
Received October 9, 2019, accepted October 30, 2019, date of publication November 6, 2019, date of current version November 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951839

An Intrusion Detection System Based on
a Quantitative Model of Interaction
Mode Between Ports
AO LIU AND BIN SUN
Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384, China

Corresponding author: Bin Sun (sunbin1024@126.com)

This work was supported in part by the National Natural Science Foundation under Grant 71501141.

ABSTRACT Considering the characteristics of network traffic on the data link layer, such as massive high-
speed data flow, information camouflaged easily, and the phenomenon that abnormal traffic is much smaller
than the normal one, an intrusion detection system (IDS) based on the quantitative model of interaction
mode between ports is proposed. The model gives the quantitative expression of Port Interaction Mode in
Data Link Layer (PIMDL), focusing on improving the accuracy and efficiency of the intrusion detection by
taking the arrival time distribution of traffic. The feasibility of the model proposed is proved by the phase
space reconstruction and visualization method. According to the characteristics of long and short sessions,
a neural network based on CNN and LSTM is designed tomine the differences between normal and abnormal
models. On this basis, an improved IntrusionDetection algorithm based on amulti-model scoringmechanism
is designed to classify sessions in model space. And the experiments show that the quantitative model and
the improved algorithm proposed can not only effectively avoid camouflage identity information, but also
improve computational efficiency, as well as increase the accuracy of small sample anomaly detection.

INDEX TERMS Anomaly detection, interaction mode between ports, intrusion detection, neural network,
phase space reconstruction.

I. INTRODUCTION
To avoid the serious losses caused by network attacks, it is
important to build an effective intrusion detection model to
explore the existing characteristic rules in mass traffic data.
As a branch of machine learning, deep learning can recognize
the internal law of a certain kind of things to the maximum
through training multilayer neural network, so it has a unique
advantage to explore the internal law of abnormal attack
traffic in massive network traffic data.

Among the many problems involved in intrusion detec-
tion, the anomaly detection method is the most important
one, and its key point is to design a feature set that can
accurately describe network traffic [1], [2]. At present, many
data sets, such as KDD’99 [3], NSL-KDD [4], UNSW-NB15
[5], CIC-IDS-2017 [6], ISCX [7], which are widely used in
intrusion detection systems, have a large capacity and rich
characteristics, and the neural network can be used to mine
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the internal rules of these data sets to realize the intrusion
detection. There are a lot of achievements in previous stud-
ies, while ignoring several problems. Firstly, to obtain the
previous feature set from the initial traffic, it is necessary
to check all the traffic data in the first two seconds and
the first 100 connections at the end of the session, how-
ever, the intrusion detection system cannot be too complex
because of the massive and high-speed traffic characteristics,
in practice, according to previous research methods, building
feature sets from the real-time generated initial traffic will
cause a lot of computational burdens. Secondly, previous
studies have trained neural networks based on a large number
of high-level protocol information (e.g. logon status, flag).
When attackers camouflage these attributes, the classification
accuracy of neural networks will be greatly affected. Thirdly,
in reality, the scale of abnormal traffic is usually smaller than
that of normal traffic, but the abnormal traffic of data sets
used in previous research accounts for a large proportion.
For example, in the training set provided by NSL-KDD,
the abnormal traffic accounts for 46.52% of the total traffic,
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but it is almost impossible for the abnormal traffic of this
scale to appear in reality (by examining 16.7+ billion vis-
its to 100,000 randomly-selected domains on the Incapsula
network, IMPERVA’s 2018 attack traffic report said abnormal
traffic accounts for 21.8% of total traffic, and in some specific
scenarios, such as small local area networks, the potential
threat is less, and the proportion of abnormal traffic will be
smaller.).

To solve the problems above, this paper proposes PIMDL,
which reconstructs the traffic feature set from the initial
traffic to quantify the network traffic. Consider the arrival
time distribution of data packets as time series, the traditional
training method based on high-dimensional traffic feature set
(e.g. KDD’99) is improved. The main work is as follows:
• A detailed definition and quantitative representation
of PIMDL is proposed, and PIMDL is visualized
using phase space reconstruction to show the difference
between normal traffic and abnormal traffic, thus prov-
ing its feasibility.

• Autocorrelation function (ACF) is used to explore the
characteristics of long and short sessions, respectively,
and the richness and bias are considered to determine the
range of sample selection. The details of the construc-
tion of the neural network are determined by the above
methods.

• Three neural networks based on Long Short-TermMem-
ory (LSTM) and Convolutional Neural Networks (CNN)
are used to mine the differences of PIMDL between nor-
mal and abnormal, (the specific parameters are shown
in Table 2, 3, 4).

• Design a multi-model scoring mechanism to evaluate
network traffic, map sessions into three-dimensional
model space, use Support Vector Machine (SVM) to
classify session traffic inmodel space, and finally imple-
ment traffic intrusion detection. This algorithm is the
core of our work, its theoretical basis is based on the
research before section C of Chapter IV. The algorithm
describes the specific process of continuously acquiring
traffic data packets (frames) for intrusion detection in
the process of traffic generation. The effectiveness of
the improved algorithm is proved by the final design
comparison experiment.

II. RELATED WORKS
Previous studies have provided a wide range of ideas
for the combination of deep learning and intrusion detec-
tion. Khan et al. [8] proposed a two-level deep learning
model, Two-Stage, which integrates the two decision-making
stages into the detection process. In the first stage, nor-
mal and anomaly are divided, and attack types are defined
in the second stage. Yin et al. [9] proposed an intrusion
detection scheme using recurrent neural networks (RNN),
which improved the accuracy of multi-task classification.
Javaid et al. [10] proposed a STL-based intrusion detection
model, which uses two groups of deep confidence echo
networks to fully extract the characteristics of attack traffic

TABLE 1. Datasets usage.

and complete the high-precision detection of intrusion traf-
fic. Vinayakumar et al. [11] proposed a model migration
approach, scale-hybrid-IDS-AlertNet (SHIA), which uses
KDD’99 data set to train the full connection layer, and tests
it on NSL-KDD, UNSW-NB15 data sets. It improves the
accuracy of model migration between different data sets.
Shone et al. [12] proposed a method of dimension reduc-
tion using NDAE instead of DBN, which is more suit-
able for dimension reduction of asymmetric dimension data.
Wang et al. [13] proposed a method of intrusion traffic clas-
sification based on representation learning, which classifies
traffic according to different application layer protocols and
uses convolutional neural network to learn its behavior pro-
jection in link layer. This method distinguishes the differ-
ent manifestations of different applications in the data link
layer. Jiang et al. [14] proposed LSTM-RNN multi-channel
voting algorithm, which improved the adaptability of neural
network in different environments and expanded the appli-
cation scenarios of detection algorithm. Kolosnjaji et al. [15]
proposed a traffic intrusion detectionmethod based on convo-
lution and feed-forward neural structure, which realized the
extraction of hierarchical features of data sets. Zhou et al.
[16] summarized the collaborative intrusion detection sys-
tems to expand the deficiency of traditional IDS in detecting
coordinated attacks. Naseer et al. [17] uses a convolution
neural network, automatic encoder and cyclic neural network
to construct depth network, which can learn the features of
existing data sets and improve the accuracy of classification.
Wang et al. [18] proposed an end-to-end encryption traffic
classification method based on a one-dimensional convolu-
tional neural network. This method integrates feature extrac-
tion, feature selection and classifier into a unified end-to-end
framework, automatically learns the non-linear relationship
between the original input and expected output, and improves
the detection accuracy of VPN traffic.

Table 1 shows the datasets used in the above literature,
previous studies have relied too much on existing feature sets,
which will lead to the problems described in the introduction.
In this paper, the intrusion detection system is designed by
using only the initial traffic (PCAP file) in the existing data
set without using the feature set.

III. PIMDL MODEL AND ITS CHARACTERISTIC ANALYSIS
A. PIMDL MODEL
Communication under TCP/IP protocol can be regarded as
information exchange between ports, the process of infor-
mation exchange between ports is called the session. In the
process of data interaction, session presents a specific inter-
action mode over time, ideally, this mode strictly abides by
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FIGURE 1. Formation mechanism of PIMDL: data flow is shown by
arrows. Sessions between ports pass through constraints and are
transmitted through data packets at the data link layer, the mode of port
interaction can be found at the data link layer.

the TCP/IP protocol, but in reality, because the actual data
transmission is transmitted through the data link layer in
the form of data packets (or as a frame, the term of data
packet paysmore attention to the specific description of frame
data, which includes IP, port, etc.), the interaction mode is
affected by high-level protocols, routing topology, uncontrol-
lable network delay, etc., it will show a more flexible rule in
the data link layer. From the point of view of the data link
layer, the arrival time distribution of data packets represents
the port interaction mode to some extent. The definition of
PIMDL is derived from this, its formation mechanism is
shown in Figure 1.

In Figure 1, the dotted line frame above is the ideal data
transmission channel. Its essence is the session between ports,
which follows the TCP/IP mode. However, since the real data
stream is shown by the real line, the session will project an
interactive mode represented by the arrival distribution of
data packets in the link layer in the dashed frame below the
graph. This interactive mode is projected by the high-level
session in the data link layer, that is, the model proposed in
this paper, PIMDL. The process of building PIMDL model
based on initial traffic is as follows:

According to IP and port number of both sides in duplex
network, network traffic is classified as session set. C =
{c1, . . . , cn}, among them ci ∈ C is a session, Let tci denote
the duration of ci, the starting time of ci as the benchmark
(zero time), the ending time of tci and the step length of 1t ,
and segment ci into ni time periods. ni = tci/1t , as shown in
Figure 2;

Based on the above segmentation method, ci data packets
are classified into two categories: forward and backward, and
the distribution of bidirectional data packets in each time
period is counted. Set that the number of forward packets
is p+j , the average packet interval time is t+j = 1t/p+j , the
number of backward packets is p−j , and the average packet
interval time is t−j = 1t/p−j , j = 1, . . . , ni. If there is no

FIGURE 2. Quantitative representation of PIMDL: intercepting statistical
information of bidirectional packet distribution based on step 1t .

data transmission between ports in a certain period of time,
the above four attributes are 0;

Based on the above method, ci can be quantified as a
ordered feature set Si = {s1, . . . , sni , among them, sj =
(p+j , t

+

j , p
−

j , t
−

j ) is a quaternion, it can be expressed as a four-
dimensional time series Si, which can represent the interac-
tion mode of its high-level ports to a certain extent.

B. FEASIBILITY VERIFICATION OF PIMDL BASED ON
PHASE SPACE RECONSTRUCTION
To verify the feasibility of PIMDL model, the embedding
theorem [19] is used to visualize the model. On this basis,
the difference between normal traffic and abnormal traffic is
analyzed to verify whether it is consistent with the reality.
Four-dimensional time state series Si is transformed into
matrix by phase space reconstruction of embedding theorem.
Think of each element as a pixel and color it (p+j , t

+

j , p
−

j , t
−

j )
to get a color picture.

Chaotic time series is a kind of irregular movement in
determining the system. PIMDL is affected by the high-level
network protocol, network topology, and other determinant
factors, showing a more complex form of expression. There-
fore, it can be approximated as a chaotic time series to a
certain extent. Based on the embedding theorem, a phase
space is reconstructed from chaotic time series in the same
topological sense as the original dynamic system. The process
is as follows:

For time series {xi|i = 1, . . . , n}, The corresponding high-
dimensional phase space {yi|i = 1, . . . , n − (dim − 1)lag}
can be reconstructed, it can be seen as a matrix. Among them,
the lag is the bit of delay time and the dim is the embedding
dimension, yi = {xi, xi+lag, . . . , xi+(dim−1)lag}. Mutual Infor-
mation method and False Nearest Neighbor method are used
to determine the values of the lag and dim, respectively.

1) LAG CALCULATING
Optimal lag value of time series can be determined by mutual
information method, the main process is to divide a period
of time series X = {x1, . . . , xn} into two successive sub-
series according to lag, the initial elements of which are xi and
xi+lag, respectively, and to explore the change of the Mutual
Information [20] between them with the increase of lag.
When the mutual information reaches the first few minimum
values, it is the optimal value of lag.
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FIGURE 3. Mutual information changes with lag.

Select MAWI dataset for network traffic from 00:00 to
02:00 in themorning ofMay 9, 2018 [21]. PIMDL is obtained
by 1t = 0.1s, and its attribute p+j is selected to transform it
into one-dimensional time series to test the change of Mutual
Information with lag. Select sessions with the duration of
500-600 s, and divide the initial traffic data into 120 groups
according to the number of packages from 2000 to 8000 with
intervals of 50. One sample is randomly sampled from each
group for the experiment. The results are shown in Figure 3.

The horizontal axis in Figure 3 represents the lag and
the vertical axis represents the mutual information between
two successive sub-series with corresponding lag values.
The results show that when the Mutual Information reaches
the secondminimum, the lag of the random sample is concen-
trated around 1.8s. Therefore, according to the above results,
the lag selection of phase space reconstruction is 1.8s.

2) DIM CALCULATING
For the chaotic time series, the proportion of False Nearest
Neighbors (FNN) [22] is calculated from the minimum value
of dim = 2. Gradually increasing the value of dim until
the proportion of FNN is less than 5% or the number of
FNN no longer decreases with the increase of dim, it can be
considered that the chaotic attractor has been fully opened,
and take the value of dim in this case as the final result [23].
Select sessions with the duration of 500-600 s, and divide the
initial traffic data into 8 groups according to the number of
packages from 200 to 120 with intervals of 125. One sample
is randomly sampled from each group for the experiment. The
results are shown in Figure 4.

As shown in Figure 4, the horizontal axis represents dim
and the vertical axis represents the number of FNN corre-
sponding to dim at lag = 0.6. As can be seen from Figure 4,
FNN converges almost completely when dim = 160, that is to
say, it is an ideal case when dim ≥ 160 is used in the current
data set.

3) VISUALIZATION OF PIMDL
In order to verify the feasibility of the proposed PIMDL
model, it is visualized to show the difference between normal

FIGURE 4. FNN changes with dim.

and abnormal intuitively. For normal traffic and abnormal
traffic, sessions with more than 200 packets and duration of
500-600 s are captured, and1t = 0.6 s is taken to quantify all
sessions into PIMDL (Table 1), to get a collection of PIMDL
with all sessions.

Phase space reconstruction for each Si = {s1, . . . , sni} in
PIMDL set, a new state matrix Srei = {s

re
1 , . . . , s

re
ni−(dim−1)lag

}

is obtained, in which srej = {sj, sj+lag . . . , sj+(dim−1)lag}.
Srei is a matrix of order [ni − (dim − 1)lag] × dim, each
element in the matrix has its corresponding attribute set
sj = (p+j , t

+

j , p
−

j , t
−

j ), considering the element as a pixel,
the corresponding four attributes are scaled to the parame-
ter range (0, 255) of RGBA color format (red, green, blue,
opacity) according to the maximum value. Tomake the image
clearer, add 1 at the position of the fourth element t−j , that is,
converting the original four elements:

sj = (p+j , t
+

j , p
−

j , t
−

j ) (1)

into:

spixelj =

(
p+j

p+j max
,

t+j
t+j max

,
p−j

p−j max
,

t−j
t−j max

+ 1

)
(2)

among them, p+j max , t
+

j max
, p−j max , t

−

j max
are the maximum

values of four attributes in the group, respectively. Finally,
the Srei is transformed into a [ni − (dim− 1)lag]× dim color
image. According to the conclusions above, take lag = 1.8s,
dim = 160, CICIDS-2017 and CTU-13 [24] datasets are
taken as the data sources of anomaly attack traffic. The results
are shown in Figure 5

From Figure 5, it can be seen that the color of the normal
flow is single (left), while the color of abnormal flow is bright
and diversified (right). The experimental results are consis-
tent with the actual situation of the network environment,
that is, the normal interaction mode of sessions follow strict
TCP/IP protocol and has a consistent interaction mode, while
the abnormal mode has no obvious regularity, and maintains
a large gap with the normal mode. The above experiments
prove the feasibility of using PIMDL to quantify network
traffic.
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FIGURE 5. Normal & abnormal sessions, each of these rectangular subgraphs represents a session.

C. CONSISTENCY VERIFICATION OF PIMDL BASED ON
AUTOCORRELATION FUNCTION
According to the duration of network sessions, traffic can
be classified into two categories: longer sessions and shorter
sessions. Because the data characteristics determine the selec-
tion of the types of neural networks, the self-correlation of
time series is explored for two types of sessions, and then the
neural networks are constructed according to their respective
attributes.

For the PIMDL of each group of sessions, the consistency
is verified by using ACF. The ACF is defined as follows [25]

R(ts, te) =
cov(X s,X e)
σs · σe

(3)

Two continuous stochastic processes with ts and te as the
first elements and the largest capacity are intercepted from the
initial stochastic process X. They are X s and X e, respectively,
|X s| = |X e| = r .µ and σ denote expectation and standard
deviation respectively, cov() denotes covariance, which is

defined as follows:

cov(X s,X e) =
∑r

i=0
(xei − x

t
i ) (4)

If the delay time is τ = te−ts and ts is taken as the reference
time, i.e. 0 time, then formula (1) can be expressed as the
following expression

R(τ ) =
cov(X0,X τ )
σ0 · στ

(5)

For stochastic processes with fixed length in formula (5),
when τ increases, the capacity ofX s andX e decreases in order
to ensure the same and continuous capacity.

In addition, if the values of the ACF of two stochastic
processes are in the confidence interval, it is considered that
the two stochastic processes are not correlated under a certain
confidence level. The definition of the confidence interval of
the autocorrelation function is as follows [26].

1 = 0

√
2 · erf −1(acc)
√
L

(6)
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FIGURE 6. Autocorrelation function of shorter session (Similar results
were found in other samples).

In formula (6), acc denotes degree of confidence, L denotes
capacity, and erf () denotes error function, which is defined as
follows

erf (β) =
2
√
π

∫ β

0
e−y

2
dy (7)

Based on the above formulas, the autocorrelation function
and confidence interval of a time series are plotted with the
change of τ . A set of 17806 port sessions from 00:00 to
02:00 of MAWI dataset on May 9 was obtained. According
to the PIMDL quantification method, a set of PIMDL with
single sample size of 1200 × 4 are obtained with 1t =
0.01s for short sessions lasting 11-12s. Because the ACF
can only analyze one-dimensional time series, each element
of the multivariate time series needs to be calculated sepa-
rately. Therefore, each sample first selects its first attribute,
p+j , to make it into 1200 × 1 one-dimensional time series.
The corresponding sample autocorrelation function is shown
in Figure 6.

In Figure 6, the horizontal axis represents τ , and the ver-
tical axis represents Pearson correlation of X s and X e. The
light blue region is the confidence interval of 95% under the
corresponding τ . As can be seen from the Figure 6, with the
increase of τ , the ‘‘cut off’’ appears in the autocorrelation
graph, that is, the autocorrelation value of the sequence con-
verges in the confidence interval. The experimental results
show that when τ increases to a certain extent, X s and X e

no longer have obvious correlation, that is, the sequence no
longer shows obvious autocorrelation. The time series under
this phenomenon is called ‘‘stationary time series’’, which
indicates that the front and back states of the time series are
independent of each other.

Because the attribute t+j of PIMDL is completely depen-
dent on p+j , the stability of samples in t+j case is the same as
that in p+j case. Using the abovemethod, the time series under
p−j and t−j conditions are also ‘‘stationary time series’’.
Compared with shorter sessions, a set of PIMDL with

single sample size of 3600× ∼ 4 are obtained with 1t = 1s

FIGURE 7. Autocorrelation function of longer session. In order to
highlight the difference between the two types of sessions, each data
point in the autocorrelation function graph of a long sessions has a line
with the horizontal axis. (Similar results were found in other samples).

FIGURE 8. Session distribution and window selection.

for short sessions lasting 3500-3600s. To avoid image clutter,
take the time interval of 1 s and repeat the drawing process
of the above autocorrelation graph. The experimental results
are shown in Figure 7.

As can be seen in Figure 7, with the increase of τ , there is
no ‘‘cut off’’ phenomenon in the series autocorrelation func-
tion graph, that is, the series does not show good stationarity.
The value of autocorrelation function appears periodically
outside the confidence interval, which indicates that a longer
session sequence can be approximated to an ‘‘autocorrelation
series’’, that is, the time series has the properties of front-back
correlation. Similar to the above, the samples under other
attributes show same properties.

D. SAMPLING RANGE DETERMINATION
When processing samples, the neural network needs to unify
the samples into the same shape of tensor for input. Therefore,
before training the neural network, it is necessary to ensure
that all samples have the same shape. Ideally, all PIMDLs
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FIGURE 9. In the case of different windows, the variation of std and mean of Pearson correlation sets with window sliding.

FIGURE 10. Variation of fluctuation intensity with w value.

are input into a set of neural networks for training, because
durations of the sessions are different, when acquiring their
PIMDL for shorter sessions, 0 is used to fill the missing bits
in order to conform to the shape of longer sessions. However,
this method will result in a large bias in shorter sessions under
unified training. To avoid this bias, the samples are grouped
according to the duration of the session, and each group trains
different neural networks, as shown in Figure 8.

In Figure 8, the horizontal axis represents the number of
packets in the session, and the vertical axis represents the
duration of the session, each point represents a session. The

sessions lasting from t1 to t2 are grouped, and the sessions in
the group are complemented into the same shape for input
by neural network training. Let the window w = t2 − t1,
with the increase of w, in order to satisfy the input format
of the neural network, the number of 0 bits filled gradually
increases, which results in the increase of sample richness and
bias in the group at the same time. On the contrary, with the
decrease of w, the bias will be smaller, but too small range
will make the samples in the group unable to summarize
all the characteristics of this period group, and it leads to
too many trained neural networks, each neural network has
the possibility of over-fitting (That is to say, the accuracy
of training set is better, but it cannot be generalized to the
realistic prediction) because of its small sample capacity.
Based on the above considerations, it is necessary to analyze
the two aspects of the impact of w changes: richness and bias,
so as to determine the optimal selection range. The richness
is measured by the sample diversity and the bias is quantified
by the difference between sample time and upper limit time
in the group.

1) DIVERSITY ANALYSIS OF INTRA-GROUP SAMPLES
Based on the above traffic data, the following experiments
are designed to determine the influence of window range on
sample richness in the group:
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FIGURE 11. In the case of different windows, the variation of std and mean of difference value sets with window sliding.

FIGURE 12. Variation of bias with w value.

Define w as window width and slide the window on the
time axis. Taking 1s as the sliding window step, the sessions
in the window are classified into corresponding time win-
dows, which take [0,w], [1,w+1],. . . , [7200-w,7200], respec-
tively, and each time window specifies a set of samples;

For each group of samples, the first-order difference of the
occurrence time of all session ci is made, that is, the difference
between two adjacent terms is calculated, and a new set of
time series is obtained. For all series in the set, Pearson
correlation (ρX ,Y =

cov(X ,Y )
ρXρY

, X, Y are two independent

stochastic processes) between any two is calculated, and
then Pearson correlation sets of each group of samples are
obtained, which is used to measure the intra-group session
diversity of samples.

The standard deviation(std) and mean value of Pearson
correlation set corresponding to each sample group are calcu-
lated, drawing the changing trend of them along with window
sliding on the coordinate system;

Change w from (20, 40, . . . , 240) and repeat the above
experimental process. The results are shown in Figure 9.

As can be seen, with the window sliding, there is no
obvious increasing or decreasing trend in the std and mean
of sample differences within the group. When the window
exceeds 100s, the image fluctuation tends to be similar. Let
the time series of std andmean beMdiff and Sdiff , respectively,
and quantify their fluctuation intensity by their total variation
degree. That is, DFM =

∑
|ti−1 − ti|, ti ∈ Mdiff and DFS =∑

|ti−1 − ti|, ti ∈ Sdiff , Figure 10 shows how DFM and DFS
vary with the value of the window w.

The horizontal axis in Figure 10 shows the size of the
window w, and the vertical axis is the corresponding val-
ues of DFM and DFS . It can be seen that the fluctuation
intensity shows a slow attenuation state with the increase of
the window. When the window exceeds 100s, the fluctuation
intensity tends to converge.
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FIGURE 13. Data enhancement method for abnormal traffic.

FIGURE 14. Data distribution before and after data enhancement, above
and below, respectively.

2) BIAS ANALYSIS OF INTRA-GROUP SAMPLES
Based on the above traffic data, the following experiments
are designed to determine the influence of window range on
sample bias in the group:

For each sample group, because the bias is mainly deter-
mined by the complement position, the difference value set
between the upper limit of container duration and all session
durations are counted to indicate the session bias in this
sample group;

The standard deviation and mean value of the difference
value set corresponding to each sample group are calculated,
drawing the changing trend of them along with window slid-
ing on the coordinate system;

Change w from (20, 40, . . . , 240) and repeat the above
experimental process. The results are shown in Figure 11.

As can be seen from Fig 11, with the change of window
width, there is no obvious increasing or decreasing trend in
the standard deviation and mean value of sample differences
within the group. Let the time series of std and mean beMbias
and Sbias, respectively, and quantify their bias by their mean
value. That is, BIM = mean (Mbias) and BIS = mean (Sbias),

Figure 12 shows how BIM and BIS vary with the value of the
window w.

In Figure 12, the horizontal axis represents the size of the
window w, and the vertical axis represents the corresponding
bias degree. It can be seen that the bias presents a form of an
approximate linear function with the increase of the window.

3) OPTIMAL w SELECTION
In the above two experiments, Fig. 10 shows that the fluc-
tuation intensity decreases slowly with the increase of the
window. When the window is 20s, the characteristic diversity
of samples in each time window is relatively narrow, and
there is almost no significant difference between samples.
When the time window slides, diversity fluctuates present
violently because the window is too small to accommodate
a large number of characteristics. With the increase of the
window, the sample characteristics in the time window are
more abundant, and the variation of the degree of diversity is
gradually smooth. When the window is larger than 100s, the
mean value of the fluctuation degree tends to converge and
the variation of diversity degree tends to be the same, which
means that the richness of characteristics in the window has
reached the ideal value. Figure 12 shows that the deviation
increases linearly, with the increase of the window, the bias in
all samples in the container increases linearly, and there is no
obvious inflection point or extreme value. When the window
is larger than 100s, the change of bias is approximate when
the deviation is less than 100s, that is to say, only considering
the bias cannot get a better choice.

Because the ideal state of all samples in the container
needs to satisfy the requirements of rich characteristics and
small bias at the same time, the window size is selected to
be 100s based on the above two experiments. In addition,
because the richness and bias of the fixed window have no
obvious increasing or decreasing trend, there is no special
requirement for selecting the starting position of the window,
that is, the optimal range constraint of sample acquisition only
considers the size of the window to be 100s.

IV. NEURAL NETWORK AND INTRUSION DETECTION
A. DATA ENHANCING FOR ABNORMAL TRAFFIC
At present, abnormal traffic data sets have little consider-
ation for long-term interaction information between ports,
and cannot fully summarize the temporal characteristics of
abnormal interaction. The accuracy of deep learning depends
greatly on the size of the training set. If input samples cannot
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TABLE 2. Parameters of the experiment.

TABLE 3. Structure of model_1.

summarize the characteristics of all samples in this category,
it will appear obvious over-fitting. In addition, the existing
datasets (such as CICIDS-2017) have a large number of long-
term abnormal sessions lasting more than 24 hours, and the
features of longer and shorter sessions are different, unified
processing is prone to data waste. To solve this problem,
based on the separability of the network traffic[27], a data
enhancement method of interaction mode between abnormal
traffic ports is proposed. A long session is segmented into sev-
eral short sessions by time series to obtain the characteristics
of different time periods. The method is shown in Figure 13.

All data of CICIDS-2017 and CTU-13 were obtained, and
60% of them were randomly sampled as training samples,
and the remaining 40% as follow-up simulation test samples.
Determine the maximum session time tmax of enhancement
samples, and enhance the data of exception set Ca : for each
ci ∈ Ca, if it’s duration tci < tmax , the data will not be
enhanced; otherwise, it will be segmented at tmax intervals, ci
will be enhanced

⌈
tmax
tci

⌉
samples, and ci will be deleted from

the data set. Figure 14 shows the effect of data enhancement
on abnormal traffic data sets.

Select tmax = 300. In Figure 14, the horizontal axis
is the number of session packets and the vertical axis is

the duration of the session. Among them, the data sample
capacity enhanced from 13687 to 300899, which enhanced
by 21.98 times.

B. NEURAL NETWORKS BASED ON LONG AND SHORT
SESSIONS
CNN can get features from shorter fragments, and the posi-
tion of the features in the data fragments is not highly corre-
lated, that is to say, CNN is a very effective prediction method
for stationary time series [28]. LSTM is a cyclic neural net-
work, which is more suitable for dealing with and predicting
events with relatively long intervals and delays in time series,
namely autocorrelation time series [29]. Therefore, in view
of the conclusion above: the stability of shorter sessions and
the self-correlation of longer sessions, a neural network is
constructed based on the CNN layer and the LSTM layer,
respectively, to classify normal traffic and abnormal traffic.

According to the optimal time window range, the sample
set is classified with 100s as the window size. Because tmax =
300, three neural networks are trained. For different sample
capacity, the larger one is sampled randomly to make it equal
to the capacity value of the smaller one, k-fold validation was
used to reduce the verification variance in all three groups
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TABLE 4. Structure of model_2 & model_3.

of experiments. The experimental CPU is i7-6700 and the
GPU is NVIDIA Tesla K80. The specific parameters are
shown in Table 2, the structure of model_1, model_2 and
model_3 are shown in tables 3 and 4, the experimental results
are shown in Fig. 15.

Figure 15 shows that in the first group of experiments,
the samples are sessions with shorter duration. The PIMDL
provides less information, cause the discrimination between
normal traffic and abnormal traffic is less, which makes the
experiment presenting over-fitting after 40 rounds, valida-
tion loss value begins to increase and accuracy begins to
decline. Therefore, for model_1, the model at the 40th round
is selected as the final model. In the second and third groups
of experiments, because PIMDL provided abundant informa-
tion, the discrimination between abnormal flow and normal
flow was relatively high. When the experiment was carried
out to 300 rounds, validation loss showed a convergence
trend, and the neural network maintained a high accuracy for
the classification of normal and abnormal flow. Therefore,
for model_2 and model_3, the final model is selected as the
final model. The accuracy of the three models in the test set
is 86.347%, 91.104%, and 96.262%, respectively.

C. SIMULATION EXPERIMENT BASED ON IMPROVED
INTRUSION DETECTION
1) IMPROVED INTRUSION DETECTION ALGORITHM
Segmented data enhancement of abnormal traffic makes the
neural network learn a lot of abnormal characteristics of
segments, so that three groups of neural networks can fit
the characteristics of PIMDL duration in (0,100), (100,200),

(200,300), respectively. However, the following problems
need to be solved when it is used in intrusion detection:

It is necessary to predict the duration of the session in order
to get its complete information. In real traffic generation,
the duration of the session cannot be predicted in advance,
which makes it possible to use the neural network to clas-
sify the traffic only when the session is over, which greatly
reduces the real-time of intrusion detection;

In the training process of the neural network, the abnormal
flow is enhanced by piecewise data. The three groups of neu-
ral networks obtained only fit the piecewise characteristics of
PIMDL, not the overall characteristics. Its application needs
further treatment.

Aiming at the above problems, a collaboration mechanism
between neural networks is designed to evaluate the network
traffic synthetically to determine the abnormal traffic. That is
to say, session PIMDL is graded sequentially by three groups
of neural networks (score is between 0 and 1, calculated by
sigmoid activation function of the last layer). According to
the three groups of model scores of session PIMDL, sessions
are mapped to the three-dimensional coordinate system, and
traffic is classified by pre-trained an SVM [30] model. The
specific flow chart is shown in Figure 16 (For clearer type-
setting, Fig 16 is on the next page).

The algorithm flow shown in Figure 16 is divided into
twomodules: session scoring module and abnormal detection
module. The main task of the session scoring module is to
use model_1, model_2, and model_3 for scoring when the
session exceeds 100s, 200s and 300s. If the hopping interval
of session data packets is too long (e.g. the data packets do
not appear in 100-200 s), the lower model (e.g. model_1)
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FIGURE 15. In three groups of experiments, the trend of loss and accuracy of neural network with epoch increasing.

should be re-used for further prediction to ensure that all
sessions are scored in the order of model_1, model_2, and
model_3. When the session exceeds 300 seconds, all arrival
time records of the session are cleared to keep the session
duration in the (0s, 300s) interval. For long sessions, one of
themodels may be scoredmore than once because of repeated
emptying of arrival times. The main task of abnormal detec-
tion module is to obtain all the sessions with three model
scores at the end of the detection period, map three scores (if
the session scored more than once, then take its average as the
final score) to the three-dimensional coordinate system, and
classify them using the pre-trained SVM model to achieve
the purpose of intrusion detection. Pre-trained SVM model
acquisition method is: the above training data (60% of the
initial training traffic is injected into the normal traffic) is
trained by improved intrusion detection algorithm, and the
mapping of normal and abnormal speech annotated in the
three-dimensional coordinate system is obtained periodically.
The mapping of normal and abnormal sessions for 10 min,
20 min, 30 min and 40 min in the three-dimensional coordi-
nate system is shown in Figure 17.

In Figure 17, the X, Y and Z axes represent the scores of
the three models, respectively. As can be seen from Figure 17,
abnormal sessions and normal sessions are kept at a certain
distance, and SVM can get an ideal classification result.
The SVM model is trained with two kinds of data at the
2400s. The number of normal and abnormal session samples
were 15740 and 216, respectively. Samples are divided into
training and test sets according to the ratio of 7:3, and Gauss
kernel function is selected as its kernel function, gamma =
10. The accuracy of the final model in training and test sets
is 98.69% and 98.65%, respectively.

V. EXPERIMENTAL RESULTS ANALYSIS
Based on the flow chart of the improved intrusion detection
algorithm in Figure 17, a simulation experiment is designed
to verify its detection index. CICIDS-2017 and CTU-13 were
injected into MAWI network traffic. In order to keep a gap
with training data, the abnormal traffic was measured by 40%
of the initial traffic, and the normal traffic was selected by
MAWI from 00:00 to 02:00 on April 9. According to the
algorithm flow, the accuracy (ACC), detection rate (DR) and
false alarm rate (FAR) are counted in each detection period.
The three definitions are as follows:

ACC =
TP+ TN

TP+ FP+ TN + FN
(8)

DR =
TP

TP+ FN
(9)

FAR =
FP

FP+ TN
(10)

Among them, TP denotes the number of abnormal sessions
correctly identified, TN denotes the number of normal ses-
sions correctly identified, FP denotes the number of normal
calls incorrectly identified, and FN denotes the number of
abnormal sessions incorrectly identified.

The running time of the system is 3500s and the detec-
tion period is 100s, and the statistics start from 500s. Each
detection period counts the above three indicators. The results
are shown in Figure 18, it shows the changes of ACC, DR
and FAR with running time, their mean values are 98.90%,
90.13%, and 0.96%, respectively. At the end of the system,
the number of normal sessions and abnormal sessions is 16
442 and 405, respectively, and the abnormal traffic accounts
for 2.4% of the total traffic. This shows that the improved
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FIGURE 16. Intrusion detection specific process.

algorithm can still have higher accuracy and detection rate
and lower false alarm rate when the abnormal session size is
much smaller than the normal session size.

In order to test the improvement of the proposed algo-
rithm in computing speed, NSL-KDD-type datasets are
attempted to build from initial traffic, using MAWI data
set (from 00:00 to 02:00 on April 9) as experimental data.
As benchmark algorithm, all 41-dimensional data (e.g. first
two seconds traffic information, first 100 connection traffic
information) are obtained in the process of real traffic gener-
ation.When an attribute cannot be acquired due to incomplete
information, it is skipped to acquire the attribute. The com-
putational time required to acquire attributes in the process
of generating simulated traffic is counted. The experimental
results are shown in Figure 19.

Figure 19 shows the calculation time of the improved
algorithm. The horizontal axis represents the flow generation

time, and the vertical axis represents the solution time of the
algorithm with a time interval of 0.1s before the last one. The
average processing time of the benchmark algorithm and the
improved algorithm is 1.6276s and 0.8899s per unit under
900s, and the standard deviation is 0.4720 and 0.1595, respec-
tively. The experimental results show that compared with the
benchmark algorithm, it needs to maintain traffic informa-
tion lasting for two seconds, including 100 connections, and
frequently performs queries and calculations, which results
in a large amount of computational burden. The improved
algorithm only obtains identity information and arrival time,
so it has less computational burden and volatility. In addi-
tion, some attributes are skipped in the experiment, so the
benchmark algorithm will face a more serious computational
burden in the real situation.

Because previous algorithms rely too much on high-level
protocol data, they cannot accurately identify attack traffic
such as camouflage protocol. In order to verify this lim-
itation, the random shuffle method is used to replace the
attributes of the camouflaged samples with the attributes of
other samples to simulate the camouflage behavior. Record
ACC once for every camouflage attribute. The proportion of
camouflaged traffic was 20%, 40%, 60%, and 80%, respec-
tively. NSL-KDD is selected as the data set, and the cam-
ouflage attributes to select the high-level protocol attributes
of NSL-KDD, in the feature set provided by NSL-KDD,
there are two types of attributes. The first type is high-level
attributes, which are easy camouflaged, such as login times,
access times. The second type is the attributes of the data link
layer, which relies on the traffic information of other users in
the data link layer and is not easy camouflaged, such as the
traffic information of the first two seconds, the information of
the first 100 connections, the order of camouflage attributes
were numbered, as shown in Table 5, the method of [8-11]
is used as the benchmark algorithm. The experimental results
are shown in Figure 20 and Table 6.

Because these high-level protocols are not used for train-
ing, the accuracy of the improved algorithm is not affected
by the camouflage protocol, which is stable at 98.90%.
Because this experiment only needs to prove the problem
of accuracy decline, there is no evaluation of DR and FPR
indicators.

In order to further explore the accuracy improvement
effect of the proposed improved algorithm in small sam-
ple abnormal traffic classification task, reduce the scale of
abnormal traffic and detect its accuracy, the above bench-
mark algorithm is also used as a reference, and ROC
curve and AUC are used to evaluate its detection accuracy.
The ROC curve is the representation of TPR (True Pos-
itive Rate) and FPR (False Positive Rate) under different
thresholds. They are valued in the same way as DR and
FAR.

AUC (Area under Curve) is the area under the ROC curve,
which is between 0 and 1. When a positive sample and a
negative sample are randomly selected, the probability that
the current classification algorithm ranks the positive sample
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FIGURE 17. Mapping of normal & abnormal PIMDL in scoring space of three-dimensional model.

TABLE 5. High level protocol in NSL-KDD data set.

TABLE 6. Accuracy under camouflage (average / minimum accuracy).

ahead of the negative sample according to the calculated
Score value is the AUC value. As a numerical value, AUC
can evaluate the quality of classifier intuitively.

In the experiment, abnormal traffic in the NSL-KDD data
set is sampled randomly, and its scale is reduced to 2.40%
in the above experiment. The accuracy of the traditional and
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TABLE 7. AUC with different experimental numbers.

FIGURE 18. Results of simulation experiments.

FIGURE 19. Comparing the processing time of the improved algorithm
with that of the traditional algorithm as the simulation time goes on.

improved algorithms for small sample abnormal traffic classi-
fication is explored. The experiment was conducted 10 times
to ensure that random sampling does not introduce bias. The
experimental results are shown in Figure 21, the AUC perfor-
mance of each numbered experiment is shown in Table 7.

Because the ideal target TPR = 1, FPR = 0, the closer
the ROC curve is to (0,1) points and the more it deviates
from the 45 degrees diagonal, the better the effect will be.
The experimental results show that the performance of AUC
and ROC curves of the traditional algorithm is lower than that
of the improved algorithm in small sample abnormal traffic
detection tasks. This is because when training small samples,

FIGURE 20. Accuracy changes with the increase of camouflage attributes
(the camouflage rate was 80%).

FIGURE 21. ROC comparison in the small sample (other experimental
results are similar: the performance of ROC curve of traditional algorithm
is weaker than that of improved algorithm).

the small capacity of the neural network can not generalize all
the features of this class.When classifying unlabeled data, the
features may not be learned by the neural network, resulting
in larger errors.

VI. CONCLUSION
Aiming at the difference of interaction modes between traffic
ports in the complex network environment, a PIMDL model
is proposed to quantify the mapping of interaction modes
between ports at the link layer. On the basis of verificating
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the feasibility of PIMDL, and neural networks construction
method based on CNN and LSTM are designed to recog-
nize normal and abnormal PIMDL, and intrusion detection
system is carried out through multi-model evaluation mecha-
nism. Compared with the traditional feature sets that previous
studies depend on, this paper trains by acquiring the arrival
time of traffic data packets, improves the computational effi-
ciency, detection rate in the case of camouflage informa-
tion, the accuracy of anomaly detection in small samples.
However, this method has high spatial complexity because
it maintains a time series for each session. Next, the mapping
model of sessions in different autonomous domains at the data
link layer will be established by bifurcation and chaos theory,
and the effect of actual distance on PIMDL will be explored
to classify abnormal traffic more accurately.
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