
Received September 22, 2019, accepted October 19, 2019, date of publication November 7, 2019,
date of current version November 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951943

A Data-Driven Based Framework of Model
Optimization and Neural Network Modeling
for Microbial Fuel Cells
FENGYING MA1, YANKAI YIN 1, SHAOPENG PANG1, JIAXUN LIU 1,
AND WEI CHEN 2,3,4,5, (Member, IEEE)
1School of Electrical Engineering and Automation, Qilu University of Technology, Jinan 250353, China
2School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
3Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
4Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102617, China
5School of Earth and Space Sciences, Peking University, Beijing 100871, China

Corresponding author: Wei Chen (chenwdavior@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51874300, in part by the National
Natural Science Foundation of China and Shanxi Provincial People’s Government Jointly Funded Project of China for Coal Base and Low
Carbon under Grant U1510115, in part by the Key Research and Development Program of Shandong Province under Grant
2018GGX103054 and Grant 2017GSF220005, in part by the Open Fund Project of Key Laboratory of Pulp and Paper Science and
Technology of Ministry of Education under Grant KF201418, and in part by the Open Research Fund of Key Laboratory of Wireless
Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
under Grant 20190902 and Grant 20190913.

ABSTRACT Microbial fuel cells (MFCs) are devices that transform organic matters in wastewater into green
energy. Microbial fuel cells systems have strong nonlinearity and high coupling, which involves control
science, microbiology, electrochemistry and other disciplines. According to the requirements of microbial
fuel cell system for model robustness and accuracy, we designed a comprehensive model optimization
framework. Firstly, the influence of uncertain parameters on system was analyzed by combining global
sensitivity analysis with uncertainty analysis. In accordance with analysis results, the uncertain parameters
were optimized. Secondly, based on the optimized stochastic model, a simplified model was proposed
by combining variable selection with neural networks. The results shown that the proposed framework
can deeply analysis the influence of uncertain parameters on output, and provide theoretical basis for
experimental research. It fully simplifies the original MFCs model, and has guiding significance for other
types of fuel cells.

INDEX TERMS Microbial fuel cells, model optimization, variable selection, neural networks.

I. INTRODUCTION
Microbial Fuel Cells (MFCs) which required in lots of
field [1]–[3] have received a widespread concern in the past
several years as a green energy. MFCs can be considered as
equipment realizes a conversion of bioenergy to green energy,
taking the organism as the fuel and direct generation of elec-
tricity by microbial redox reactions. Many efforts have been
directed to the power generation principle and application of
MFCs [4]–[6]. The basic reaction principle is that the bacteria
oxidize the substrate in the anaerobic anode through a cata-
lyst, and the electrons generated by the anode chamber are
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transported to the aerobic cathode through an external circuit
and form water molecules. Compared with hydrogen oxygen
fuel cells and other chemical cells, MFCs use organisms as
biocatalysts and possesses the advantages of high resource-
using rate, less pollution and mild reaction conditions. How-
ever, there are several obstacles constrain the development of
MFCs. The main disadvantage of MFCs operation compared
to other renewable energy, such as geothermal energy, tidal
energy, nuclear power is the low power output, which limits
the ability to drive high power devices.

Over the past few years, the main direction of research
was microbial cultivation, substrate analysis and electrode
modification, various systems were built for different types
of MFCs [7], [8]. In addition, a large number of experimental
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studies have also found the impact of operational parame-
ters on MFCs performance, such as ionic concentration [9],
temperature [10], [11], pH [12], substrate nitrogen concen-
tration [13], [14], and electrode distance [15]. Zou et al. [16]
built a new-type MFC with anode material is carbon nan-
otube (CNT) which coated polypyrrole and E. coli as biocat-
alyst. Ren et al. [17] built an MFC with carboxymethylcel-
lulose as substrate and observed the power density reached
153 mWm−2. Katz et al. [18] found that the increase of
ionic concentration will lead to a increase of maximum power
density, chemical oxygen demand (COD) removal efficiency
and Coulombic efficiency (CE). In accordance with the study
of borax buffer, Qiang et al. [19] found that the electronic
recovery efficiency can be improved by adding appropriate
concentration of borax buffer. Although a large number of
studies have yielded good results, they also prove that MFCs
is a complex system involving a mass of bio-electrochemical
coupling reactions, which result in the high coupling char-
acteristics, high time-delaying performance and uncertainty
characteristics.

Modeling is an approach to conduct simulation experi-
ments which require complex operation and high cost, and
played a key role in MFCs optimization. On the basis of
different modeling objectives, the MFCs models can be seg-
mented into the full-cell models which discusses anode and
cathode compartment simultaneous, and the half-cell mod-
els focusing on a single compartment [20]. Much of work
has been focused on the fields related to MFCs modeling.
Picioreanu et al. [21] developed a computational MFC
biofilm model to study the process of the bacteria on the
surface of the anode to form biofilms and changes in biofilm
thickness. Alavijeh et al. [22] presented an equation for the
effluent treatment process of MFCs in combination with the
diffusion effect of substrate to biofilm and competition in
the same substrate. Katuri et al. [23] calculated the current
density by introducing the basic Butler-Volmer equation, and
used the hyperbolic sine function to represent the anode over-
potential. Based on the mass balance, the simple expression
of the steady state overpotential of the anode was derived.
Ou et al. [24] proposed a one-dimensional transient model of
single chamber MFC without considering the change of the
thickness of the cathode biofilm and the concentration distri-
bution in the biofilm area. In 2010, Zeng, et al. [25] developed
a two-chamber MFCmodel supposed that both the anode and
cathode reactions can be considered as a continuously stirred
tank reactor (CSTR). However, most of the models on the
report are inherently complex and cannot be reproduced.

With the continuous updating of MFCs modeling method,
the contradiction between theory and application appears.
The first reason is that the researchers did not fully consider
the influence of uncertainty on the model in the model-
ing process. The models established from the experimental
data are usually only suitable for the presentation of current
experiment. Secondly, the model are too complicated and
there are several systematic errors in the modeling process.
Building a mathematical framework include the sensitivity

FIGURE 1. Schematic diagram of MFC experiment.

analysis (SA), uncertainty analysis, and neural network mod-
eling is a viable solution for a complex, microbiology-based
MFCs system. In this work, the uncertain parameters in the
microbial fuel cells was represented as normal probability
distribution, and the input parameters was expressed as uni-
form distribution. Firstly, the uncertain parameters in the
model were optimized by sensitivity analysis and uncertainty
analysis. Secondly, a new sampling method was used on the
known model to obtain the input and output data. Finally,
using genetic algorithm to reduce the dimension of indepen-
dent variables, and the BP neural network model with the
highest accuracy was established.

This paper is structured in the following order:
Section 2 gives a brief review to the typical continuous flow
microbial fuel cell model; Section 3 details the framework for
model optimization and neural network modeling presented
in this paper; Section 4 shows the results of global sensitivity
analysis (GSA) and uncertainty analysis, and based on it,
a simplified BP neural network was established.

II. TWO-CHAMBER MICROBIAL FUEL CELL MODEL
A comprehensive differential equation model for the biore-
actions and electrochemical phenomena presented in [25]
was used as the basis and data source of this research. The
basic experimental device is a typical two-chamber microbial
fuel cell consisting of cathode chamber and anode chamber
separated by a cation-exchange membrane. The schematic
diagram is shown in Fig. 1.
Anode chamber ensures anoxic condition by continuously

produced nitrogen gas, whereas cathode chamber continu-
ously adds air-saturated water to make the protons react with
dissolved oxygen. Both electrodes aremade of carbon felt and
coated with platinum powder as catalyst. The experimental
operation temperature is 30◦C and an adjustable resistance
is added to the external circuit between the cathode and
anode. The modeling includes theMonod-type equation, as is
prevalent in modeling of microbial fuel cells and illustrated
in subsections below.

Equations of electrochemical reactions occurring at anode
and cathode are described as follows:

(CH2O)2 + 2H2O→ 2C2O+ 8H+ + 3e−, (1)

O2 + 2H2O+ 4e−→ 4OH−. (2)

The anode chamber operates under anoxic conditions, and
the Monod-type equation was used to describe the anodic
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reaction rate. The reaction rate of the anode chamber is given
as:

r1 = k01exp
(
αF
RT

ηa

)
CAC

KAC + CAC
X , (3)

where CAC denotes the concentration of acetate, X is the
biomass in the anode compartment, ηa represents the anodic
polarization overpotential, KAC is the half velocity rate con-
stant for acetate, α stands for the charge transfer coefficient
of the anodic reaction, k01 is the rate constant of the anodic
reaction at standard conditions, F represents the Faraday
constant, T is the cell operating temperature, and R denote
the gas constant.

The Butler-Volmer expression was used to describe the
electrochemical reaction, and the reaction rate of the cathode
chamber is written as:

r2 = −k02
CO2

KO2 + CO2

exp
[
(β − 1)

F
RT

ηc

]
, (4)

where ηc denotes the overpotential at the cathode, CO2 is
the concentration for the dissolved oxygen, β represents the
charge transfer coefficient, k02 denotes the rate constant of the
cathodic reaction under standard conditions, and KO2 is the
half-velocity rate constant for dissolved oxygen.

The anode and cathode chambers of the MFCs system
are regarded as a continuous reactor, and four mass balance
equations for the acetate, dissolved CO2, hydrogen ion and
biomass in the anode chamber were obtained, respectively,
and are defined as follows:

Va
dCAC

dt
= Qa

(
C in
AC − CAC

)
− Amr1, (5)

Va
dCCO2

dt
= Qa

(
C in
CO2
− CCO2

)
− 2Amr1, (6)

Va
dCH

dt
= Qa

(
C in
H − CH

)
+ 8Amr1, (7)

Va
dCX
dt
= Qa

(
X in
− X
fx

)
+ AmYacr1 − VaKdecX , (8)

where subscript ‘a’ and superscript ‘in’ represent the anode
and flow of feed, respectively; V , Q and Am denote the
volume, the flow rate and the cross-section area of membrane,
respectively; and Yac, fx , Kdec denote the bacterial yield,
the reciprocal of wash-out fraction and the decay constant for
acetate utilizers, respectively.

The same method was used to obtain three mass balance
equations for the dissolved O2, hydroxyls, and M+ ions in
the cathode chamber, respectively, which are written as:

Vc
dCO2

dt
= Qc

(
C in
O2
− CO2

)
+ Amr2, (9)

Vc
dCOH

dt
= Qc

(
C in
OH − COH

)
− 4Amr2, (10)

Vc
dCM

dt
= Qc

(
C in
M − CO2

)
+ AmNM , (11)

where the subscript ‘c’ means the cathode, NM stands for
the flow of M+ ions through the membrane, which can be

FIGURE 2. Schematic diagram of comprehensive framework.

calculated as follows:

NM =
3600icell

F
. (12)

The charge balances at the anode and cathode are described
as follows:

Ca
dηa
dt
= 3600icell − 8Fr1, (13)

Cc
dηc
dt
= 3600icell + 4Fr2, (14)

where icell denotes the current density, Ca and Cc stand for
the anode capacitance and cathode capacitance, respectively.

The voltage of MFC is expressed as follows:

Vcell = V0 − ηa + ηc −
(
dm

km
+
dcell

kaq

)
icell, (15)

where V0 represents the open-circuit voltage, dm is the mem-
brane thickness, dcell stands for the electrode distance, kaq

denotes the conductivity of the solution, and km is the con-
ductivity of the membrane.

The description and standard values of the parameters in
the model are shown in Table 1.

III. METHODOLOGY
A comprehensive framework for data-driven MFC model
analysis and optimization is given in Fig. 2. The frame-
work includes global sensitivity analysis, uncertainty anal-
ysis, and neural network modeling based on data driving
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TABLE 1. Nominal values of parameters for MFC model.

and variable selection. Firstly, the global sensitivity analysis
based on variance can provide a deeper understanding of
the interrelationship between parameters and power density.
Secondly, the uncertainty analysis can optimize the uncertain
parameters of the original model to make the system more
robust. Finally, a neural network model based on data-driven
and variable selection was established to simplify the model
whereas optimizing the dimension of input variables.

A. SENSITIVITY ANALYSIS
The model proposed by Zeng et al. [25] assumes that only
the valent cations M+ transported through the membrane and
M+ ions are not involved in the cathodic reaction. During the
modeling process, a number of parameters are obtained by
experience or literatures. In addition, the empirical modeling
of the electrochemical phenomena may render parameters
such as the transfer coefficients in the Butler-Volmer equa-
tions to be uncertain. All of these lead to the great uncertainty
of the proposed model, so it is necessary to analyze the
uncertain parameters of the model before using the model
to generate experimental data, and optimize the model prop-
erly. Sensitivity analysis is an important approach for obtain-
ing higher prediction accuracy of model and measuring the
precision of parameter estimates [26]–[28]. When a certain
variable changes, SA can show the distribution of changes
in other variables [29]. Sensitivity analysis is divided into
two categories: Local sensitivity analysis (LSA) and Global

sensitivity analysis. The LSA is an analysis of small changes
in the input, whereas GSA is focuse on the interaction of
multiple uncertain parameters on the whole system [30]. The
advantage of local sensitivity analysis is the smaller amount
of computation, but in order to obtain more accurate param-
eter sensitivity indicators, current research tend to use the
global sensitivity analysis method [31].

1) GLOBAL SENSITIVITY ANALYSIS
The global sensitivity index based on variance decomposition
analysis proposed by Sobol [32] in 1993 has become a critical
foundation in the global sensitivity analysis method, and
has been enriched by Homma and Saltelli [33]. It can deal
with the nonlinear and non-monotonic models and can be
represented by a function as follows:

Y = f (X) = f
(
X1,X2, · · ·Xp

)
, (16)

where Y represents the output values of the model, f stands
for the model function and X1,X2, âĂęXp are the factors that
influence the outputs. Sobol suggested to expand the function
as follows:

f
(
X1,X2, · · ·Xp

)
= f0 +

p∑
i=1

fi (Xi)

+

p∑
i=1

p∑
j=i+1

fij
(
Xi,Xj

)
+ · · · + f1,··· ,p

(
X1, · · ·Xp

)
. (17)
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If the input parameters are independent of each other and
each term in this formula is set to zero average, which is
square integrable, then f0 is a constant. It’s worth noting that
this decomposition is unique.

The formula for calculating the total unconditional vari-
ance can be expressed as:

V (Y ) =
∫
�p
f 2(X )dX − f 20 , (18)

where �p stands for the p-dimensional unit hyperspace. The
partial variances can calculate from each of the terms in (19)
as:

Vi1···is=
∫ 1

0
· · ·

∫ 1

0
f 2i1···is

(
Xi1 , · · · ,Xis

)
dXi1 , · · · , dXis , (19)

where 1 ≤ i1 ≤ · · · ≤ is ≤ p and s = 1, · · · , p. Assuming
that the parameters are orthogonal to each other, which result
in (20).

V (Y ) =
p∑
i=1

Vi +
p−1∑
i=1

p∑
j=j+1

Vij + · · · + V1,··· ,p. (20)

Through the above process, the contribution of the single
parameter and the multiple parameters including this single
parameter to the total output variance can be calculated.
The sum of these contributions is represented by the total
sensitivity indices:

First order SI : Si =
Vi
V
, (21)

Second order SI : Sij =
Vij
V
, (22)

Total SI : STi = Si +
∑
j6=i

Sij + · · ·. (23)

The first order index, Si, is a measure for the variance
contribution of the parameter to the total model variance
when it acts alone. Sij denotes the effect of Xi with Xj.
STi stands for the main effect of Xi and all its interactions with
the other parameters. In addition, STi can also be obtained
by (24),

STi = 1−
V∼i
V
, (24)

where V∼i stands for variance contribution except
parameter Xi.
Due to the complexity of the MFC system, it is an

extremely difficult process to calculate the variances by ana-
lytical integrals. To make it easier to calculate the sensitivity
index, Monte Carlo (MC) integrals and Sobol’ quasi-random
sampling which can be found in the work of Saltelli et al. [34]
was introduced into the calculation process.

The first order coefficient can be calculated as follows:

Si =
VXi (EX∼i (Y |Xi))

V (Y )
. (25)

The total effect sensitivity analysis can be described as:

STi=1−
VX∼i

(
EXi (Y |X∼ i)

)
V (Y )

=
EX∼i

(
VXi (Y |X∼ i)

)
V (Y )

, (26)

whereXi represents amatrix of all factors,X ∼ i is amatrix of
all factors except for the factor Xi, VXi (·)and EXi (·) represent
the variance and mean of argument (·) taken over Xi. VX∼i(·)
and EX∼i(·) stand for variance and mean of argument (·)
include all factors except for Xi, respectively.

To apply GSA, the details are described as follows:
1) Select the uncertainty parameters.
2) Set the range of parameters.
3) Within each parameter’s range, sample points are gen-

erated by Sobol sampling.
4) Generate the matrices A, B, A(i)B of each p parameter.
The calculation methods of VXi (·) and EX∼i(·) are as

follows:

VXi (EX∼i (Y |Xi))≈
1
N

N∑
j=1

f (B)j

(
f
(
A(i)B

)
j
−f (A)j

)
,

(27)

EX∼i
(
VXi (Y |X ∼ i)

)
≈

1
2N

N∑
j=1

(
f (A)j−f

(
A(i)B
)
j

)2

, (28)

where A and B are design matrices of size N × p, col-
umn i in matrix A(i)B was selected from matrix B, and other
p − 1 columns was selected from matrix A. The settings of
matrix A and B can be obtained from [34] and [35].

B. UNCERTAINTY PROPAGATION ANALYSIS
Sensitivity analysis are usually used in combination with
and uncertainty analysis. The results of sensitivity analy-
sis will be used as the basis for uncertainty analysis. Due
to the complexity of microbial fuel cells, there are lots of
uncertainty factors in the process of establishing microbial
fuel cells and mathematical models. These uncertainty fac-
tors may be inherent or artificial. Different research fields
and application objects have different classification of uncer-
tainty. Generally, uncertainty factors can be divided into
controllable factors and uncontrollable factors. Controllable
factors include the geometric size of MFC model, manufac-
turing conditions, and so on. Uncontrollable factors include
environmental factors, equipment depreciation, and so on.
The Uncertainty facors in the MFCs system includes the
inherent variability of the system, the inconsistency between
model predicted and actual results, and the ambiguity exists
in the problem description. The existence of uncertain param-
eters often leads to poor system robustness and difficulty in
modeling. Therefore, evaluating the influence of uncertain
parameters on MFC output has become one of the key steps
in the system optimization and modeling. There are four
main methods of uncertainty analysis: stochastic uncertainty
analysis method, fuzzy uncertainty analysis method, hybrid
uncertainty analysis method based on fuzzy stochastic theory
and mixed uncertainty analysis method based on evidence
theory. This paper focuses on the problem of stochastic
uncertainty optimization. Uncertainty transfer means that the
parameter uncertainty is transmitted to the output variable and
the state variable through the internal action of the system.
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Two mainstream methods can be used to quantitative cal-
culation and qualitative description of uncertainty: Taylor
expansion approximation and Random sampling simulation.
Because the Taylor expansion approximation can not be
applied to strong non-linear system, the random sampling
simulation method was selected in this work.

The Monte Carlo stochastic simulation method is one of
the most commonly used methods in the random sampling
simulation method. This method can calculate the mean,
variance and probability density of the system output. How-
ever, the traditional MC sampling method has the problem
of low computational efficiency. Hence, this study uses a
more uniform quasi-random number sequence instead of
the original random number sequence to reduce the number
of sample points and improve the computational efficiency
and accuracy. Hammersley sequence sampling (HSS) is a
new representative approximate random sampling technique
which ensures the generated set of random numbers is rep-
resentative and more in line with the real situation. The spe-
cific implementation process of HSS technique is described
in [36], [37] as follows:

Before introducing the definition of HSS, we first intro-
duce a basic operation, Radical Inversion:

i=
M−1∑
l=0

al (i) bl, (29)

ϕb,C (i)=
(
b−1 · · · b−M

) [
C (a0 (i) · · · aM−1 (i))T

]
, (30)

where b is a positive integer, M is the number of digits,
which allows for generating up to N = bM points. Firstly,
any integer i is represented as base-b, the number al (i) on
each bit of the obtained number is arranged into a vector, and
then multiplied by a generating matrix C to get a new vector.
Finally, mirror this new vector to the right of the decimal
point. ϕb,C (i) is the result of radical inversion.

The Hammersley point set is generated when generator
matrix C is a unit matrix and defined as:

Xi =
(
i
N
, ϕb1 (i) · · ·ϕbn−1 (i)

)
, (31)

where b1 · · · bn−1 are prime numbers, i is an index of sample
points, and N stands for the number of points in the sample
points.

The flow chart of uncertainty analysis in this paper is
shown in Fig. 3. The details are given as follows:
1) The uncertain factor was used as a random variable,

and the probability density functionwas set as normally
distributed during the analysis.

2) HSS was used to generate random samples uniformly
distributed in the interval [0, 1], and the Moro [38]
method was used to convert the uniform random
numbers into random samples obeying the normal
distribution.

3) The degree of uncertainty of the inputs and output
is measured by the coefficient of variation (COV).
COV can reflect the discreteness of data under different

FIGURE 3. Flow diagram of MFC uncertainty analysis.

data scales and units conditions. The larger of the COV,
the greater of the uncertainty. The COV can be calcu-
lated as follows:

COV =
σξ

µξ
, (32)

µξ ≈ ξ =
1
N

N∑
i=1

ξi, (33)

σξ ≈ sξ =

√√√√ 1
N − 1

N∑
i=1

(
ξi − ξ

)
, (34)

where ξ represents the input or output parameter,
µξ stands for the mean of the parameter, σξ refers to the
standard deviation of the parameter, and N represents
the number of samples.

C. NEURAL NETWORK MODELING BASED ON DATA
DRIVING AND VARIABLE SELECTION
Data-driven based neural network modeling is an efficient
modeling method, which can greatly reduce the difficulty
and workload of model building. By training a great amount
of reaction precedents, Coley et al. [39] presented a super-
vised learning approach to predict the products of organic
reactions. Ma et al. [40] chose the pH, temperature and
voltage for correlation analysis and used radial basis function
neural network and extreme learning machine to perform
nonlinear system regression in the start-up stage of MFC.
Based on neural network, Horiuchi et al. [41] proposed a
simple modeling method for microbial dynamic behavior in
a chemostat, which can be applied to the pH response in
continuous anaerobic acidogenesis. Chen et al. [42] used
cascade recurrent neural networkmodel andmodified genetic
algorithm to optimized the fed-batch bioreactor. However,
when the model contains a large number of input variables
and the variables are not independent, the neural network
modeling tends to have over-fitting phenomenon. This phe-
nomenon will lead to the low accuracy of the established
model and the long modeling time, which cannot be applied
to the situation where the accuracy requirement is strict. The
selection of independent variables can effectively reduce the
dimension of independent variables and remove redundant
independent variables. It can not only increase the accuracy
of the model, but also simplify the MFCs model, making it
more versatile. In recent years, the most popular methods of
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FIGURE 4. Flow diagram of neural network modeling system based on data driven and independent
variable selection.

variable selection include multivariate regression, correlation
analysis, principal component analysis, partial least squares
and genetic algorithms. Due to the genetic algorithm has
the characteristics of global optimization and low computa-
tional complexity, this paper chooses genetic algorithm as the
method of independent variable screening. Firstly, the neural
network is constructed by HSS and data-driven method, and
then the genetic algorithm was used to obtain the optimal
input variables.

Using genetic algorithms for optimization calculations,
the solution space needs to be mapped to the coding space,
and each code corresponds to a solution to the problem. After
continuous iteration, the most representative input indepen-
dent variables are selected to participate in the modeling.
Since the number of independent variables used for modeling
in each genetic algorithm iteration is different, the optimal
weight and threshold of each BP neural network are also
different. In order to solve this problem, we nest a genetic
algorithm again, and select the optimal weight and threshold
in the process of variable selection fitness function calcula-
tion to solve the above problems, so that the result of variable
selection is more accurate. The flow of neural network mod-
eling system based on data driven and independent variable
selection is shown in the Fig. 4.
The fitness function of the independent variable screen-

ing based on genetic algorithm is the reciprocal of the
squared sum of the error between the predicted value
and the true value of the test set data is described
as (35):

f (X) =
1
SE
=

1

sse(T − T )
=

1∑n
i=1

(
ti − ti

)2 , (35)

TABLE 2. Range of selected uncertain parameters for the sensitivity
analysis.

where T =
{
t1, t2, · · · , tn

}
is the predicted value of the test

set, T = {t1, t2, · · · , tn} represents the true value of the test
set, and n is the number of samples in the test set.

IV. RESULTS AND DISCUSSION
A. GLOBAL SENSITIVITY ANALYSIS OF MFC MODEL
This section mainly introduces how to apply GSA to MFCs
simulation model, and evaluates the influence of uncertain
parameters in the model on the CSTR system. The uncertain
parameters includes the forward rate constant of anodic reac-
tion at standard conditions (k01 ), the half velocity rate constant
for acetate (KAC), the forward rate constant of cathodic reac-
tion at standard conditions (k02 ), the anodic charge transfer
coefficient (α), the cathodic charge transfer coefficient (β),
and half velocity rate constant for dissolved oxygen (KO2 ).
For this research, a sample size of 5000 was used to

calculate the first order and total sensitivity index. Sobol
sequences were generated at different ranges for all uncertain
parameters. In the process of model operation, the center
value and range of uncertain parameters are given in Table 2.
The values of other parameters are obtained from Table 1.
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FIGURE 5. Dependence of power density on (a) forward rate constant of cathode reaction at standard conditions, (b) half velocity
rate constant for acetate, (c) forward rate constant of anodic reaction at standard conditions, (d) anodic charge transfer coefficient
(e) half velocity rate constant for dissolved oxygen and (f) charge transfer coefficient of cathode.

The scatter diagram of the MFC power density versus
the forward rate constant of cathodic reaction and the half
velocity rate constant for acetate are shown in Fig. 5(a) and
Fig. 5(b). From these graphs, we can draw the conclusion that
these two parameters show a weak linear pattern. The power
density slightly decrease as KAC increase, and increase as k02
increase. The scatter plots, shown in Fig. 5(c) and Fig. 5(d),
exhibit obvious strong linear relationship, which indicate the
power density is sensitive to the forward rate constant of

anodic reaction and the anodic charge transfer coefficient.
The power density increased by 0.5Wm−2 during the change
of k01 from 0.1656molm−2 h−2 to 0.248molm−2 h−2. On the
contrary, the power density decrease linearly with the change
of α from 0.0408 to 0.0612. According to scatter plots
Fig. 5(e), the interaction between KO2 and power density is
insignificant, and the change of KO2 can hardly affect the
power density. It also shows that the uncertainty of KO2 has
less influence on the system, and the influence of changes
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TABLE 3. First order effects and total effects of the uncertain parameters.

on half velocity rate constant for dissolved oxygen can be
neglected in the process of modeling. It can be seen from
Fig. 5(f) that the power density has a non-linear relationship
with β. In the course of β changes in the range of 0.5304 to
0.7956, the power density of MFC decreases slowly first
and then decreases rapidly. This indicates that changes in
the uncertain parameter β during the experiment should be
focused.

The first-order sensitivity coefficient based on the Sobol’
method reflects the influence extent of the variable on the
power density when the variable acts alone. The total sen-
sitivity reflects the influence of the parameter on the function
value after considering the cross-action of variables. The
higher the sensitivity of the uncertain parameter, the larger the
first-order sensitivity coefficient. The first-order sensitivity
coefficient and the total sensitivity coefficient of the MFC
uncertain parameters can be calculated by (25) and (26) as
listed in Table 3. As the data displayed in table, the order of
first-order sensitivity coefficient for the uncertain parameters
is β, k01 , α, KAC, k02 , and KO2 which is the same as total
sensitivity. The relationship between uncertain parameters
can be seen more intuitively by the histogram generated
in Table 3 as shown in Fig. 6. As we can see from Fig. 6 that
the first-order sensitivity coefficient and the total sensitivity
coefficient of β are significantly higher than other parame-
ters, and the value of KO2 is close to zero, which is consistent
with our previous analysis. It is worth noting that the first-
order sensitivity of almost all parameters is very close to its
total sensitivity, which indicates that the interaction between
these six uncertain parameters is minimal. In the case where
multiple uncertain parameters change simultaneously, that is,
under more complicated experimental conditions, the output
power is only slightly different from the condition of a single
parameter change.

B. UNCERTAINTY ANALYSIS OF MFC MODEL
Through the global sensitivity analysis, it can be concluded
that five of the six uncertain parameters have obvious influ-
ence on the power density, and the interaction between
the parameters is minimal. In this section, five parame-
ters k01 , KAC, k02 , α, and β, which have a significant influ-
ence on power density, will be selected for further analysis.
In the uncertainty analysis process, the mean values of these
five parameters are selected according to Table 2, and the
coefficient of variation ranges from 0 to 0.1. In addition,

FIGURE 6. Sensitivity indices for the first order effects and total effects of
the uncertainty parametersc.

the remaining parameters are determined according to the
data in Table 1.

The number of sampling points has a great impact on the
running time and accuracy of the model. If the number of
sampling points is too small, the calculation accuracy will
be reduced. However, too many sampling points will lead to
lengthy computation time. Hence, the determination of the
number of sampling points is the premise to solve the problem
of uncertainty analysis. In the calculation process, the COV
for all uncertain parameters is set equal to 0.05. Fig. 7(a)
and Fig. 7(b) show the variation of the mean and standard
deviation as the number of sampling points increases. As we
can see from the figure that the mean and standard deviation
of power density gradually converge with the increase of the
number of sampling points, and the number of samples is
stable at 2000. As a result, the number of sampling points
in the uncertainty analysis of this study was set to 2000.

Different uncertain parameter has different effects on the
COV of power density. In the uncertainty analysis, the mean
of a certain uncertain factor is divided into three grades
whereas others factor’s standard values are settled as listed
in Table 2, and the current density is taken as icell = 2Am−2.
The relationship between input parameters and output is
shown in Fig. 8.

It can be seen in Fig. 8(a) that as the COV of k01 increases,
the coefficient of variation of the power density increases
linearly. In the case of the same COV of power density,
an increase in the mean of k01 results in a lower COV of
power density, which is more pronounced when COV of k01
is higher. In Fig. 8(b), when the mean values of KAC are set
as 0.592 and 0.4736, the curve is still linearly increasing, but
when it comes to 0.7104, the curve becomes nonlinear. In the
case of the same coefficient of variation, an increase in the
mean of KAC results in a higher COV of power density. The
same phenomenon is more obvious when the COV of KAC
is larger. The case of k02 as given in Fig. 8(c) is completely
opposite to k01 . The larger the mean value of k02 , the larger the
COV of power density. In the case of three different values of
mean of k02 , the COV of power density has linear relationship
with the COV of k02 . As it shown in Fig. 8(d), the uncertainty
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FIGURE 7. Diagram of the relation between (a) mean of power density
and number of samples and (b) standard deviation of power density and
number of samples.

analysis has performed on α. When the mean values of α are
equal to 0.0408 and 0.0501, the curves appear to overlap. This
illustrates when the mean value of α is lower, the mean of α
changes will no longer be a major factor affecting COV of
power density. At the same time, the COV of power density
will be lower under the condition of higher α average. As we
can see from Fig. 8(e), when the mean value of β is 0.7956,
the COV of β and COV of power density exhibit an obviously
nonlinear relationship, and with the increase of the coefficient
of variation of β, the growth rate of COV of β is faster and
faster, until the final result is far greater than the average value
of β is 0.5304 and 0.663. At the same time, when the mean
value of β equal to 0.5304 and 0.663, the nonlinearity and
difference of the curve are very small. This indicates that
the mean of β will have a great influence on COV of power
density, the experimenter should precisely control the value
of β in the course of the experiment to ensure a lower COV
of power density.

In order to further explore the above phenomenon, we con-
ducted further analysis to fix the coefficient of variation of all
uncertain factors to 0.05, and explored the effect of the change
in the mean value of the uncertain parameter on the power
density. It can be seen from Fig. 9(a) that as the mean value
of the parameter k01 increases, the standard deviation of the

TABLE 4. Range of input parameters for the neural network modeling.

power density changes in a wave shape, and the lowest point
is at k01 = 0.226. An increase in the mean of parameter KAC
results in an increase in the standard deviation of the power
density and a decrease in the mean of the power density,
which is the same as the case of Fig. 9(e). The difference is
that the non-linear relationship between the mean of param-
eter and the mean or standard deviation of power density
in Fig. 9(e) is much larger than that in Fig. 9(a). In Fig. 9(c)
and Fig. 9(d), it can be seen that the change of the standard
deviation of the power density is the same as the change trend
of themean value, which is an upward trend during the change
of the parameter k02 , and a downward trend during the change
of the parameter α.

In summary, the existence of uncertain parameters can lead
to poor robustness of neural network modeling. In this paper,
the robustness of the model is improved by appropriately
changing the value of the uncertain parameter, and it provides
a basis for neural network modeling. The criterion for the
optimization of uncertain parameters is to find the point with
the largest mean value of power density under the condition
that the coefficient of variation and the standard deviation of
the model output are the smallest. The value of the uncertain
parameter after optimization were set as k01 = 0.2226,KAC =

0.4736, k02 = 0.0000263, α = 0.0612, β = 0.5304.

C. VARIABLE SELECTION AND NEURAL NETWORK
MODELING OF MFC
BP neural network is a typical multi-layer feedforward neural
network. In the process of network operation, the signal
is forwarded and the error is reversed. Through the above
sensitivity analysis and uncertainty analysis, we optimize the
value of the uncertain parameter to make the model more
robust. Excessively high input parameter dimensions can
greatly increase the complexity of the model and make the
model less versatile. The method of reducing the dimension
of the independent variables reduces the coupling between the
independent variables in the original model, so that the model
fitted by the BP neural network is more universal in the case
of ensuring the modeling accuracy.

Firstly, the experimental data is generated by simulating
the model introduced in Section 2. Among them, the uncer-
tain parameters were set as optimized result, and the lower
and upper limits of the input parameters values are shown
in Table 4. The power density of theMFCmodel is referred to
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FIGURE 8. Dependence of COV of power density on COV of (a) forward rate constant of anode reaction at standard condition,
(b) half velocity rate constant for acetate, (c) forward rate constant of cathode reaction at standard condition, (d) charge transfer
coefficient of anode and (e) charge transfer coefficient of cathode.

the true value in subsequent analysis, and assuming that the
values of all the operating parameters are evenly distributed
in their corresponding upper and lower limits. The data of all
training sets and test sets in BP neural network are acquired
by HSS method through simulating the initial MFC model.

The 4500 data represented by 10 input parameters were
used in neural network modeling, and 500 sets of data were
used for prediction results as shown in Fig. 10(a). It can be
seen from the error graph that the prediction accuracy of the
neural network model has reached the level of two decimal
places. However, there are several sample points in the graph

where the predicted values show a relatively large deviation.
This can not meet the requirement ofMFCs for power density
prediction accuracy. The mean square error predicted by the
calculation of 10 parameters participating in the prediction
is 0.00014982.

In order to improve the prediction accuracy and reduce
the complexity of the model, the method described in
Section 3.3 was used to filter the independent variables.
After the genetic algorithm optimization, the selected set
of independent variables are Qa, icell, C in

AC, C
in
H , and X in.

Obviously, after genetic algorithm optimization and
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FIGURE 9. Dependence of mean and standard deviation of power density on mean of (a) forward rate constant of anode reaction at
standard condition, (b) half velocity rate constant for acetate, (c) forward rate constant of cathode reaction at standard condition,
(d) charge transfer coefficient of anode and (e) charge transfer coefficient of cathode.

screening, the number of input independent variables par-
ticipating in the modeling is half of the total numbers, and
the mean square error is reduced to 0.00012547. At the same
time, the modeling time is reduced from 12.5156 seconds
to 2.8125 seconds. Fig. 10(b) gives the results of prediction
error after variable selection. The results show that the error
of model prediction is greatly reduced, and there is no sample
point with excessive prediction error. The prediction error

of the sample points is approximately between −0.02 and
0.04. It is indicated that the proposed method can effectively
improve the prediction accuracy of BP neural model and
significantly reduce the complexity of MFC mathemati-
cal model, which has practical significance. In summary,
the neural network model is an alternative method to cap-
ture the nonlinear relationship between the input parameters
and power density of MFCs. It can simplify the model
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FIGURE 10. Diagram of the absolute error between expected output and predictive output: (a) before variable selection and
(b) after variable selection.

of complex differential equation sufficiently to guide the
experiment.

V. CONCLUSION
In this paper, the framework of microbial fuel cell model
analysis and neural network modeling is discussed in detail.
Firstly, the global sensitivity analysis and uncertainty analysis
of the model are carried out to explore the influence of the
uncertainty parameters on the system and optimize the value
of the uncertainty parameters. The analysis results show that
the cathodic charge transfer coefficient has the greatest effect
on the power density, whereas the half velocity rate constant
for dissolved oxygen has almost no effect on the results.
Compared to the case where the uncertainty parameter acts
alone, the interaction between the uncertain parameters has
less impact on the system. The uncertain parameters were
optimized by uncertainty analysis to make the MFC mathe-
matical model more applicable under uncertainty conditions.
Secondly, the combination of genetic algorithm-based vari-
able selection and neural network can reduce the complexity
of the model, improve the accuracy of the neural network
modeling, and provide a new direction for model simplifica-
tion. Compared with the original model, the number of input
parameters in the neural network model are reduced from
10 to 5. The framework presented in this paper can also be
used as an optimization for other types of fuel cell analysis.
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