern types and number of measurements on image reconstruction performance. The proposed system
is capable to reconstruct the object even when the turbidity reaches up to 80 Nephelometric Turbidity
Unit (NTU), where the conventional imaging systems are unusable. Proposed reconstruction method in our
research can save more than 70% data acquisition time, compared to SPI algorithm. Our experimental setup
has been compared to a conventional imaging system and an underwater ghost imaging system to show
its efficiency in obtaining accurate results from turbid water conditions. Furthermore, various algorithm
comparison and imaging enhancement studies demonstrates that our algorithm is superior in bringing highly
convex optimization at a faster rate with a smaller number of measurements. This work creates new insight
into the SPI application and generates a guideline for researchers to improve their applications.

INDEX TERMS Single pixel imaging, compressive sensing, gated techniques, imaging through turbid
media.

I. INTRODUCTION
Imaging in an underwater environment is difficult partic-
ularly in turbid media due to backscattering and absorp-
tion effects. Various researches have been done aiming
to capture the images of objects in underwater environ-
ments [1], [2] and underwater imaging enhancement [3], [4].
Due to the presence of faster, more dynamic computers and
strong fundamental spatial light mapping mechanisms such
as Spatial Light Modulator (SLM) and Digital Micromirror
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Device (DMD) developed in the last decade comprehen-
sive investigations have been done in the field of imaging
which employs only a single pixel detector noted as Single
Pixel Imaging (SPI) [5]–[7]. Compared to the conventional
method, SPI makes it possible for the imaging system to use
a low-cost single-pixel photodetector rather than an expensive
multi-pixel Complementary Metal Oxide Semiconductors
(CMOS) or Charge-Coupled Devices (CCD). It is convenient
and efficient to manufacture single-pixel detectors with a
large active area, which makes SPI techniques more appro-
priate for imaging, especially in low illumination condi-
tions (underwater and foggy medium, etc.) than traditional
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imaging techniques. The limited response of detection
medium to a certain bandwidth has been a flaw of conven-
tional imaging systems. The same drawback of the conven-
tional system has become the major advantage of SPI
because it can make measurement relatively in a much
wider range of the electromagnetic spectrum. Consequently,
the objective of SPI is to build an apparatus that is effi-
cient for many real-world applications because of its ability
to be a perfectly hyperspectral imaging system. With these
exceptional strengths, extensive research attempts such as
3D [8]–[10], terahertz [11], [12], microscopy [13], remote
sensing [13], scattering imaging [14], shadow less [15]
and multispectral imaging [16] have been done to make
use of its superiority. In addition, unlike conventional
imaging system, SPI, a unique imaging technique by
means of coincidence measurement using discrete inten-
sity data has the feature of turbulence-free [17]–[19], low
effect of backscattering [20]–[23] and wider angle of view
(AOV) [24], [25], which can efficiently improve the under-
water imaging performance.

SPI modulates both detection and illumination spatial
signals into a one-dimensional (1D) light signal which make
it possible to obtain spatial information only employing
a single-pixel detector. The resulting 1D signals can be
collected by a detector without spatial resolution, such
as bucket detector or single-pixel detector. However, this
scheme generally demonstrates a moderate frame rate, since
to completely sample a target under investigation minimum
required the corresponding measurement is at least the same
as the number of pixels in the image reconstructed. To alle-
viate this, CS [26]–[28] has been introduced which take
advantage of prior understanding to reconstruct the target
from a pseudorandom measurement patterns deduced by the
Digital Light Processing (DLP). It allows the reconstruction
of the N -by-N pixel object using less than N 2 measurements.

However, there are limited studies which focus on applying
SPI to capture the scene in the underwater environment
and systematically analyzes the influence of turbidity on the
system performance. Therefore, we attempt to exploit the
advantages of SPI in an underwater environment for imaging
in clear and turbid medium. Active SPI which is based on
illumination modulation is chosen in order to analyze the
performance in a water medium. This paper shows exten-
sive investigation on SPI in an underwater environment of
controlled turbidity by using a certain level of China clay
and light transmittance meter. In order to fully capture the
entire unknown scene to a specific resolution, the minimum
number of measurements required is equal to the total number
of pixels in the recovered image [29]. Therefore, the compres-
sion technique is used to reconstruct the image which is
able to save sampling and calculating time and improve
reconstruction quality efficiency. Our experimental results
demonstrate that the proposed CS-based active mode under-
water SPI is more reliable than the traditional underwater
imaging techniques. It is able to recover the image when the
medium turbidity reaches up to 80 NTU. In addition, more

than 70% of the measurement time can be saved compared to
the conventional method.

We first briefly introduce the underwater SPI and CS in the
second section. In the third section, we demonstrate recovered
images for measurement pattern types, various turbidities,
and the number of measurements. In addition, the evalu-
ation of performance, comparison study with conventional
methods and results obtained using different methods are
illustrated in this section. Finally, our conclusions and future
plans are given in the fourth section.

II. THEORY
The proposed underwater object detection and image acqui-
sition process are shown in figure 1. The signal strength of
the object that has to be imaged is set as N which represents
the total number of pixels in our reconstructed image. For the
following step, the number of the observations (m) needed for
reconstruction is calculated based on m = O(K logN ). The
sparsity of the binary matrix is important in the next step to
limit the number of observations to m. The experiment will
run until the number of measurements is equal to the number
of observations. Then, l1 minimization algorithm does the
initial guess of the original signal X. This initial value is
updated after each iteration of the l1 minimization algorithm.
The result is displayed in the final step.

FIGURE 1. Summary of the proposed approach for underwater SPI.

SPI system works by gathering bucket sums of a light field
which has interacted with an object under investigation and a
spatial light modulator. The standard SPI system architecture
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FIGURE 2. 8×8 Hadamard and random matrixes and corresponding
binary patterns. (a) Hadamard pattern; (b) Hadamard matrix; (c) Random
pattern; (d) Random matrix.

consists of following key components: a light source, optics,
single pixel detector and Spatial Light Modulator (SLM).
A series of generated patterns are used to illuminate the
object by using SLM. The intensity value of each pattern
is collected by single-pixel photodetector correspondingly,
which is only sensitive to the intensity but not the phase
of electromagnetic radiation. Tao et. al proved that binary
patterns such as random andHadamard patterns canmodulate
the light filed intensity effectively. Hence, it can be consid-
ered a suitable mask (measurement patterns) to illuminate the
object [30]. As shown in figure 2 (b), the Hadamard matrix
is a square matrix which is comprised of +1 and −1 where
each row is orthogonal to another row. Figure 2 (a) shows the
corresponding binary pattern to the Hadamard matrix, where
white pixels represent +1 and black pixels represent −1.
The random matrix consists of 0 and +1 determined through
standard probability distributions like Gaussian or Bernoulli
distribution. In this paper, we use Hadamard matrix as a
projection pattern that contains + 1 and −1 entries which
corresponds to white and black pixel respectively. The 8×8
random matrix and its corresponding random binary pattern
are given in figure 2 (c) and figure 2 (d).

In reality, the order of instruments in which the light beam
communicated with the spatial light modulator and the object
presents a significant separation between two conventions of
operation unique to SPI system, namely active and passive
mode SPI. The active mode arrangement is as follows: DLP,
object, and detector. The passive mode arrangement is as
follows: object, DLP, and detector. Our underwater system
follows the active mode SPI. The schematic of underwater
imaging system is shown in figure 3, which is built to form
an image of thin transparent object ‘four-point star’.

According to the definition, the patterns generated by
the modulator (DMD) illuminates the object and results
in the circulation of the intensity function Y that contains
the product of corresponding X and 8 value at each pixel
location. M-dimensional Column Vector Y and projected

FIGURE 3. Sketch map of the experimental setup: underwater active
mode SPI system. DLP: Digital Light Processing.

illuminating patterns can be concluded in terms of a single
matrix equation:

YM×1 = 8M×N × XN×1 (1)

in which, M represents the number of measurements, N is the
dimension of the original signal and 8 is the measurement
with dimension M×N. The unique solution of the Eq. (1)
cannot be obtained by classical matrix inversion, which
gives a unique solution for N×N matrices. However, when
the measurement matrix 8 satisfies the Restricted Isometry
Property (RIP) and sparse signal (X ) is K−sparse, then the
signal can be recovered by employing l1 norm minimization
problem with large probability and linear programming [31].
Practically, many signals do not exist with sparsity in their
original form but can be represented sparsely in some suitable
basis.

CS is a scheme for the simultaneous compression and
sampling of sparse signals through incomplete, non-adaptive
linear measurements [32]–[35], and the development of CS
theory has brought tremendous progress in the research field
of SPI. CS approach claims to retrieve certain signal and
image using fewer measurements than conventional methods.
Sparsity and incoherence are the twomain keys behind the CS
method. Sparsity and incoherence are related to interesting
signal and sensing method, respectively. Sparsity represents
a total number of non-zero elements in the signal transform
domain. On the other hand, incoherence claims sensing and
sampling waveforms possess an immensely dense presence
in 9. The principle of incoherence states that the inco-
herent should be there between sensing and sparsifying basis.
Considering the known basis, the sparsity of themeasurement
function and the precise solution of single pixel measurement,
Eq. (1) can be achieved even if the measured number m is
less than 30% of the object pixel number N [36]. According
to this, there exists sparsifying basis 9 (9 = {ψ1, ψ2. . . . . . ,
ψN}) in N-dimensional space, the N-dimensional signal X
(X = {X1, X2. . . . . . , XN}) is called to be K-sparse which can
be expressed as:

X = 9S (2)

where K belongs to non-zero entries in N×1 vector S and K
is far less than N.
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Regarding the CS theory, it is stated when the original
signal image X contains such K-sparse basis, the signal can
be recovered more thanm (m = O (KlogN)) incoherent linear
measurements with high probability:

Y = 8X = 89S (3)

in which, 8 is an M×N measurement matrix which is
incoherent with the sparsifying matrix 8 and Y is the
M×1 measurement vector [35].

The matrix 8 is defined as the measurement matrix [35].
If the maximum magnitude of the elements of 89 is small,
the incoherent property would be fulfilled that satisfies
the condition ‖X‖ 0 < 1

2

(
1+ 1

µ(8)

)
for a given matrix

8 ∈ Cm×N with m < N to obtain the unique solu-
tion for 8X = Y [34]. When 8 is a random basis, for
example, scrambled block Hadamard Ensemble, pseudo-
random sequence and Bernoulli binary vectors this condition
is achievable [37], [38]. Random matrix is highly incoherent
with respect to any given basis. Basis8 is used for the sensing
purpose of the object and 9 for the representation of the
object. Orthogonality between 8 and 9 is not mandatory
but convenient to solve the problem simply. This coherence
between the basis can be represented as follows:

µ(8,9) =
√
n max
1≤k,j≤n

∣∣〈8k , 9j
〉 ∣∣ (4)

Thus, the independency between the columns of the given
matrix calculates the maximum correlation exists between
any two elements of8 and 9. If correlated members involve
in both 8 and 9 as a consequence coherence will be large
otherwise it will be small. This largest and smallest value
pursue linear algebra which is µ(8,9) ∈

[
1,
√
n
]
and

compressive sampling primarily interested in low coherent
combinations. So, the performance of coherence is totally
clear; the lesser the independence between rows and columns
of the matrix, the lesser would be the correlated informa-
tion in the samples, resulting in a reduction in samples for
bringing a unique solution, hence our focus is low coherence
structures.

Since K-sparse sparsifying basis9 occurs in several signal
types, such as normal images are sparse in wavelet DCT,
or Fourier domain, the property is taken advantage in the
compression standards like JPEG and JPEG2000.

The recovery of X is done based on l1 minimization. The
fast approximation is possible when a signal containing a
lesser number of significant coefficients and all the other
coefficients are set to be zero. This is known as the sparsity
of the signal. All the natural images, audio, and video signals
are sparse in some basis. Consider a sparse matrix8 ∈ Cm×N

which obeys restricted isometric property and for a k - sparse
vector X , define Y = 8X where X has only k significant
coefficient. Then the l1 minimization model is given by:

min {‖X‖1 : ‖8X − Y‖2 ≤ γ } (5)

in which, γ is the generic norm, γ ≥ 0. Let Y = 8X∧ where
X∧ is sparse and most of its coefficients are zero or near to

zero, X∧(k) be the best approximation of X and X∗ be the
optimal solution, then the result for the Eq. (1) is bounded
sparsity of the measurement matrix and it is given by:∥∥X∗ − X∧∥∥2 ≤ Ck

1
2
∥∥X∧ − X∧(k)∥∥1 (6)∥∥X∗ − X∧∥∥1 ≤ C

∥∥X∧ − X∧(k)∥∥1 (7)

where sparsity k can be set to the order of m
/
log(n/m)

depending the type of matrix are in use, and C is a generic
constant. The model is again extended for high stability:∥∥X∗ − X∧∥∥2 ≤ C (γ + k 1

2
∥∥X∧ − X∧(k)∥∥1) (8)

in which, X∧ = X∧(k) and γ=0. Then the exact recovery
X∗ = X∧ is achieved when the process combines with
relevant measurement matrix (8).
The gradient of the sparse images is able to be utilized by

applying Total Variation (TV) minimization of images. The
discrete gradient for a digital image X can be determined at
pixel location xij [39]:

Gij =
(
Gh;ij(X )
Gv;ij(X )

)
Gh;ij(X ) = xi+1,j − xi,j
Gv;ij(X ) = xi,j+1 − xi,j (9)

The TV of image X can be expressed as the summation
magnitudes of Gij(X ) at each location in image signal X :

TV (X ) =
∑
ij

√
Gh;ij(X )2 + Gv;ij(X )2 (10)

Quadratic constraints of TV minimization has been
proposed to yield more suitable visual quality than
the l1 optimization when retrieving images using noisy
observations [39]:

minTV (X ) (11)

subject to ‖8X − Y‖ 2 ≤ ε (12)

Candes et al. summarized seven distinct data reconstruc-
tion optimization problems. The CS inverse problem has
been solved using CS measurements and proposed software
package (l1_MAGIC) [40].
In our theoretical analysis part, we show a brief theoret-

ical introduction of underwater SPI and CS. Influence of
pattern type, number of measurements and turbid degree
on system performance are studied in the experimental
part. Eq. (1) summarizes the principle behind the CS-based
imaging system design philosophy. Using CS, the object can
be reconstructed with a fewer number of measurements than
the number of pixel in the image by the optimization method
described in the following reference [41], [42].

III. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETUP
Based on our own previous investigation and following
published literature on it, it has been observed and well
investigated that the object reconstruction result would be
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FIGURE 4. Experimental setups for CS-based underwater SPI.

greatly influenced by the noise of the light transmittance path.
High power laser source has been implemented to increase
the intensity of the light source. Laser, due to having high
power with small divergence laser, the reflected light inten-
sity value can be detected and captured easily by the single
photodetector. In order to reduce the noise effect, we have
synchronized the single pixel detector and the light source
using gated technology and MATLAB software package.
Using the discussed methods above, the light reflected from
the object at a particular distance can be recorded by the
DAQ (Data Acquisition). As shown in figure 4, emitted
light from laser source illuminates the whole area of DMD,
after beam shaping and spreading by using collimator. DLP
(DLP Light Crafter 6500 Thorlabs) is used to illuminate
the target by using random and Hadamard patterns gener-
ated by DMD chip mounted on it. The unit cell of random
or Hadamard patterns shown onto the DMD is composed
of 8×8 DMD pixels. A fraction of each pattern which passes
through the object (a thin transparent ‘four-pointed star’) is
collected by a collecting lens that concentrates light power
at an effective area (13mm2) of the photodetector (Thorlabs
PDA36A-EC). Aiming to obtain intensity value, photode-
tector is connected to an analog to digital converter (A/D)
(National Instrument USB-6001DAQ) to provides digitized
signal from photodetector. Custom software developed in
Matrix Laboratory (MATLAB) is capable of solving digitized
CS measurements. Digital Light Projector is essential for
projection of patterns and connected with the MATLAB.
So, script .m MATLAB file has been created for connection
through Internet Protocol/ Transmission Control Protocol
(IP/TCP). The DAQ (Data Acquisition Toolbox) is useful
to collect the data and MATLAB possesses functions to
use National Instrument device (NI). A successful contact
is required between the DLP and DAQ, a MATLAB code
has been created for the automation and essentially for
the synchronization of the data capturing procedure. The
system ignores the possibility of attaching the wrong data to
projected patterns. Contrary to time-based correspondence,
DLP will only proceed next project matrix pattern after

getting reading for the previous pattern. Synchronization
process eliminations the probability of error and increases
the measurements process systematically. Following mini-
mization of the TV (min-TV), the image reconstruction is
able to be completed in less than 15 seconds by MATLAB
reconstruction algorithm [41].

In order to evaluate the reconstructed object images quality,
we employ Peak Signal-to-Noise-Ratio (PSNR), and SSIM
(Structural Similarity Index) which are regularly utilized to
measure the reconstruction quality of images. Here, PSNR is
defined as:

PSNR = 10 · log10(
MAX2

I

MSE
) (13)

in which, MAX2
I is the maximum possible pixel value of the

image when the pixels are represented using eight bits per
sample, this value equals to 255. The MSE in Eq. (14) is the
average squared difference between the original object and
the reconstructed object image which can be given by:

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

[O(i, j)− R(i, j)]2 (14)

where, O (i, j) is the image of the object and R (i, j) is the
reconstructed image. Additionally, m×n is the number of
pixels in the comparison image.

SSIM is a unique approach tomeasure the analogy between
the two captured photos. It is basically a matric which
computes image characteristic deterioration induced due to
operation such compression and data destruction in transmis-
sion. We have done all the related calculation on MATLAB.
In which, we required two matrices reference and processed.
The original image as a reference is the object image shown
in figure 3. When calculating the PSNR and the SSIM
index, we use MATLAB to generate a contrast image corre-
sponding to the reconstructed image resolution while main-
taining the reference image scale. and processed matric is
compressed matrix. SSIM follows visible structures in the
object compared to PSNR and SSIM is considered as a more
reliable tool to measure the deterioration quality of images.
The SSIM between x and y can be calculated with the
following formulation:

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(15)

in which, µx and µy are the average of x and y, σ 2
x and

σ 2
y are the variance and σxy is covariance of x and y.
c1 = (k1L)2, c2 = (k2L)2, k1 = 0.01, k2 = 0.03. L is the
range of pixel value [43].

B. RESULT AND ANALYSIS
1) EFFECT OF PATTERN
The reconstruction process can be affected by the nature
and the type of distinct spatially with respect to the possible
resolution, imaging speed, compressibility, and fidelity.
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Hadamard and random patterns have been used in our obser-
vation for the reconstruction of the target image.

These patterns contribute large spatial frequency of the
target. Binary patterns contain either 1 or 0 corresponds to full
transmission and no-transmission, respectively. For grayscale
patterns, it must vary between 0 and 1 for every pixel.

To observe the effect of pattern, images have been recon-
structed using Hadamard and random patterns with different
resolution (32×32, 64×64 and 128×128) with an equal
number of measurements. Figure 5 (e) and figure 5 (f)
show the reconstructed 128×128 resolution object in the
same experimental condition (clear water) by projecting
500 random and Hadamard patterns of the same resolu-
tion. Recovered images using Hadamard patterns show better
reconstruction in image quality the than the random ones,
as edges are visible in figure 5 (f). From figure 5, recon-
structed images employing Hadamard patterns are better for
each resolution.

FIGURE 5. Recovered images with different resolution using random and
Hadamard patterns in clear water under 500 measurements.
(a) 32×32 random pattern; (b) 32×32 Hadamard pattern;
(c) 64×64 random pattern; (d) 64×64 Hadamard pattern;
(e) 128×128 random pattern; (f) 128×128 Hadamard pattern.

Using Eq. (14) and Eq. (16), PSNR and SSIM values of
each reconstructed images in figure 5 are calculated and
plotted in figure 6 and figure 7. A significant upward trend of
PSNR and SSIM from 32×32 to 128×128 can be observed
and PSNR corresponds to Hadamard patterns have a better
response than the random patterns.

2) INFLUENCE OF THE NUMBER OF MEASUREMENTS
To investigate the influence of the number of measurements,
different resolution objects are reconstructed in clean water
using the Hadamard mode with different measurements (300,
500 and 1000 measurements), as shown in figure 8. When
sampling objects, a small portion is missing due to noise and
insufficient sampling. When the number of measurements
is less than 20% of the total number of pixels using CS,
the object can be reconstructed.

Figure 8 (g), figure 8 (h) and figure 8 (i) summarize that the
reconstruction image becomes more reliable with the number
of measurements increasing from 300 to 1000. From figure 8,
it can be seen that figure 8 (c), figure 8 (f) and figure 8 (i)
are themost reliable reconstruction with different resolutions.

FIGURE 6. The plot of PSNR with different resolution under 500
measurements in clear water with respect to different projected pattern
types.

FIGURE 7. The plot of SSIM with different resolution under 500
measurements in clear water with respect to different projected pattern
types.

FIGURE 8. Recovered images with different resolution using Hadamard
patterns in clear water under different number of measurements.
(a) 32×32 300 measurements; (b) 32×32 500 measurements; (c) 32×32
1000 measurements; (d) 64×64 300 measurements; (e) 64×64
500 measurements; (f) 64×64 1000 measurements; (g) 128×128
300 measurements; (h) 128×128 500 measurements; (i) 128×128
1000 measurements.

Corresponding PSNR and SSIM of each recovered image in
figure 8 are shown in figure 9 and figure 10 respectively.
In these two figures, it can be observed that PSNR and SSIM
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FIGURE 9. The plot of PSNR with different resolution under Hadamard
patterns in clear water with respect to the number of measurements.

are proportional to the number of measurements whichmeans
reconstruction performance is higher for more measurements
thanwith fewermeasurements. Generally, it can be concluded
that the more measurements wemake, the more reconstructed
images we get. Therefore, more sampling time should be
performed to achieve better reconstruction performance in
practical applications.

3) INFLUENCE OF TURBIDITY
The influence of turbid degree on the reconstruction quality
will be discussed in this part. Instead of black ink, China clay
is used to make the water have a different degree of turbidity.
This increases the refractive index of the water, thus slowing
the light travel.

According to previous studies, turbid water between the
object and the light sensor has almost no effect on the quality
of the image because the light sensor has no spatial structure
and detects only the total light intensity. However, turbid
water located between the light projector and the object
distorts the light patterns and has a significant influence on
the quality of the final image.

So, in our setup, turbidity is made uniform in the whole
water tank irrespective of before and after the target to
investigate the influence of turbidity. China clay is a chem-
ical powder which can be mixed with the water and can
generate absorption and backscattering to create turbidity.
By controlling the amount of the China clay, the range of
turbid degree of the water is from 0 NTU to 80 NTU, which
is measured by using light transmittance meter. The increase
in the refractive index of the turbid water is also measured
using digital refractometer since it causes delay or shift in
the detected light intensity. The DAQ device which is used to
record the detected light intensity in the experiment is capable
of recording the shift in detected light intensity.

Different reconstructed results within various turbid
degrees (0, 20, 40, 80 NTU) under Hadamard illumination
patterns of 1000 measurements are shown in figure 11.
Comparing figure 11 (l) with figure 11 (i), figure (j), and
figure 11 (k), a clear deterioration in reconstructed images
can be observed with the turbid degree increasing from
0 NTU to 80 NTU. However, the reconstruction image
remains distinctive even when the turbidity reaches as high

FIGURE 10. The plot of SSIM with different resolution under Hadamard
patterns in clear water with respect to the number of measurements.

FIGURE 11. Recovered images with different resolution using Hadamard
patterns in clear water under 1000 measurements. (a) 32×32 0 NTU;
(b) 32×32 20 NTU; (c) 32×32 40 NTU; (d) 32×32 80 NTU; (e) 64×64 0 NTU;
(f) 64×64 20 NTU; (g) 64×64 40 NTU; (h) 64×64 80 NTU; (i) 128×128
0 NTU; (j) 128×128 20 NTU; (k) 128×128 40 NTU; (l) 128×128 80 NTU.

as 80 NTU. PSNR and SSIM with respect to different
turbid degrees for selected pattern resolution are summa-
rized in figure 12 and figure 13. It can be evidently seen
that the PSNR is proportional to the turbid degree which
further proves the reconstruction performance decreases with
increase in turbid degree. In addition, high-resolution pattern
and more measurements can weaken the effect of the degree
of turbidity. In extreme condition, for example, the water of
high turbid degree, SPI can reconstruct the object provided
enough number of measurements. It can be concluded that
the SPI can be used as a novel solution of imaging over
poor visibility environments such as turbid water, heavy fog
and colloidal medium where conventional imaging method is
thoroughly unavailable.
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FIGURE 12. The plot of PSNR with different resolution under
1000 measurements and Hadamard patterns with respect to the turbid
degree.

FIGURE 13. The plot of SSIM with different resolution under
1000 measurements and Hadamard patterns with respect to the turbid
degree.

In all, our experimental results have shown better results
with convincing reconstructed image quality with a smaller
number of measurements. The results obtained is better than
previously reported [42] results particularly in the turbid envi-
ronment. Advantage of previously reported underwater ghost
imaging is to cover a wide angle of view with the limitation
in its insensitive response to change in turbidity.

4) COMPARATIVE EXPERIMENT WITH CONVENTIONAL
IMAGING SYSTEM
The experiment setup of our gated conventional imaging
system is illustrated in figure 14. A gated imaging system

FIGURE 14. The schematic diagram of the experimental setup of the
conventional imaging system.

consists of a sensitive gated imaging camera and a pulsed
illumination source.

In our system, a LED (Light-emitting Diode) pulsed
light source is employed because most of the conventional
imaging systems use a visible light source, and because of
its fast switching specific characteristics we send a contin-
uous square wave signal to the LED plane so that the effect
of the stray light will be greatly reduced. In our experi-
ment, the camera field of view (FOV) matches the light
source divergence (DIV) and are matched to maximize the
energy balance and, therefore, the range of the system. In our
experiment white (6500K) high-power LED plane is chosen
as the pulsed illumination light source which is pasted on
the turntable and can be controlled by the synchronization
system.

As illustrated in figure 14, the light pulse which travels
through the depth of the scenewill hit the object at a particular
distance. Owing to the time of flight (TOF), the light photons
hit the object first and then the camera in a fixed time. The
camera aperture is closed when the photons travel towards it,
and the camera delay generator will open the aperture after
a certain delay and press the shutter for a short integration
time. Therefore, the sensor of the gated camera will not be
dazzled by backscattered photons or parasitic light sources.
The sensor gate opens after a certain delay and for a short
integration time. Thus, the light that arrived at the sensor
within the right timing window is contributed to the imaging
process.

Different captured images under different level of turbidity
(0, 20, 40, 80 NTU) and refractive index are shown in
figure 15. It can be seen that the conventional imaging system
is highly affected by the turbidity and totally failed when the
medium level of turbidity up to 40 NTU even in the case
of using gated technology at the same time. So, it can be
concluded that comparing to the traditional imaging system,
SPI, a computational imaging system, can be used as a novel
solution of imaging over poor visibility environments such as
turbid water, heavy fog and colloidal medium where conven-
tional imaging method is thoroughly unavailable.

5) COMPARISON INVESTIGATION WITH OTHER METHODS
After the analysis of our results, to evaluate the performance
of the proposed method compared with other algorithms in
terms acquisition time, quality of the recovered image and the
number of measurements required for reconstruction, a series
of investigation using different methods are conducted [44].
Figure 16 illustrates the results of the reconstructed object
employing different methods.

As SPI is a linear system, to derive X from the set
of measurements, different algorithms such as non-iterative
methods, linear iterative methods, and non-linear iterative
methods have been utilized. Among them, matrix inversion
which is a non-iterative approach in which calculations are
performed without any iteration. In this method,8T is multi-
plied both the sides Eq. (1) and then X is calculated which is
equivalent to minimizing l2 ball when m ≥ N [45]. However,
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FIGURE 15. Comparison of the captured images using underwater SPI
with a conventional imaging system. (a), (b), (c) and (d) are images
captured by the conventional imaging system in different turbidity and
(e), (f), (g) and (h) are reconstructed results using Hadamard patterns in
different turbidity under 1000 measurements. (a) 128×128 0 NTU;
(b) 128×128 20 NTU; (c) 128×128 40 NTU; (d) 128×128 80 NTU;
(e) 128×128 0 NTU; (f) 128×128 20 NTU; (g) 128×128 40 NTU;
(h) 128×128 80 NTU.

its application is limited in SPI since it won’t work form < N ,
i.e. ATA is non-full rank.

Gradient Descent, which is an iterative algorithm, finds a
sparse solution for the SPI problem [46]. Restricted isometric
property (RIP) of the measurement matrix should be satis-
fied to work with this approach. This algorithm solves for
X = Hs

(
X + 1

γ
8T r

)
where γ = δ2s +

1
3 is RIP constant,

8T is the transpose of the measurement matrix, Hs is the
operator which keeps the significant coefficient of Y and γ
as residue. Though this algorithm ensures a unique solution
to the problem, iterations through each and every X measure-
ment increase the acquisition time.

We focus more on the robust and efficient non-linear
iterative method which is l1 minimization or least absolute
deviations. It minimizes the sum of the absolute difference
between Y and X . For the model Y = 8X , X is assumed to be
k sparse and X (k) is the approximation of X by setting N − k
coefficients of X to zero. In this method, the level of sparsity
decides converging speed to a unique solution. Therefore,
the right selection of measurement matrices which obey RIP
and the incoherent property is needed. If we blow a l1 ball,
the probability of touching the tip of the ball (achieving
a unique solution) is higher for high dimension real-time
problems [47]. Our algorithm is compared with two other
algorithms since the performance of the other algorithms

which belongs to the class of non-iterative and linear iterative
methods such as basis pursuit, orthogonal matching pursuit
are consistent.

FIGURE 16. Recovered images in clear water with the different method
with same resolution under the same number of measurements.
(a) Matrix inversion 128×128 1000 measurements, (b) Gradient Descent
128×128 1000 measurements, (c) proposed method 128×128
1000 measurements.

In our comparison investigation part, we choose 1000
measurement values to reconstruct the object using different
recovered methods we discussed above. Figure 16 (a) repre-
sents the result of the matrix inversion algorithm. This algo-
rithm assures good quality results only for linear determined
system. The result of the gradient descent algorithm is shown
in figure 16 (b). This algorithm finds the optimized value
by taking steps from an initial guess until it reaches to best
or optimized value. The size of the steps is decided by the
value in the residue. Though this algorithm gives far better
result than the matrix inversion method, the time required for
acquisition is much higher than compressive sensing based
l1 minimization. Since it iterates through each measurement
by taking big or baby steps. However, l1 minimization can
produce good quality images with a few measurements,
which is illustrated in figure 16(c). Restricted isometric prop-
erty and sparsity of the signal make the acquisition faster in
l1 minimization that is explained which consistent with the
discussion above.

6) CROSS-CORRELATION AND FILTERED METHOD
FOR IMAGE QUALITY ENHANCEMENT
Based on experimental results, SPI produces a better result
for different turbidity conditions. But the quality of the image
is affected when the turbidity is 80NTU. To improve this
situation, SPI is combined with conventional gated imaging
techniques. In this experimental setup, the object is illumi-
nated by a laser light source and the light transmitted through
the objects is collected by a single pixel detector which has no
spatial resolution. The other beam which is never interacted
with the object is imaged by a CCD camera. Then the inten-
sities obtained from the single pixel detector is correlated
with the intensities of each pixel in the multi-pixel detector to
obtain the image. The intensity correspondence of the single
pixel detector and the CCD camera is calculated using the
equation:

Gm,n (X) =
1
N

N∑
i=1

[
Y i0
]m [

8i(x)
]n

(16)

where N is the number of samples and I s (x) is the sth pattern
at the reference detector. I so is s

th signal of the bucket detector
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and it is the obtained by the equation:

Y io =
∫
dyO(y)8i(y) (17)

where O (y) is the object transmission function and 8i(y) is
the pattern on the object arm. For conventional imaging tech-
nique, the number of measurements is equal to the number of
samples, m = n = N . We also assume that the average size
of the light falls on the object is about same as the pixel size
of the conventional camera. Hence, the ith signal of the single
pixel detector is given by:

Y io =
T∑
yin

I i (yin) (18)

in which, I i (yin) is the intensity of the signal within the
coverage area of the camera and T is the number of illumi-
nated pixels. Themean value of the cross-correlation function
of the object and the reference signal is given by:〈

Gm,n (xin)
〉
=
(T + m+ n− 1) !n!

(T + n− 1)!
µm+n (19)〈

Gm,n (xout)
〉
=
(T + m− 1) !n!
(T − 1) !

µm+n (20)

where xin and xout are the pixels of the camera that correspond
to the pixels from the single pixel detector. To calculate the
Eq. (19) and Eq. (20) we have used relations

〈[
8i(x)

]n〉
= nµn and

〈 T∑
yin

I s (yin)

m〉=(T+m−1)!
(T − 1)!

µm.

The combined technique of conventional and SPI is used
for obtaining high-resolution images with good quality at
80NTU. The number of measurements required for recon-
struction has increased to almost Nyquist limit since objects
or images to be sampled at a rate twice the high-frequency
component in conventional imaging to reconstruct images
close to original ones. However, the result obtained is more
significant and all the fine details of the object are imaged and
recovered by combining these two methods.

From the four images in figure 17, it can be clearly
observed that the results obtained using proposed combi-
nation method is close to that in case figure 15 (f) and is
much better than that in cases figure 16 (a) and figure 16 (b).
In other words, the negative effect brought by the environ-
ment turbidity can be well suppressed that enhanced the
visibility of the target greatly. Furthermore, according to the
experimental results above, it can be indicated that when
the turbidity of the environment is not very high, only the
SPI system proposed by us and the reconstruction algorithm
based on CS can restore the target image well. At this time,
the system is simple and has relatively high computational
efficiency. Meanwhile, by combining gated techniques and
cross-correlation methods, the noise of the achieved image
is greatly reduced, and the quality is higher even when the
object is in an extreme environment.

FIGURE 17. Captured object images with different systems. (a) Gated
conventional imaging system; (b) Proposed active SPI system;
(c) Cross-correlation method; (d) Filtered image.

The images obtained from the above method contain
speckles and are non-uniform in intensity. It is removed
without noticeably changing the original image to improve
the quality when the water is more turbid. For the prepro-
cessing of the images, median filtering can be applied to
remove the speckle noise which arises in the detection and
transmission process. The median filter is a non-linear filter
which is widely used in image processing because of its edge
keeping characteristics and its ability to reduce the speckle
noise. The noise filtering characteristics depend on the size
and shape of the filtering mask. The output of the median
filtering is given by:

M (m, n) = med(G(m− i, n− j), i, j ∈ W (21)

where, i and j represent the rows and columns at a pixel
location in M (m, n) and G(m, n) is the output image from
cross-correlation method. W is the 2D mask which is of
size 3×3. The noise-reducing effects of the median filter are
depending on the size and shape of the filtering mask. Hence,
the smallest possible size is taken for getting maximum
quality. Figure 17 (d) is the filtered image, from where it can
be clearly figured that the remaining background speckles
are removed and edges are sharpened by the implementation
of median filtering technique. In this filter, the neighboring
value of the filtering mask will replace the noisy value of the
image.

IV. CONCLUSION AND FUTURE WORK
In the current study, we proposed a system to demon-
strate a novel underwater SPI application, which is benefi-
cial for practical applications of underwater imaging. The
proposed system employs random and Hadamard measure-
ment patterns to reconstruct 2D transparent object image
using CS. Following the CS approach, our system is capable
to reconstruct the object with different resolutions (32×32,
64×64, and 128×128) using fewer measurements. Exper-
imental results show that the reconstruction performance
is proportional to the number of measurements. Therefore,
a greater number of measurements are required to enhance
reconstruction performance. This substantial reduction in the
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number of measurements efficiently minimizes data acquisi-
tion time. A significant effect of Hadamard pattern compared
with the random pattern on object reconstruction has been
shown in this paper. Moreover, we show SPI can effec-
tively weaken the effect of turbidity level, which could be
considered for long-distance detection and imaging appli-
cation. Our results are found to be better than conven-
tional underwater imaging system, compared to the system
described in figure 14. In the end, a comparative study is
performed that clearly indicate our proposed system has
better ability in approximating the original image quickly
and qualitatively. Moreover, our systematic experiments and
the imaging enhancement investigation illustrate that the
proposed approach is suitable for underwater computational
imaging, especially in extreme environments.

In the future to extend our research on underwater SPI,
we will investigate the influence of other factors such as
target characteristics, laser wavelength, required optics, and
turbulence on imaging performance. We will also look into
the solution to overcome the effect of turbidity we have
discussed in this paper.
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