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Abstract. All commutation relations are modified in (anti)-de Sitter background and the Heisenberg un-
certainty principle is changed to the so-called extended uncertainty principle (EUP). In this scenario, the
commutators between position and momentum operators are functions of the position space variables,
instead of a constant and the coordinate representation of the momentum operators for this model be-
comes coordinate dependent. In the AdS space, a lower bound on momentum uncertainty arises, which is
not present in the dS space. In this paper, we present an exact solution of the D-dimensional free parti-
cle, the harmonic oscillator and pseudoharmonic oscillator in AdS and dS spaces. The eigenfunctions are
determined for both cases and the energy eigenvalues are obtained.

1 Introduction

The idea of noncommutative spacetime is quite old. It has been incorporated in quantum fields by Snyder [1, 2] in
order to regularize the divergences in quantum field theories. Snyder model admits a fundamental length scale and it
is invariant under the Lorentz group action. However, this idea was largely forgotten due to the remarkable success of
the renormalization theory in quantum electrodynamics. After the work of Kontsevich [3], Snyder model has attracted
great attention. Modern candidates for a theory of quantum gravity and string theory suggests that the structure of
spacetime may be noncommutative at scales close to the Planck length.

The Snyder model is based on the algebra generated by the positions Xμ, momenta Pμ and is given by

[Xμ, Pν ] = i� (ημν + βPμPν) ; [Pμ, Pν ] = 0; [Xμ,Xν ] = i�βJμν , (1)

where Jμν = XμPν −XνPμ are the generators of the Lorentz symmetry and β is a coupling constant which is generally
assumed to be of the order of the Planck length. In Snyder model, the commutators between the operator of the
positions Xμ and momenta Pμ are not constant but are functions of the phase space variables, and the Heisenberg
uncertainty principle should be generalized by imposing the lower bound on position uncertainty. Some studies implies
that the Snyder model can be interpreted as an example of doubly (deformed) special relativity (DSR) [4–6], namely, a
theory where there exist two observer-independent scales, velocity which is identified by the speed of light, and length
which is identified by the Planck length.

On the other hand, after the introduction of the cosmological constant Λ into Einstein’s general theory of relativity
to obtain static cosmological solutions, Dirac [7] suggested studying the equations of atomic physics in a spacetime
with cosmological constant Λ which is called the de Sitter space. Therefore, in the presence of a cosmological constant,
the ordinary Poincaré special relativity must be replaced by a de Sitter special relativity. It is interesting to note
that the deformed de Sitter algebra has two invariant scales [8], the speed of light c and the radius R =

√
±3/Λ,

where the ± sign is for AdS and dS, respectively. Recently, it has been shown by Guo et al. [9] that there is a
correspondence between Snyder’s model and the dS-invariant special relativity as well as the minimum uncertainty-
like relation, which means that the physics close the Planck length �p and the radius R =

√
3/Λ should be dual to
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each other. In addition, with a suitably chosen parametrization, Mignemi [10] showed that on the (A)dS background,
the commutation relation should be modified by introducing corrections proportional to the cosmological constant.
On (anti-) de Sitter background, the deformed commutation relations introduced by Mignemi is given by

[Xμ, Pν ] = i�

(
ημν +

XμXν

R2

)
; [Xμ,Xν ] = 0; [Pμ, Pν ] =

i�

R2
Lμν , (2)

where μ, ν = 0, 1, 2, 3, and Lμν = XμPν −XνPμ. One of the fundamental consequences of the deformed commutation
relations (2) is the modification of the properties of the quantum system under consideration, namely the wave functions
and the eigenvalues. This is the main reason why the number of recent works on so-called quantum mechanics on AdS
and dS spaces have undergone a significant growth [11–20].

The Schrödinger equation plays a central role in studying the energy and wave function of a non-relativistic physical
system. In this Letter, we study the spatial part of the deformed Heisenberg algebra (2), by using a coordinate
representation. In arbitrary dimensions (D), we solve the equations explicitly for the free-particle and harmonic-
oscillator cases and obtain the quantum-mechanical eigenvalues and eigenfunctions in both the AdS and dS cases.
Then, in the context of 3-dimensional non-relativistic deformed Heisenberg algebra, we study the Pseudoharmonic
oscillator and obtain the results.

2 Quantum mechanics on (anti)-de Sitter spaces

2.1 AdS space

The formalism of quantum mechanics on AdS space has been extended to arbitrary dimensions (D) [15]. The modified
Heisenberg algebra reads

[Xi, Pj ] = i� (δij + αXiXj) ; i, j = 1, 2, . . . ,D, (3)

where α is a small positive parameter. In the limit α → 0, we recover the canonical commutation relations of the
standard quantum mechanics. As in the case of ordinary quantum mechanics, the commutation relation (3) leads to
the following extended uncertainty principle (EUP):

(ΔXi) (ΔPi) ≥
�

2

(
1 + α (ΔXi)

2
)

. (4)

Solving this equation with respect to (ΔPi), we get

(ΔPi) ≥
�

2

(
1

(ΔXi)
+ α (ΔXi)

)
, (5)

which leads to a minimum uncertainty in momentum (MUM)

(ΔPk)min =
�
√

α

2
, ∀k. (6)

In coordinate space, the simplest representation of the operators Xi and Pi is

Xi = xi; Pi =
�

i
f(x)

∂

∂xi
= (δij + αxixj) pj , (7)

where xj and pj satisfy the standard commutation relations of ordinary quantum mechanics. This representation yields
the following commutation relation for the momentum operator:

[Pi, Pj ] = i�α (xipj − xjpi) . (8)

It can be easily shown that the new operators Xi and Pj are Hermitian with respect to the scalar product

〈φ|ψ〉 =
∫

dDr

(1 + αr2)
1+D

2

φ∗(r )ψ(r ); where r =
D∑

i=1

x2
i . (9)
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2.2 dS space

In dS space, the deformed Heisenberg algebra leading to the EUP in arbitrary dimensions (D) is defined by the
following commutation relation:

[Xi, Pj ] = i� (δij − αXiXj) , (10)

this commutation relation leads to the following EUP relations:

(ΔXi) (ΔPi) ≥
�

2

(
1 − α (ΔXi)

2
)

. (11)

This relation does not give the minimal uncertainty in momentum. Solving this equation with respect to (ΔXi), we
get

− (ΔPi)
α�

− 1
α

√

α +
(ΔPi)2

�2
≤ (ΔXi) ≤ − (ΔPi)

α�
+

1
α

√

α +
(ΔPi)2

�2
, (12)

in the limit (ΔPi) → 0, (ΔXi) are bounded as − 1√
α
≤ (ΔXi) ≤ 1√

α
. A representation of Xi and Pi that satisfies (10),

may be taken as

Xi = xi; Pi =
�

i
(δij − αxixj)

∂

∂xj
. (13)

It is important to note that the scalar product, in this case, is not the usual one, but it is defined as

〈φ|ψ〉 =
∫

dDr

(1 − αr2)
1+D

2

φ∗(r )ψ(r ). (14)

In the following sections, we will employ those relations to study the Schrödinger equation for a free particle,
harmonic oscillator and pseudoharmonic-oscillator potential. The main goal of this study is to derive the expressions
of the energy eigenvalues and the corresponding eigenfunctions in AdS and dS spaces.

3 Free particle

Let us first consider the Schrödinger equation for a free particle in a D-dimensional AdS space, with Hamiltonian

H =
P 2

2m
; where P 2 =

D∑

j=1

P 2
j . (15)

In D-dimensions, we have

Δ =
∂2

∂r2
+

D − 1
r

∂

∂r
− L̂2

r2
, and

D∑

j=1

xj
∂

∂xj
= r

∂

∂r
, (16)

where L̂2 is a partial differential operator called the hyperangular momentum operator, and its definition is analogous
to that of the 3-dimensional angular momentum. The operator L̂2 possesses the following spectrum:

L̂2YM
� (ΩD) = �(� + D − 2)YM

� (ΩD) , (17)

where � = 0, 1, 2 . . . and YM
� (ΩD) is the hyperspherical harmonics. For D = 2, we have YM

� (Ω2) = eiMϕ
√

2π
, and for D = 3,

we have YM
� (Ω3) = YM

� (θ, ϕ). Using eqs. (15), (16), (17), and using the separation of variables as ψ = YM
� (ΩD)R�(r),

the Schrödinger equation for a free particle in the D-dimensional AdS space reads
{[

(
1 + αr2

) ∂

∂r

]2

+
D − 1

r

(
1 + αr2

) ∂

∂r
− �(� + D − 2)

r2
+

2mE

�

}

R�(r) = 0. (18)

In order to find the explicit solution of eq. (18), it is more convenient to define the variable
√

αρ = tan−1
√

αr, that
yields {

∂2

∂ρ2
+

(D − 1)
√

α

tan
√

αρ

∂

∂ρ
− α

�(� + D − 2)
tan2(

√
αρ)

+
2mE

�2

}
R�(ρ) = 0. (19)
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We can introduce an auxiliary function defined by

R�(ρ) = sin�
(√

αρ
)

��(ρ). (20)

Then eq. (19) for ��(ρ) becomes
{

∂2

∂ρ2
+

√
α(2� + D − 1)
tan(

√
αρ)

∂

∂ρ
− α� +

2mE

�2

}
��(ρ) = 0. (21)

Let us transform this equation to the form of hypergeometric equation. To do this, we introduce another transformation
of the form χ = 1−cos(

√
αρ)

2 which casts eq. (21) into the form
{

χ(1 − χ)
∂2

∂χ2
+

(
� +

D

2
− (2� + D)χ

)
∂

∂χ
− � +

2mE

α�2

}
��(χ) = 0. (22)

This is a hypergeometric differential equation and it has two linearly independent solutions around χ = 0, one regular
and one singular, namely,

��(χ) = N1F (A,B,C, χ) + N2χ
1−CF (A − C + 1, B − C + 1, 2 − C,χ) , (23)

where the parameters A, B, C are given by

A =
D − 1

2
+ � +

√(
D − 1

2

)2

+ �(� + D − 2) +
2mE

α�2
, (24)

B =
D − 1

2
+ � −

√(
D − 1

2

)2

+ �(� + D − 2) +
2mE

α�2
, (25)

C =
D

2
+ �. (26)

The hypergeometric function F (A,B,C, χ) corresponds to a series solution of the hypergeometric equation, namely
F (A,B,C, χ) =

∑∞
n=0 anχn with the recurrence relation,

an+1 =
(n + A)(n + B)
(n + 1)(n + C)

an, (27)

where a0 = 1 and the root of the indicial equation is set to zero [21]. When A or B is a negative integer, the numerator
of (27) vanishes. Then the series,

F (A,B,C, χ) = 1 +
AB

C
χ +

A(A + 1)B(B + 1)
C(C + 1)

χ2 + . . . , (28)

is truncated to yield a polynomial of the degree n when A = −n or B = −n. In both cases, we have

EAdS
n,� =

α�
2

2m

(
n2 + n (2� + D − 1) + �

)
, (29)

and the final solution can be written as

ψAdS
n,� = Nn,�YM

� (ΩD) sin�
(√

αρ
)
F

(
D − 1 + 2� + n,−n,C,

1 − cos(
√

αρ)
2

)
. (30)

where Nn,� is the normalization constants. In dS space the energy is not quantized and the eigenfunctions can be
written in terms of the hypergeometric function as

ψdS
� = CYM

� (ΩD) sinh�
(√

αη
)
F

(
A′, B′, C,

1 − cosh(
√

αη)
2

)
. (31)

with η = tanh−1 √
αr√

α
and,

A′ =
D − 1

2
+ � +

√(
D − 1

2

)2

+ �(� + D − 2) − 2mE

α�2
, (32)

B′ =
D − 1

2
+ � −

√(
D − 1

2

)2

+ �(� + D − 2) − 2mE

α�2
. (33)
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4 Harmonic oscillator

The spectrum of the harmonic oscillator was obtained in [22] in 3 dimensions. The radial part of the Schrödinger
equation for the harmonic oscillator in the D-dimensional AdS space can be written as

{[(
1 + αr2

) ∂

∂r

]2

+
D − 1

r

(
1 + αr2

) ∂

∂r
− �(� + D − 2)

r2
− m2ω2r2

�2
+

2mE

�2

}

u�(r) = 0. (34)

The form of this equation is the same that holds for the harmonic oscillator in arbitrary dimensions with minimal
length uncertainty relations [23], but with different coefficients, and it can be solved in the same way. We change the
variable from r to �, by setting � = tan−1(

√
αr)√

α
. Then eq. (34) can be written as

{
∂2

∂�2
+

(D − 1)
√

α

tan(
√

α�)
∂

∂�
− α

�(� + D − 2)
tan2(

√
α�)

− m2ω2

α�2
tan2

(√
α�

)
+

2mE

�2

}
u�(�) = 0. (35)

In order to solve the above equation, we perform a substitution

u�(�) = sin�
(√

α�
)
cosκ

(√
α�

)
Φ�(�). (36)

Using this function in eq. (35), we find the differential equation of the form
{

∂2

∂�2
+
√

α

(
(2� + D − 1)
tan(

√
α�)

− 2κ tan
(√

α�
)) ∂

∂�

− (2� + D) κα + α

(
κ (κ − 1) − m2ω2

α2�2

)
tan2

(√
α�

)
− α� +

2mE

�2

}
Φ�(ρ) = 0. (37)

Here, we choose κ to eliminate the term proportional to tan2 (
√

α�) by demanding

κ(κ − 1) − m2ω2

α2�2
= 0. (38)

This equation leads to the following expression of κ:

κ+ =
1
2

+
mω

α�

√

1 +
α2�2

4m2ω2
; κ− =

1
2
− mω

α�

√

1 +
α2�2

4m2ω2
, (39)

and the second solution κ− leads to a non-physical wave function. Then, the equation for Φ�(ρ) simplifies to
{

∂2

∂�2
+
√

α

(
(2� + D − 1)
tan(

√
α�)

− 2κ tan
(√

α�
)) ∂

∂�
− (2� + D) κα − α� +

2mE

�2

}
Φ�(�) = 0. (40)

It is convenient to perform another change of variable ξ = sin2(
√

α�), in terms of which eq. (37) can be written in the
hypergeometric form

{
ξ (1 − ξ)

∂2

∂ξ2
+

[(
� +

D

2

)
−

(
κ + � +

D

2
+

1
2

)
ξ

]
∂

∂ξ
−

(
�

2
+

D

4

)
κ − �

4
+

mE

2α�2

}
Φ�(ξ) = 0. (41)

The complete solution of eq. (41) around ξ = 0 can therefore be read as

Φ�(ξ) = N ′
1F (a; b; c, ξ) + N ′

2ξ
1−cF (a − c + 1; b − c + 1; 2 − c, ξ) , (42)

where the following parameters have been used:

a =
κ

2
+

D − 1
4

+
�

2
+

√
κ(κ − 1) + �(� + D − 2)

4
+

(D − 1)2

16
+

mE

2α�2
, (43)

b =
κ

2
+

D − 1
4

+
�

2
−

√
κ(κ − 1) + �(� + D − 2)

4
+

(D − 1)2

16
+

mE

2α�2
, (44)

c = � +
D

2
, (45)
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Fig. 1. Energy spectrum in AdS space as a function of n for different values of the parameter θ.

and N ′
1, N ′

2 are arbitrary coefficients. When a or b is a negative integer, the hypergeometric function F (a; b; c, z)
reduces to a polynomial of degree n,

−n =
κ

2
+

D − 1
4

+
�

2
−

√
κ(κ − 1) + �(� + D − 2)

4
+

(D − 1)2

16
+

mE

2α�2
. (46)

Using the relationship between the Jacobi polynomial P
(μ,ν)
n (x) and the hypergeometric function, namely,

P (μ,ν)
n (x) =

(−1)nΓ (n + 1 + ν)
n!(1 + ν)

F

(
n + μ + ν + 1;−n; 1 + ν,

1 + x

2

)
, (47)

we may further rewrite the wave functions for any n as

ψn,� (r,ΩD) = const. × YM
� (ΩD) r�

(
1 + αr2

)− �+κ+
2 P

(�+ D−2
2 , 1

2+κ+)
n

(
1 − αr2

1 + αr2

)
. (48)

The energy spectrum is then obtained as

EAdS
n,� = �ω

(
2n + � +

D

2

) √

1 +
α2�2

4m2ω2
+

2α�
2

m

(
n2 + n

(
� +

D

2

))
+

α�
2

m

(
� +

D

4

)
. (49)

Notice that the spectrum energy depends on the square of the quantum number n, and the corrections to the
spectrum are always positive. Moreover, the energy eigenvalues in AdS background are bigger than the energies in the
ordinary quantum mechanics. The usual spectrum is recovered in the limit α = 0. From the exact expression eq. (49),
the explicit expressions of the energy eigenvalues of the 2D and 3D harmonic oscillators are found as

EAdS
n,�,D=2 = �ω (2n + � + 1)

√

1 +
α2�2

4m2ω2
+

2α�
2

m

(
n2 + n (� + 1)

)
+

α�
2

m

(
� +

1
4

)
, (50)

EAdS
n,�,D=3 = �ω

(
2n + � +

3
2

)√

1 +
α2�2

4m2ω2
+

2α�
2

m

(
n2 + n

(
� +

3
2

))
+

α�
2

m

(
� +

3
4

)
. (51)

To show the effect of MUM on the energy eigenvalues, we calculate the energy eigenvalues EAdS ≡ EAdS
n,�,D=3

�ω for different
values of θ = α�

mω parameter. We choose θ = 0, 0.1, 0.3, 0.5 and � = 0. The results are shown in fig. 1 and we note
that the energy increases with quantum number n.
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Fig. 2. Energy spectrum in dS space as a function of n for the different values of the parameter θ.

On the other hand, in dS space, the radial part of the Schrödinger equation for the harmonic oscillator is
{[(

1 − αr2
) ∂

∂r

]2

+
D − 1

r

(
1 − αr2

) ∂

∂r
− �(� + D − 2)

r2
− m2ω2r2

�2
+

2mE

�2

}

Θ�(r) = 0. (52)

Performing a series of similar algebraic operations, the energy eigenvalues of the D-dimensional quantum harmonic
oscillator in dS space are obtained as

EdS
n,� = �ω

(
2n + � +

D

2

) √

1 +
α2�2

4m2ω2
− 2α�

2

m

(
n2 + n

(
� +

D

2

))
− α�

2

m

(
� +

D

4

)
. (53)

It is remarkable that the above expression of energy spectrum in dS space yields smaller energy values than that of the
ordinary quantum mechanics, and also the relation (53) would give negative eigenvalues when the quantum numbers
n are large enough as the term 2α�

2n2

m decreases faster than the terms proportional to n. To preserve the bound

E ≥ 0, one must impose that n ≤ mω
2α�

√
1 + α2�2

4m2ω2 − 2α2�2

m2ω2 (� + D
4 ) + α2�2

m2ω2 (� + D
2 )2 − 1

2 (� + D
2 ) + mω

2α�

√
1 + α2�2

4m2ω2 . As
a result of this behavior, only a finite number of energy levels are present. In fig. 2, we plot the energy eigenvalues

EdS ≡ EdS
n,�,D=3

�ω as a function of the quantum number n for various values of θ, (θ = 0, 0.1, 0.3, 0.5, � = 0). We note
that the energy decreases with quantum number n.

5 Pseudoharmonic oscillator

The pseudoharmonic-oscillator potential (PHO) was initially studied by Gol’dman et al. [24]. This potential is used to
describe the rotovibrational states of diatomic molecules and nuclear rotations and vibrations. Due to its importance
in chemical physics and molecular physics, the Schrödinger equation for this potential has been widely studied by
many authors [25–27]. The pseudoharmonic potential has the form

V (r) = De

(
r

re
− re

r

)2

, (54)

where De = 1
8Kere

is the dissociation energy with the force constant Ke and re is the equilibrium internuclear distance
of a given diatomic molecule. The PHO potential (54) contains both the harmonic and the inverse square interactions.
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The Schrödinger equation for PHO potential in AdS space is given as
{[

(
1 + αr2

) ∂

∂r

]2

+
2
r

(
1 + αr2

) ∂

∂r
−

L̂2 + 2mDe

�2 r2
e

r2
− 2mDe

r2
e�2

r2 +
2m(E + 2De)

�2

}

Ψ(r,Ω) = 0. (55)

Employing the transformation Ψ(r, θ, ϕ) = YM
� (θ, ϕ)Ξ�(r), the above equation reduces to the form

{[(
1 + αr2

) ∂

∂r

]2

+
2
r

(
1 + αr2

) ∂

∂r
−

�(� + 1) + 2mDe

�2 r2
e

r2
− 2mDe

r2
e�2

r2 +
2m(E + 2De)

�2

}

Ξ�(r) = 0, (56)

and the energy eigenvalues and the corresponding wave functions of the PHO potential can be determined immediately
by transforming this equation (for D = 3) to a Schrödinger-like equation

{[
(
1 + αr2

) ∂

∂r

]2

+
2
r

(
1 + αr2

) ∂

∂r
− k(k + 1)

r2
− m2ω2r2

�2
+

2mE
�2

}

u�(r) = 0, (57)

with

E = E + 2De;
2De

r2
e

= mω2 and k(k + 1) = �(� + 1) +
2mDe

�2
r2
e , (58)

k = −1
2

+

√(
� +

1
2

)2

+
2mDer2

e

�2
. (59)

The differential equation (57) corresponds to the Schrödinger equation of the harmonic-oscillator potential in AdS,
with energy eigenvalues

EAdS
PHO = −2De +

�

re

√
2De

m

⎛

⎝2n + 1 +

√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠

√

1 +
α2r2

e�2

8mDe

+
2α�

2

m

⎛

⎝n2 +
(

n +
1
2

)√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠ +
α�

2

m

(
2n +

1
4

)
. (60)

Due to the modification of the standard Heisenberg algebra, the above expression of energy spectrum depends on the
deformation parameter α and its deviation grows quickly with the square of the quantum number n. Expanding the
above expression for α, we obtain

EAdS
PHO = EPHO + ΔE, (61)

in the first order, where

EPHO = −2De +
�

re

√
2De

m

⎛

⎝2n + 1 +

√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠ , (62)

are the unperturbed levels [26], and the correction term caused by MUM is obtained as

ΔE =
2α�

2

m

⎛

⎝n2 +
(

n +
1
2

)√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠ +
α�

2

m

(
2n +

1
4

)
. (63)

On other hand, according to the [28] the parameter ϑ2 = 2mDer2
e

�2 is very large for the majority of molecules. Expanding
eq. (60) for powers of 1

ϑ , we get

EAdS
PHO =

(
n +

1
2

)
4De

ϑ
+ De

(� + 1
2 )2

ϑ2

+
α�

2

m

[

ϑ(2n + 1) +
1
ϑ

(
n +

1
2

) (
� +

1
2

)2

+
(

2n2 + 2n +
1
4

)]

+ O
(

1
ϑ3

)
. (64)
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Table 1. Numerical data for diatomic molecules N2 and CO.

Molecules De (cm−1) re(A
0) m (amu)

N2 96288.03528 1.0940 7.00335

CO 87471.42567 1.1282 6.860586

Table 2. Energy eigenvalues of the PHO potential for N2, CO diatomic molecules for different values of n and � in eV.

Molecules N2 CO

State n � EPHO ΔE EPHO ΔE

0 0 0.109182042289 1.251257880144 × 10−55 0.101955019262 1.242649780446 × 10−55

1 0 0.327421448290 3.773766136708 × 10−55 0.305745384042 3.748357867489 × 10−55

1 0.327920156741 3.773844455105 × 10−55 0.306224073076 3.748440047213 × 10−55

2 0 0.545660854291 6.319122960444 × 10−55 0.509535748822 6.277389984418 × 10−55

1 0.546159562742 6.319253491105 × 10−55 0.510014437856 6.277526950626 × 10−55

2 0.547156948396 6.319514544247 × 10−55 0.510971784232 6.277800873972 × 10−55

3 0 0.763900260291 8.887328351351 × 10−55 0.713326113602 8.829746131234 × 10−55

1 0.764398968743 8.887511094277 × 10−55 0.713804802636 8.829937883924 × 10−55

2 0.765396354396 8.887876568676 × 10−55 0.714762149012 8.830321376610 × 10−55

3 0.766892354765 8.888424751653 × 10−55 0.716198089357 8.830896583904 × 10−55

4 0 0.982139666292 1.147838230943 × 10−54 0.917116478382 1.140542630794 × 10−54

1 0.982638374743 1.147861726462 × 10−54 0.917595167416 1.140567284711 × 10−54

2 0.983635760397 1.147908716028 × 10−54 0.918552513792 1.140616590913 × 10−54

3 0.985131760766 1.147979196696 × 10−54 0.919988454137 1.140690546137 × 10−54

4 0.987126282143 1.148073164052 × 10−54 0.921902893416 1.140789145487 × 10−54

This result shows the influence of MUM on the energy levels of the PHO potential. The first term describes the
harmonic vibration with frequency of ω = 4De

�ϑ , the second term describes the rotation with constant moment of
inertia and the third term represents the corrections caused by the MUM.

In dS space, the energy of dissociation is

EdS
PHO = −2De +

�

re

√
2De

m

⎛

⎝2n + 1 +

√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠

√

1 +
α2r2

e�2

8mDe

− 2α�
2

m

⎛

⎝n2 +
(

n +
1
2

)√(
� +

1
2

)2

+
2mDer2

e

�2

⎞

⎠ − α�
2

m

(
2n +

1
4

)
. (65)

The above relation shows that the energy levels of a diatomic molecule interacting with the PHO potential in dS space
are smaller than the energies found in AdS space and the energy levels tend to negative values for large n.

Finally, we calculate the energy eigenvalues of the PHO potential for N2 and CO diatomic molecules by means of
eq. (60) with the potential parameter values given in table 1. The explicit values of the energy spectrum for different
values of n, � and α = 0.957 × 10−34 m−2 are shown in table 2. According to table 2, the effect of the deformation
parameter on the energy spectrum is very small. The corrections are generally of the order 10−55, thus it is unlikely
that they are detectable experimentally.

6 Conclusion

We present a generalization of the exact solution of the D-dimensional Schrödinger equation for the free-particle and
the harmonic-oscillator cases in the framework of AdS (anti-de Sitter) and dS (de Sitter) spaces. The D-dimensional
wave functions are obtained analytically for both cases and the corresponding energy spectrum are studied.
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For the free particle case, we obtained the Schrödinger equation in the form of a hypergeometric equation after a
variable transformation. The energy eigenvalues have been found by applying the polynomial reduction condition of
the hypergeometric function. In the case of the harmonic oscillator, we were able to write the wave functions in terms of
Jacobi polynomials using a relation between the Jacobi polynomials and hypergeometric functions. We also presented
graphically the behavior of the energy spectrum for different values of the deformation parameter in 3-dimensional
AdS and dS spaces.

In the same context of this deformation, we studied the analytical solution of the pseudoharmonic potential in
D = 3. The exact eigensolutions and the energy eigenvalues have been calculated for any angular momentum. Finally,
in order to see the effect of the deformation on the physical systems and to compare them with the experimental
results, a numerical table has been formed to present the binding energies of the Pseudoharmonic potential for N2

and CO diatomic molecules with different values of n and �. For these systems, we claimed that the energy corrections
coming from the deformation parameter are unlikely to be detectable experimentally.

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional
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