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ABSTRACT In this paper, a pk-adaptive mesh refinement of pseudospectral method is proposed for
solving optimal control problem by using collocation at Legendre-Gauss-Lobatto (LGL) points, motivated by
reducing the redundant collocation points in the state-of-art mesh refinement methods to improve the time
efficiency. The proposed method involves three phases, i.e., the determination of the polynomial degree,
the determination of increasing intervals or nodes, and the optimization of the locations of segment breaks
in each interval. First, determines the polynomial degree by the error estimation between the dynamics and
the differentiation approximation of state variables according to the spectral matrix. Second, the maximum
allowed polynomial degree in an interval is used to decide whether to segment interval or not. Third,
the locations of segment points are obtained as the optimal design parameters of optimal control method. The
terminology ‘‘pk-adaptive’’ or ‘‘p-then-k adaptive’’ is used because the polynomial degree is preferentially
adaptive variation, then increases the segments by adding the optimal knots in each mesh interval. Finally,
the residual of solutions, number of segments, number of nodes, CPU time, convergence of iteration, and
parameters of the method have been analyzed in the comparing test to discuss the advantages of pk-adaptive
mesh refinement. The discussions performed in two examples and demonstrated that the pk-adaptive method
has the ability of optimizing nodes distribution to keep fewer nodes requirement and higher time efficiency
than the hp- or ph-based pseudospectral methods while achieving the equivalent accuracy.

INDEX TERMS Optimal control, mesh refinement, pseudospectral, collocation methods, optimal knotting.

I. INTRODUCTION
Pseudospectral methods is widely used in the numerical solu-
tion of nonlinear optimal control problem [1], whose exam-
ples range from missiles’ dive phase trajectory maneuver [2],
control of wave energy converters [3], trajectory optimization
of boost-glide vehicle [4], trajectory design for lunar land-
ing [5], etc. One of the key points for the wide application of
pseudospectral method is the spectral accuracy of exponential
convergence in differential approximation theory [6]. The
selection of orthogonal basis functions and the orthogonal
quadrature rules are two important factors to determine the
nodes distribution for differential approximation with few
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discrete points [7]. Three orthogonal polynomials, i.e., Leg-
endre [8], Chebyshev [9] and Laguerre [10], are commonly
used as the basis functions. And three commonly used orthog-
onal quadrature rules are Gauss [11], Gauss-Radau [12], and
Gauss-Lobatto [13]. By combining the above two factors,
a pseudospectral method can be obtained to solve the non-
linear optimal control problems. For example, the Legendre-
Gauss-Lobatto (LGL) pseudospectral method [14] combines
Gauss-Lobatto quadrature with the Legendre polynomials
according to the collocation points, which are known as LGL
nodes. There is no definite evidence for the superiority of
the selection of orthogonal basis functions between Legendre
and Chebyshev, but Laguerre is the only one to be nor-
mally discussed for solving the infinite time problems [15].
Fahroo and Ross [16] discussed the application conditions of
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three orthogonal quadrature rules based on Legendre pseu-
dospectral method and argued that Gauss-Lobatto should be
used more in addition to special boundary problems. In con-
trast, Rao’s team used additional and separate treatments
for the terminal points with Legendre-Gauss-Radau(LGR)
method and demonstrated that the LGR is applicable to both
the finite-horizon and infinite-horizon control problems [17],
whereby Rao’s related research results [18] focused on LGR
pseudospectral method.

Both the LGL and LGR pseudospectral methods have been
theoretically proved the first-order necessary conditions of
optimality through costate mapping to Pontryagin’s Maxi-
mum Principle, details in [19] and [17] respectively.

Hence, the solution of the optimal control problem can
be approximated to a finite degree polynomial, which
can be solved by pseudospectral method with enough nodes,
and the spectral accuracy of exponential convergence is the
same as spectral methods [6]. However, above-mentioned
approaches do not adequately address two issues between
theory and practice: (a) how to determine the number of nodes
and (b) how to deal with solutions that are difficult to approx-
imate to the finite degree polynomial. Mesh refinement sheds
a light on solving the above issues, such as spectral algo-
rithm [20] and widely used hp-adaptive method [21].

Mesh refinement (also known as grid refinement [22] in
some literatures) techniques are mainly used to obtain the
specified solution accuracy in the pseudospectral method of
optimal control problems. In the early stage, h method of
constant degree polynomial state approximation [23] was
adopted to obtain a better accurate solution by increasing the
number of trajectory segments. The p method of Gaussian
quadrature collocation [7] was proposed to achieve conver-
gence by increasing the degree of the polynomial approx-
imation in the single interval mesh. The limitations of the
h method and p method discussed in [21] and [24] are that
extremely fine meshes might be required in the h method and
an unreasonable large degree polynomial approximation is
required in the p method to achieve the expected accuracy
tolerance. Therefore, hp [21] method was proposed to allow
the variation of the number of mesh intervals and the degree
of the approximating polynomial within each mesh interval,
which successfully solved many practical problems such as
spacecraft attitude maneuver [25], space vehicles trajectory
optimization [26], robot path planning [27], etc. Similar to
hp method, spectral algorithm proposed by Gong et al. [20]
before Rao’s hp method divided the mesh intervals by placing
knots around the control mutation points, and then attempted
to increase the number of nodes (relative to the degree of
polynomial) at every interval. Recently, Birkhoff interpo-
lation [28] was introduced into the spectral algorithm to
improve the poor convergence rate caused by the increase
of segments. Patterson et al. [29] changed the order from
hp to ph, that is, increasing the degree of polynomial before
increasing the number of mesh intervals to achieve mesh
refinement, so as to improve computational efficiency of
pseudospectral method. A mesh size reduction patch [30]

was further developed to reduce the unnecessary points in the
iterative steps of ph mesh generation. In summary, both the
hp and ph method have been developed to allow variations
in the degree of the approximating polynomial in each mesh
and the number of intervals in whole mesh. The difference
between the hp and ph method lies in the order of varying:
varying number of mesh intervals (h) and varying degree of
polynomial(p). The hpmethod can solve the complex optimal
control problems in the case of that a global pseudospectral
method is computationally intractable, while the ph method
has a higher computational efficiency than the hp method
in solving the continuous time nonlinear optimal control
problems. One of the weaknesses of the ph and hp methods
is that the segmentation location cannot be placed accurately,
which requires a lot of iterative calculations to approach the
segmentation point step by step and the density of discrete
points near the segmentation point is increased iteratively
until the tolerance of the problem is satisfied. This iteration
is particularly time consuming, especially for practical prob-
lems in engineering, because each iteration solves an NLP
problem which itself contains a large number of numerical
iterations.

In order to reduce mesh refinement iteration and improve
computational efficiency without losing the accuracy of solu-
tion in pseudospectral method, a novel pk-adaptive mesh
refinement method based on LGL quadrature collocation is
proposed in this study to solve the nonlinear optimal con-
trol problems. Here, the word ph is deliberately changed to
pk because our scheme attempts to increase the segments
by adding optimal knots into the mesh intervals. The opti-
mal knots refer to that the segmentation locations between
mesh intervals should be optimized, which is considered as a
part of the solution of the NLP problem transformed from
optimal control problem. Originally, knotting method [31]
was implemented to solve the non-smooth or switch optimal
control problem by pre-allocating knots as spectral patches
at the switch points. Our method incorporates the idea of
knotting into the hp and ph methods, which can be divided
into the following three parts. First, as same as the ph method
in [29], the error estimation is implemented by comparing the
spectral differential value and the value of system dynamic
function within a higher order state approximation. Second,
the error estimation is used to determine how many numbers
of the degree for the polynomial approximation should be
increased, or how many optimal knots should be added into
a mesh interval. The method in this paper follows the same
strategy as in the hp approach [21], that is, increasing colloca-
tion points for uniform-type errors and performing segment
division for nonuniform-type errors. Third, the uniqueness
of our study is that the segments are added by the optimal
knots with the differential error nodes as the initial knotting
locations, and the final knotting locations are determined by
solving the NLP problem which is the same one problem
transformed by pseudospectral method itself. In theory, this
method will reduce a lot of computation compared with both
of the hp and ph methods, because there are a large number of
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iterations (solving NLP once is an iteration unit) in the hp and
ph methods, but only a small number of optimization design
variables are added to determine the locations of segment
division for the pk method.

There are four significances of this research. First, the opti-
mal control problem with optimal knots is constructed and
converted to NLP problem by discretization of multi-segment
LGL pseudospectral method. Second, a new iterative strat-
egy for mesh refinement is devised, in which the polyno-
mial degree of each interval, the number of the intervals in
mesh and the segmentation locations between intervals all
are allowed to vary. Third, the error estimation and residual
vector obtained by difference between system dynamics and
spectral differential of higher order approximation polyno-
mials are used to derive exactly the degree of a polynomial
in a mesh interval or to determine the numbers and the initial
locations of optimal knots. Fourth, two classical examples are
presented to illustrate that the pk-adaptive method proposed
in this paper produces smaller meshes and has higher compu-
tational efficiency with the same specified accuracy tolerance
compared with the hp and ph methods.

II. MOTIVATION FOR NEW pk-ADAPTIVE
COLLOCATION METHOD
In order to motivate the study of new pk-Adaptive LGL col-
location method and to illustrate the fairness of the research,
the following first-order differential equation is considered on
the interval τ ∈ [−1, 1] as same as reference [29]:

dy
dτ
= f (τ ) =


0 −1 ≤ τ < −0.5
π cos(πτ ) −0.5 ≤ τ ≤ +0.5
0 −0.5 < τ ≤ +1

(1)

where y(−1) = y0. The solutions to the differential
equations (1) is given as

y(τ ) =


y0 −1 ≤ τ < −0.5,
y0 + 1+ sin(πτ ) −0.5 ≤ τ ≤ +0.5,
y0 + 2 −0.5 < τ ≤ +1.

(2)

The limitations of p method and h method have been pre-
sented, and the advancements of hp method and ph method
have been proposed as well for approximating the solution
to the differential equation (1) in [21] and [29] respectively.
To demonstrate the effectiveness of the pkmethod in differen-
tial approximation, we try to compare the numerical solutions
of three mesh refinement strategies: hp, ph, and pk. (1) The
core strategy of the hp method is to determine the locations
of new segments or increase the number of collocation points
according to the type of error distribution. In short, the strat-
egy is to divide the segments for nonuniform-type errors and
to increase collocation points for uniform-type errors. (2) The
ph method adopts a ‘‘p-then-h’’ strategy where p refinement
is exhausted prior to perform any h refinement, and the num-
ber of polynomial degree and the number of subintervals can
be decided by quantitative calculation formula. (3) The pk

method adopts a ‘‘p-then-k’’ strategy, in which the polyno-
mial degree is changed adaptively and preferentially, and then
the segments are increased by adding the optimal knots in
each mesh interval.

First of all, to make the study comparable and concise,
a convention is made that the three methods in this paper use
the unified error form and adopt the pseudospectral method in
differential form. The convention before the study is feasible,
because the equivalence of differential form and integral form
for pseudospectral method have been fully proved in previous
studies [32]. As we know, differentiation approximation by
pseudospectral matrix D [8] is a key step for solving the
optimal control problem by pseudospectral method. Suppose
now that it is desired to approximate the differential value of
equation (2) using aforementioned mesh refinement strate-
gies (hp, ph, and pk), and the approximation error E can be
obtained by comparing with value of equation (1).

E= [e(1), · · · , e(H )]; e(i)=

∣∣∣∣∣D(i)Y (i)
−
(t (i)f − t

(i)
0 )

2
f (τ (i))

∣∣∣∣∣ .
(3)

where i = 1, · · · ,H represents the sequence number of
mesh intervals, and H is the total count of mesh intervals.
τ (i) = [τ (i)1 , τ

(i)
2 , · · · τ

(i)
N (i)+1

] is the discrete points of i-th mesh

interval at [t (i)0 , t
(i)
f ] generated by any of the aforementioned

strategies.D(i) is the (N (i)
+1)×(N (i)

+1) LGL differentiation
matrix defined on the mesh interval [t (i)0 , t

(i)
f ]. Y (i) can be

directly obtained by y(i)j = y(τ (i)j ). The error convergence and
mesh points history are observed through the mesh adaptive
iterative procedure of the three strategies. The iterative pro-
cedure terminates when all the elements of E are less than the
tolerance ε, and we set ε = 1× 10−6.

There are three parameters in the hp method denoted as
hp(N0,L, ρ) [21]: N0 is the initial number of collocation
points, then the number of L increases iteratively if needed,
and the notion of ρ is a user-defined parameter determining
whether adding segments or increasing collocation points.
Figure 1 shows the base-10 logarithm of E and mesh point
history of iteration for approximating the differential value of
equation (2) using hp(5, 5, 3) method. Initial mesh contains
6 collocation points (also, called 6 LGL nodes corresponding
to the fifth degree polynomial) in an interval, denoted as
‘‘p6h1’’. The differential error, drawn as the first one blue
circle in the left of figure 1, is approximated on the initial
mesh that is plotted as the first rows of blue circles in the
right of figure 1. It can be seen that the solving process is
convergent through 24 iterations, and the number of nodes is
117 and the number of intervals is 17 in the final mesh when
the error satisfies the preset tolerance.

In the ph-adaptive method, the terminology ph(Nmin,Nmax)
refers to the ph refinement method where the polynomial
degree can vary between Nmin and Nmax . On the same con-
sideration aspects, figure 2 shows the base-10 logarithm of
E and mesh point history of iteration for approximating the
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FIGURE 1. Convergence and mesh history using hp(5, 5, 3) method.

FIGURE 2. Convergence and mesh history using ph(3, 14) method.

differential value of equation (2) using ph(3, 14) method.
As can be seen from the figure, the solving process is con-
vergent through only 6 iterations, which is far less than the
iterations of hp(5, 5, 3). However, when the error satisfies the
preset tolerance, the number of nodes is 178 and the number
of intervals is 20.

Both hp and ph methods can converge to the specified
precision, but it is not difficult to find a large number of
redundant nodes. We assume that these redundant nodes shall
be reduced if segment locations could be located more pre-
cisely. Therefore, the proposed pk method uses a ‘‘p-then-k’’
strategy where the knots are added by optimal method after p
refinement.

There are 3 user-defined parameters for pk method pro-
posed in this paper, which are denoted as pk(Nmin,Nmax , ρ).
The details of the parameters and pk strategywill be discussed
in Section V later. It is seen that the solving process is
convergent through only 6 iterations, and the number of nodes
is 52 and the number of intervals is 6 when the error satisfies
the preset tolerance. Both the number of nodes and intervals
are significantly smaller than the previous two methods, and
convergence requirements are the same.

The pk method may cost more time for differential approx-
imation in an iteration because the optimal step is added.
However, it only adds several number of optimal design
parameters, the number of which is equal to the number
of segments break points, and is far less than the num-
ber of parameters added by increasing nodes in pseudo

spectral method for the optimal control problem. It is possible
to improve the total computational efficiency by using a
pk-adaptive method.

III. OPTIMAL CONTROL PROBLEM
WITH OPTIMAL KNOTS
Without the loss of generality, the following general optimal
control problem in Bolza form is considered to minimize the
cost function

J [x(t), u(t), tf ] = 8(x(t0), t0, x(tf ), tf )

+

∫ tf

t0
g(x(t), u(t), t)dt (4)

subject to the dynamic constraints

dx
dt
= f (x(t), u(t), t) (5)

the inequality path constraints

c(x(t), u(t), t) ≤ 0 (6)

and the boundary conditions

b(x(t0), t0, x(tf ), tf ) = 0 (7)

where x(t) is the state, u(t)is the control, and t ∈ [t0, tf ] is
time.

Suppose the time interval t ∈ [t0, tf ] is divided into a mesh,
which is composed of K mesh intervals: I (k) = [Tk−1,Tk ],
k = 1, · · · ,K . And Tbreak = [T1, · · · ,TK−1] is an array of
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FIGURE 3. Convergence and mesh history using pk(3, 14, 2) method.

the segment break points, called knots. The mesh intervals
Ik have the properties of

⋃K
0 I

(k)
= [t0, tf ] and

⋂K
0 I

(k)
=

Tbreak , while themesh points have the properties of t0 = T0 <
T1 < · · · < TK = tf . The LGL node points lie in the domain
[-1,1] in the Legendre approximation. So the time intervals
t (k) ∈ [t (k)0 , t (k)f ] = I (k) are related as the following affine
transformation:

t (k) = (t (k)f − t
(k)
0 )τ (k)/2+ (t (k)f + t

(k)
0 )/2. (8)

Let x(k)(τ ) and u(k)(τ ) be the state and control in I (k),
respectively. The Bolza optimal control problem of (4)-(7)
can be then rewritten as the following multi-intervals prob-
lem with the location of knots Tbreak as the optimal design
parameters to minimize the cost functional

J [x(1)(τ (1)) · · · x(K )(τ (K )); u(1)(τ (1)) · · · u(K )(τ (K ));

Tbreak ; tf ] = 8(x(1)(−1), t
(1)
0 , x(K )(1), t (K )

f )

+

K∑
k=1

[
t (k)f −t

(k)
0

2

∫ 1

−1
g(x(k)(τ ), u(k)(τ ), τ )dτ

]
(9)

subject to the dynamic constraints

dx(k)

dτ
=
t (k)f − t

(k)
0

2
f (x(k)(t), u(k)(t), t), k = 1 · · ·K (10)

the path constraints

c(x(k)(τ (k)), u(k)(τ (k)), t (k)) ≤ 0 (11)

and the boundary conditins

b(x(1)(−1), t (1)0 , x(K )(1), t (K )
f ) = 0. (12)

Since the state of each interior mesh point must be con-
tinuous, it requires that the condition x(k−1)(1) = x(k)(−1)
and the optional condition u(k−1)(1) = u(k)(−1), k = 1 · · ·K
should be satisfied at the knots (Tbreak = [T1, · · · ,TK−1]).

IV. LEGENDRE-GAUSS-LOBATTO COLLOCATION
METHOD WITH MULTI-SEGMENT
The optimal control problem with optimal knots in section III
is discretized by using collocation at Legendre-Gauss-
Lobatto(LGL) [16] points. In the LGL collocation approx-
imation of (9)-(12), the state of any one interval Ik , k ∈
[1, · · · ,K ] is approximated as shown in equation (13) by
using the discrete state variables at the LGL points τ (k) =
{τ

(k)
i }, i = 1, · · · ,N (k)

+ 1. The τ (k)i are given as τ (k)1 =

−1, τ (k)N+1 = 1, and for 1 < i < N (k)
+1, τ (k)i are the zeros of

L̇N which is the derivative of the Legendre polynomial LN .

x(k)(τ ) ≈ xN
(k)
(τ ) =

N (k)
+1∑

i=1

x(k)i ϕ
(k)
i (τ ),

ϕ
(k)
i (τ ) =

N (k)
+1∏
=1
6=j

τ − τ
(k)
i

τ
(k)
j − τ

(k)
i

(13)

where xN
(k)
(τ ) is interpolation of xN

(k)
= {x(k)i }, x

(k)
i =

x(k)(τi) is the value of state at the collocation point τi, and
ϕ
(k)
i (τ ) is a basis of Lagrange polynomial. The differential

of state can be expressed as a matrix multiplication form in
terms of x(k)i :

ẋ(k)(τi) =
∑N (k)

j=1
D(k)
ij x

(k)
i , (14)

where D(k)
ij are entries of the (N (k)

+ 1)× (N (k)
+ 1) differen-

tiation matrix D(k) associated with Ik , k ∈ [1, · · · ,K ]. Next
the integral form in Eq.(9) is discretized as Eq.(15) by using
the Gauss-Lobatto integration rule.∫ 1

−1
g(x(k)(τ ), u(k)(τ ), τ )dτ =

N (k)
+1∑

i=1

[g(x(k)i , u(k)i , τ
(k)
i )wi]

(15)

where wi are the weights for approximate integral on dis-
cretized LGL nodes.

In summary, the optimal control problem (9)-(12) is
approximated by the following nonlinear optimization prob-
lem (NLP): Find state xN

(k)
, control uN

(k)
, location of knots
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Tbreak and possibly final time tf to minimize

J [xN
(1)
· · · xN

(K )
; uN

(1)
· · · uN

(K )
;Tbreak ; tf ]

= 8(x(1)1 , t (1)0 , x(1)
N (k)+1

, t (K )
f )

+

K∑
k=1

 t
(k)
f − t

(k)
0

2

N (k)
+1∑

i=1

[g(x(k)i , u(k)i , τ
(k)
i )wi]

 (16)

subject to∑N (k)

j=1
D(k)
ij x

(k)
i −

t (k)f − t
(k)
0

2
f (x(k)i , u(k)i , t

(k)
i ) = 0,

k = 1 · · ·K , i = 1 · · ·N (k) (17)

c(x(k)i , u(k)
(k)
i , t

(k)
i ) ≤ 0, i = 1 · · ·N (k)

+ 1 (18)

b(x(1)1 , t (1)1 , x(K )
N (K )+1

, t (K )
N (K )+1

) = 0 (19)

x(k−1)
N (k−1)+1

= x(k)1 , u(k−1)
N (k−1)+1

= u(k)1 . (20)

V. pk-ADAPTIVE MESH REFINEMENT METHOD
A pk-adaptive mesh refinement method is presented for
solving optimal control problem by using collocation
at Legendre-Gauss-Lobatto (LGL) points described in
Section IV. The ‘‘pk-adaptive’’ or ‘‘p-then-k adaptive’’ is
used because the polynomial degree adaptive changed pref-
erentially then increased the segments by adding the optimal
knots in each mesh interval.

A. ERROR ESTIMATION OF EACH MESH INTERVAL
The Error estimation is based on how closely the
dynamic constraints are satisfied at the new collocation
points,{τ̂ ki }, i = 1, · · · ,N (k)

+ 2, which are the new
LGL points by increasing collocation number. Assume
xN

(k)
, uN

(k)
, t (k)0 , t (k)f are the solutions of NLP described by

Eqs.(16)-(20) on a mesh Ik , k ∈ [1, · · · ,K ], corresponded
with N (k)

+ 1 LGL points. Then the error is estimated
on the state at a set of N (k)

+ 2 LGL points (t̂ (k) =
[t̂ (k)1 , · · · , t̂ (k)

N (k)+2
]), where τ̂ (k)1 = −1, τ̂ (k)

N (k)+2
= 1, and for

2 ≤ i ≤ N (k)
+ 1, τ (k)i are the zeros of L̇N (k)+1. The Error

of Ik is obtained by Eq.(21), which is similar with Eq.(3) in
Section II.

E (k)
=

∣∣∣∣∣D̂(k)x̂N
(k)
−

(t (k)f − t
(k)
0 )

2
f (x̂N

(k)
, ûN

(k)
, t̂ (k))

∣∣∣∣∣ (21)

where x̂N
(k)
= {x̂(k)i |x̂

(k)
i ≈ xN

(k)
(τ̂ (k)i )}, ûN

(k)
=

{û(k)i |û
(k)
i = uN

(k)
(τ̂ (k)i )} can be calculated by interpolation

from xN
(k)
, uN

(k)
at the points τ (k)i using Eq.(13), and t̂ (k)i can

be obtained directly by Eq.(8).
The E (k) is the nx × (N (k)

+ 2) matrices that assume the
number of states is nx . The maximum error in Ik is then
defined as

e(k)max = max
l∈[1···nx ]
i∈[1···N (k)+2]

(E (k)) (22)

Let the residual vector r (k) be the elements of the column of
the residual matrix E (k) that contains the largest value of E (k).

FIGURE 4. Initial locations of knots obtained by increasing polynomial
degree.

Then the r (k) can be written in component form as

r (k)= max
l∈[1···nx ]

(E (k))=
[
e(τ̂ (k)1 ) · · · e(τ̂ (k)

N (k)+2
)
]T
. (23)

The scaled residual vector is then defined as

β(k) =
[
e(τ̂ (k)1 )/ē · · · e(τ̂ (k)

N (k)+2
)/ē

]T
, (24)

where ē is mean value of the vector r (k).

B. POLYNOMIAL DEGREE IN EACH MESH INTERVAL
The method of estimating the required polynomial degree
within a mesh interval has been proposed based on the con-
vergence theory. Suppose that interval Ik employs N (k) col-
location points and has maximum error e(k)max which is larger
than the desired error tolerance ε. To reach the desired error
tolerance, the error reduction is achieved by increasing N (k)

by P(k), and P(k) is chosen as an integer not less than 3 for the
robustness of the method. The value of P(k) are expressed as
follow:

P(k) = max(

⌈
logN (k) (

e(k)max

ε
)

⌉
, 3). (25)

C. NUMBER AND INITIAL LOCATIONS OF KNOTS
The scaled residual vector β(k) will show as ‘‘nonuniform-
type’’ if the e(k)max is still larger than the desired error tolerance
ε after increasing polynomial degree. Figure 4 shows that
the scaled residual vector was iteratively obtained by com-
paring the spectral differential of equation (2) with (1). The
‘‘nonuniform-type’’ errors characteristic is presented with the
increasing of polynomial degree. According to (2), we know
that the locations of τ = −0.5 and τ = 0.5 are the best
segment breaks, and there are two LGL points in the elements
of β(k) that exceed near the best segment breaks. The points
where the entries of vector β(k) exceed ρ are used as the initial
locations of knots, because it doesn’t have to be LGL points
that happen to coincide with the best segment breaks while
the best segment breaks must be near the ‘‘nonuniform-type’’
errors points. Three special treatments were considered to
enhance the robustness of the ρ value setting. First, when the
vector β(k) contains adjacent entries greater than ρ, the initial
locations of knots are only the locations of the largest element
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of the adjacent entries. Second, when there is no element
greater than ρ, the only initial location of knot is placed at
the location of the largest element of the β(k) after the loss
of convergence gain by increasing polynomial degree. Third,
the elements of τ = −1 and τ = 1 should be excluded when
comparing elements of vector β(k) to ρ.
In short, the initial locations of knots are obtained as LGL

points on the relation between β(k) and ρ based on the above
mentioned rules, then the simplified expression is denoted as
follows:

τ
(k)
knots

=

{
{τ

(k)
i |ajacentmax(β

(k)
i > ρ)}, i ∈ [2,N ]

{τ
(k)
i |max(β

(k)
i )}, if {β(k)i > ρ}isempty

(26)

To solve the NLP problem expressed as equation (16),
the initial locations of knots should be transformed into the
time-domain of original optimal control problem. There-
fore, the initial locations of knots for NLP problem can be
expressed as T (k)

knots in interval I (k) and can be achieved by
combining equation (26) with (8). The number of knots is
denoted as N (k)

knots, which is the size of T
(k)
knots.

D. ‘‘P-THEN-K’’ MESH REFINEMENT STRATEGY
If e(k)max > ε, the method proposed in this paper gives pri-
ority to increase polynomial degree in an interval I (k) until
N̂ (k) > Nmax (that is, N̂ (k) exceeds the maximum allowable
polynomial degree specified by the user). The method of
adding optimal knots should be proceeded on interval I (k)

if e(k)max still has not reached the specified error tolerance ε
by increasing polynomial degree. A summary of our adap-
tive mesh refinement algorithm in pseudospectral appears as
Algorithm 1.

VI. EXAMPLES
In this Section, two examples from the open liter-
atures are applied to demonstrate the advantages of
the pk-adaptive Legendre-Gauss-Lobatto(LGL) method
described in Section V. The first example is the optimal
control problem of soft lunar landing, which has been used
to verify the benefits of hp mesh refinement in [21].The sec-
ond example is the hyper-sensitive optimal control problem,
which has been used to verify the benefits of both hp and
ph refinement in [29]. Three mesh refinement methods (hp,
ph and pk) are implemented by ourselves on Matlab plat-
form, because there are many special procedures in different
original references, including NLP solver IPOPT or SNOPT,
initial guess strategies, parallel sparse Matrix solver, error
estimation and collocation points.

In order to test the availability of pk mesh refinement,
all codes including the error estimation, the LGL methods,
and the NLP solver are remain unchanged except for the
mesh refinement part, as shown in Figure 5. For simplicity,
the fmincon function is used to solve NLP, which is a built-in
function of Matlab.

Algorithm 1 ‘‘p-then-k’’ Mesh Refinement of
pseudospectral.
Step1: Initialization. set K = 1, Tbreak = NULL; put
interval I (1) = [t (1)0 , t (1)f ] into initial mesh M0 = [I (1)].

Step2: Time transformation. Adjust all intervals lie in the
[-1,1]. Construct optimal control problem J which contains
the knots Tbreak formed as equation (9) in Section III, that

is
J [x(1)(τ (1)) · · · x(K )(τ (K )); u(1)(τ (1)) · · · u(K )(τ (K ));
Tbreak ; tf ].

Step3: Construct NLP problem JN using LGL
pseudospectral method formed as equation
(16) in Section IV, Then JN is expressed as
J [xN

(1)
· · · xN

(K )
; uN

(1)
· · · uN

(K )
;Tbreak ; tf ].

Step4: Solve JN using Matlab NLP solver named fmin-
con. Solutions of JN include xN

(1)
· · · xN

(K )
, uN

(1)
· · · uN

(K )
,

Tbreak , tf .
Step5: Calculate x̂N

(k)
, ûN

(k)
by interpolation on the

xN
(k)
, uN

(k)
; then calculate scaled error ekmax,k = 1 · · ·K

using equation (21)-(22) in Section V-A.
Step6: If ekmax ≤ ε is for all k = 1 · · ·K , then quit;
Otherwise, create new empty mesh Mnew = [] and empty
array of knots Tb,new = [], then proceed to Step7.
Step7:Mesh refinement. Iterative over I (k) for k = 1 · · ·K ,
and the codes are as follows.
for k = 1→ K do

if ekmax ≤ ε then
Append I (k) into Mnew;
Append Tbreak (k) into Tb,new.

else
Calculate P(k) using equation (25);
Estimate degree of I (k) as N̂ (k)

= N (k)
+ P(k);

if N (k)
≤ Nmax then

Create an interval Î (k) with N̂ (k) LGL points;
Append Î (k) into Mnew;
Append Tbreak (k) into Tb,new.

else
Get scaled residual vector β(k) by Eq. (24);
Get τ (k)knots, T

(k)
knots, N

(k)
knots using Eq. (26);

Add knots that set K = K + N (k)
knots;

Create N (k)
knots intervals with Nmin LGL points:

M (k)
= [Î (k,1) · · · Î (k,N

k
knots)];

Append M (k) into Mnew;
Append T (k)

knots and Tbreak (k) into Tb,new.
end if

end if
end for
Step8: Rebuild NLP problem JN on new mesh Mnew with
new knots Tbreak = Tb,new, and get initial guess solution
for next NLP of Step 3 by using interpolation of current
result. Return to Step 3.

The terminology hp(N0,L, ρ) refers to the hp-adaptive
method where the initial number of collocation points N0
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FIGURE 5. Comparing test design for verifying the benefits of pk mesh refinement.

FIGURE 6. The state, control and residual vector on the final mesh grid of Moon-lander problem.

in the segment is increased by the user-specified amount
L and segment division is determined by the parameterρ.
The terminology ph(Nmin,Nmax) refers to the ph-adaptive
method where the polynomial degree can vary between Nmin
and Nmax . The terminology pk(Nmin,Nmax , ρ) refers to the
pk-adaptive method where the polynomial degree can vary
between Nmin and Nmax and the number and initial locations
of knots are determined by parameter ρ as described in
Section V.

A. EXAMPLE 1: BANG-BANG CONTROL
PROBLEM OF MOON-LANDER
Consider the following a soft lunar landing which is a classic
bang-bang optimal control problem. Minimize

J =
∫ tf

t0
udt (27)

subject to

ḣ = v, v̇ = −g+ u (28)

the boundary conditions

h(0) = 10, h(tf ) = 0, v(0) = −2, v(tf ) = 0 (29)

and the control constraint

0 ≤ u ≤ 3 (30)

where g = 1.5, and tf is free.
As mentioned above, the three strategies (hp, ph and pk)

combined into the same one LGL pseudospectral method
were used to solve the moon-lander problem. Firstly,
the parameters of hp and ph are set as hp(10, 5, 3) and ph(4, 8)
respectively. Then the parameters of ph are set as follows: the
Nmin and Nmax are the same with ph and the parameterρ of pk
is the same as hp, that is, pk(4, 8, 3).

Figure 6 shows the last iterative results of Moon-lander
problem solved by LGL pseudo spectral method with three
mesh refinement strategies for ε = 10−4. In the figures of
this section, a mesh interval is represented by the same color,
the color squares represent the location of the nodes, and the
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FIGURE 7. Convergence with mesh refinement of Moon-lander.

knots are the nodes connecting two kinds of color intervals.
Intuitively, these three methods progress to a final mesh
grid, so that the collocation points are more densely located
near the control discontinuity. When using the method of
hp(10, 5, 3), it is difficult to find the location of the control
discontinuity and iteratively generate a number of redundant
segments clustered around discontinuities. When using the
method of ph(4, 8), the total number of collocation points is
much smaller than hp(10, 5, 3) because of that the polyno-
mial degree and the number of segments are calculated by
magnitude of error, but the redundant intervals are generated
by trying add segments in an interval to reduce the resid-
ual. When using the method of pk(4, 8, 3), segment breaks
occur at t=(1.41538658078292, 1.41541106102890), which
is a small value range containing the location of the control
discontinuity by approach of optimal knots, and pk(4, 8, 3)
method achieves better results with lower residual and fewer
number of grid nodes significantly.

Next the specificity and advantages of pk methods will
be discussed. The relation between convergence and mesh
refining history has been presented in figure 7. There are three
type of plots given as follow: (I) The iterative discrete mesh
which includes multi-intervals constructed by LGL nodes,
generated by mesh refinement on the time domain of prob-
lem. (II)The residual vector which is calculated by equation
(23) based on each solution responds iterative mesh. (III)The
iterative max error is calculated by equation (22), that a color
point represents to the max error of a solution solved corre-
sponding on an iterative mesh. The corresponding relations

of the three plots are presented by the color, where each color
represents one iteration. First, the convergence progress is
achieved by hp(10, 5, 3) as shown in figure 7(a). The initial
mesh contains 1 interval with 11 nodes and is plotted as the
first row of blue circles in (I). The corresponding residual
vector is plotted as blue circles in (II) andmax error is denoted
by ‘‘p11h1’’ with the blue circle in (III). After 15 iterations of
hp mesh refinement, the maximum error of the solution con-
verges to the solution, which is less than the tolerance ε. The
last iterative mesh contains 12 intervals with 137 nodes as the
black circle in the three plots. Second, figure 7(b) shows that
the solution is solved by ph(4, 8) after 12 times of iterations
which starts from the ‘‘p6h1’’ and terminals to ‘‘p65h13’’.
An interesting phenomenon can be found that sometimes the
max error of ph will raise when the nodes in the new mesh
increase, such as the 5-th iteration (‘‘p45h9’’) to the 6-th iter-
ation (‘‘p47h9’’). This is because the Gibbs problem occurs
when nodes increased into the interval containing the switch
points. And the error will reduce when adding more segments
in the interval as shown in the plot (III) of figure 7(b). Third,
The fast convergence process of pk(4, 8, 3) is shown in fig-
ure 7(c). After only 3 iterations, only 15 nodes and 3 intervals
(‘‘p15h3’’) use the max error to meet the tolerance. The resid-
ual vector reduces to 1.397e-7 when 2 knots are placed right
at the locations t=(1.41538658078292, 1.41541106102890)
that are close to the switch point (t*=1.4514). The most
important characteristic of the pk method, shown in (I) of
figure 7(c), is that the optimal knots are variable in each
iteration of the NLP solver.
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TABLE 1. Accuracy and speed in the three mesh refinement methods for moon-lander problem.

In addition, different parameters for the mesh refine-
ment, the accuracy and speed may appear different. Table 1
shows the performance of the pk-adaptive method solving
Moon-lander problem in comparison with the other two mesh
refinement methods. We try to vary the initial number of
N0 and iteratively increases the amount of L for hp method,
so that hp(10, 10, 3) can get better performance than others in
increasingN0 or L. There are 10 intervals and 119 collocation
points in the last iterative mesh of hp(10, 10, 3) achieved by
11 iterations with 70.313 seconds. Then, we vary theNmin and
Nmax for ph method, so that ph(4, 12) gets better performance
than others. After 11 iterations with 30.2188 seconds, the last
iterative mesh of ph(4, 12) contains 13 intervals and 63 col-
location points. In the same way, we wary the Nmin and Nmax
for pk method, so that the pk(4, 6, 3) get better performance
than others. The 3 iterations take only 3.5938 seconds, and
the third iterative meshes only contain 3 intervals with a
total of 15 collocation points. Most notably, a pattern was
discovered in the pk method that the last iterative meshes
always keep 3 intervals and totally contain 3 × (Nmin + 1)
collocation points. The (Nmin+1) is the minimum collocation
points in an interval. The moon-lander problem only contains
a switch point, which requires three intervals at least for
infilling the mesh grid near the switch point. In other words,
the best mesh can be obtained by the pk method for the
moon-lander problem.

B. EXAMPLE 2: HYPER-SENSITIVE PROBLEM
Consider the followingpt hyper-sensitive optimal control
problem. Minimize

J =
1
2

∫ tf

0
(x2 + u2)dt (31)

subject to

ẋ = −x3 + u (32)

the boundary conditions

x(0) = 1.5, x(tf ) = 1, (33)

where tf is user-specified and fixed.

It is known that the solution to the hyper-sensitive problem
is a three segments structure of ‘‘take-off’’, ‘‘cruise’’ and
‘‘landing’’. The ‘‘cruise’’ segment of the solution is constant,
and the interesting behavior occurs near the ‘‘take-off’’ and
‘‘landing’’ segments. Furthermore, the cruise segment takes
an increasing proportion in the total solution time with the
increasing value of tf , while exponential decay and rapid
growth occur respectively in the ‘‘take-off’’ and ‘‘landing’’
segments. According to the above characteristics of the solu-
tion, the distribution of the collocation points is expected to be
a small number of points in cruise, and most of them should
be distributed in ‘‘take-off’’ and ‘‘landing’’ segments.

Firstly, the solutions of hyper-sensitive problem are
solved by using LGL pseudospectral within three strategies
(hp, ph and pk) respectively. Figure 8 shows the last iter-
ative results of Hyper-Sensitive problem for tf = 40 and
ε = 10−3. As expected above, a small number of points
are distributed in cruise and most of them are distributed
in ‘‘take-off’’ and ‘‘landing’’ segments, and the feature is
especially striking in the hp and pk methods. This is because
the locations of segments of an interval are based on the
residual of solution in both hp and pk. It is seen intuitively that
the same phenomenon in example 1 appears that pk(3, 9, 3)
method can achieve the solution meeting same tolerance
requirements with fewermesh nodes and intervals. The points
and intervals in pk are much less than those in the other two
methods, due to the locations of segments in pk method are
optimized.

Next, to discuss the computational efficiency of the pk
method for solving hyper-sensitive problem, table 2 shows
the computational performance of solving hyper-sensitive
problem for different values of tf corresponding variable
parameters. It is seen that the required number of collocation
points are always minimal in solution solved by pk method.
When tf = 40 which is a small time range, the ph(5, 15)
is the least CPU time consuming method which only costs
10.0281 seconds. Because it is easy to make mesh dense
including the parts of ‘‘take-off’’ and ‘‘landing’’, when the
total time range is small. And, the number of NLP param-
eters increased by adding nodes is not too much (only one
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FIGURE 8. The state, control and residual vector on the final mesh grid of Hyper-Sensitive problem.

TABLE 2. Computational performance to solve Hyper-Sensitive problem.

state and one control variable for this problem, so one node
produces two NLP parameters) which is not enough to affect
the efficiency of NLP solver, but the locations of interval
segments as parameters in the NLP solver cost more time.
Also, it should be acceptable for the time cost in pk(5, 15, 3)
with only 17.4688 seconds.

For more discussion, when tf increases to 1000, the results
are shown in the second part of table 2. In the hp methods,
obvious defects were exposed that the time cost is sensi-
tive for different parameters and much more iterations are
required than other two methods to let solutions meet the
predefined tolerance. In the ph methods, with the rise of tf

from 40 to 1000, the number of collocation points increases
greatly, resulting in a significant increase in the total time
consumption of the ph methods. All above mentioned issues,
such as parameter sensitivity, large number of iterations, and
redundant points, are solved in the pk methods. For example,
there are only 7 intervals and 69 collocation points in the last
iterative mesh after 15 iterations with 49.4688 seconds for
the solution of pk(5, 15, 3) when tf = 1000. As an aside,
it is interesting to note that the number of NLP parameters
generated by pk(3, 9, 3) and pk(5, 15, 3) are almost the same
(143 and 144 respectively), but pk(5, 15, 3) with more iter-
ations has a less time cost. This is because there are only
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FIGURE 9. Convergence with pk(5, 15, 3) mesh refinement of hyper-sensitive (tf = 1000).

FIGURE 10. The solutions of hyper-sensitive using pk(3, 9, 3) for tf = 10000.

6 optimal knots in pk(5, 15, 3), which is much less than
11 optimal knots in pk(3, 9, 3). In other words, optimal knots
as the parameters of NLP cost more time than state variables
as the parameters of NLP under the same amount condition.
This discovery can be used to better set the parameters of
the pk method. Furthermore, we increased tf to 5000 and
10000, and the pk method still performed well as shown
in third part of table 2. The collocation points, number of
intervals, and iterations remained almost unchanged in the
case of tf increasing by 5 and 10 times. In summary, the com-
putational performance of pk methods is very stable for any
tf ∈ [40, 1000, 5000, 10000], because the optimal knots can
keep slow growth rates of collocation points and intervals
when the tf increases greatly.
Figure 9 shows the iterative residual vector, iterative max

error, and the corresponded mesh distribution on each iter-
ation of pk(5, 15, 3) when tf = 1000. Obviously, collo-
cation points are gathered and constantly increased at the
start and end of the mesh through iteration, corresponding
to the ‘‘take-off’’ and ‘‘landing’’ segments of the problem.
It is clear that the solution of the hyper-sensitives is con-
structed with three parts: ‘‘take-off’’, ‘‘cruise’’ and ‘‘land-
ing’’. So, the numbers of intervals in the first three mesh grids
are less than three resulting in solutions’ particularly large
errors which are marked by a dotted ellipse in the part III
plot and the corresponding residual vectors are difficult and
to be plotted in part II of figure 9. From the fourth iteration,
the residual converges to the small values, which are drawn
as purple circle (or purple circle line) in the diagram figure 9.
Also, there are twice accidents with error increasing at the
8-th and 12-th iteration. This is a normal phenomenon in our

method, because the collocation points of new intervals are
set as the minimum number of collocation points, and errors
may raise in a new interval, so as to reduce the total mesh
size. As shown in (I), from 7-th mesh (garnet circle line) to
8-th mesh (gray circle line), the points number of ‘‘cruise’’
reduces to a smaller value, allowing the algorithm to focus
more on the ‘‘take-off’’, and ‘‘landing’’. As shown in (III),
there are 8 points reduced from ‘‘p54h4’’ in 7-th mesh to
‘‘p48h6’’ in 8-th mesh, and there are three points reduced
from ‘‘p60h6’’ in 11-thmesh to ‘‘p57h7’’ in 12-thmesh. It can
be seen that the number of nodes, number of intervals and
location of interval segments are optimized in the pk method.
This is why, after 15 iterations, only 69 points are required,
much less than those in the other two methods (hp,ph) for
tf = 1000.
In addition, figure 10 shows the solutions of hyper-sensitive

using pk(3, 9, 3) after 15 iterations. It is easy to find the
‘‘take-off’’ and ‘‘landing’’ segments on the final mesh have
the high density distribution points (colorful square) in fig-
ure 10(a) when the value of tf is large enough, that is
tf = 10000. Only 83 collocation points are required, due
to the collocation points’ optimal distribution. Furthermore,
the analytic optimal state for this problem is given as

x∗(t) =
e(t−tf )

√
2(1.5e−tf

√
2
− 1)+ (e−tf

√
2
− 1.5)e−t

√
2

e−2tf
√
2 − 1

(34)

The more details about the accuracy of the solutions are
given in figure 10 (b). Even if we zoom in to 10 sec-
onds (0-10 and 9990-10000), it’s hard to see the difference
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between numerical solutions and the analytic solution
from the 4-th iteration. This is because the ‘‘take-off’’,
‘‘cruise’’ and ‘‘landing’’ have been clearly divided into
different intervals, the same as above discussion of solu-
tions when tf = 1000. Thereby, the difference between
numerical solutions and the analytic solution is given by
x(t) − x∗(t), where x(t) is calculated by interpolation equa-
tion (13), and then the difference of each iteration is clearly
shown in the figure, which is decreased gradually with
iteration.

VII. CONCLUSION
Mesh refinement bridges the gaps between theory and prac-
tice of the pseudospectral method for solving optimal control
problem. A new mesh refinement strategy called pk-adaptive
mesh refinement has been developed in the LGL pseudospec-
tral method for improving the issues of redundant segments
and nods in state-of-art methods. The new iterative strategy
for mesh refinement is devised that the degree of polynomial,
the number of intervals and the locations of intervals within
each mesh interval all are allowed to vary. The degree of
polynomial is increased if the number of polynomial degree
needed to estimate the mesh is less than the maximum allow-
able degree. Otherwise, the initial locations and number of
knots are determined by the residual to refine the mesh. Then
the locations of knots taken as the optimal parameters of
optimal control problem are optimized simultaneously with
other NLP variables.

The pk method has been applied to two examples to dis-
cuss the advantages compared with the hp and ph methods.
In example 1, the moon-lander problem was solved in turn
by three methods: hp, ph and pk. First, pk method obtains
lower residual, fewer number of intervals and fewer number
of nodes. Second, the discussions of the relation between
convergence and mesh refining history have shown that the
reason of why the pk method can quickly solve the lunar
landing problem is that the optimal knots can accurately
refine the mesh near the switch point of control variables
in the bang-bang control problem. Third, the results of pk
method under different parameters show the robustness of the
method. In example 2, hyper-sensitive problemwas solved by
the three methods too. First, the results have shown that the
solution of pk method can meet the same tolerance require-
ment with fewer mesh nodes and fewer intervals. Second,
the analysis results of computational efficiency in solving
hyper-sensitive problem show that pk method is more stable
under different tf values and method parameters. Especially,
the efficiency of pk method is obviously better than the
other two methods when tf value is large. Third, the valid-
ity of the pk pseudo-spectral solution is further verified by
comparing it with the analytical solution even if tf is large
enough.

In conclusion, the pk method has the advantages of higher
computational efficiency and fewer number of collocation
points with the same accuracy compared with the other two
methods.
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