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• Inverse relationship between alternative responses of population aging indicators to mortality is explained.
• Mortality shift and mortality compression push aging indicators in opposite directions.
• Results of analysis of population dynamics depend crucially on whether the conventional or prospective old-age dependency ratios are used.
• Mortality shift and compression model is useful in analytically studying effects of mortality change.
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a b s t r a c t

Unlike other biological populations, the human population is experiencing long-run increases in life
expectancy. Those lead to changes in age compositions not typical for other biological populations.
Sanderson and Scherbov (2015a) demonstrated that, in many countries in Europe, faster increases in life
expectancy lead to faster population aging when measured using the old-age dependency ratio and to
slower population aging when measured using the prospective old-age dependency ratio that employs
a dynamic old-age threshold. We examine this finding analytically and with simulations. We use an
analytic decomposition of changes in mortality schedules into shift and compression processes. We show
that shifts and compressions of mortality schedules push the two old-age dependency ratios in opposite
directions. Our formal results are supported by simulations that show a positive effect of a mortality
shift on the old-age dependency ratio and a negative effect of it on the prospective old-age dependency
ratio. The effects are of opposite sign for a mortality compression. Our formal and simulation results
generalize observed European trends and suggest that the inverse relationship between life expectancy
and prospective old-age dependency would be observed more generally.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Human populations share many properties, such as renewal,
with other biological populations. They also have unique features
amongwhich are the long-run lengthening of lifespans.When age-
specific survival probabilities are fixed, increases in chronological
age are typically associated with decreases in average remaining
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lifetimes. When age-specific survival probabilities are declining,
it is possible for average remaining lifetimes to increase even
when the average number of years already lived also increases
(Sanderson and Scherbov, 2005).

When lifetimes are lengthening, population aging can be ana-
lyzed from two different perspectives, one based on the average
number of years already lived and another based on the average
number of years left to live. Sanderson and Scherbov (2005, 2015a)
have shown, using historical data and population forecasts, that
these two perspectives can often yield strikingly different results.
Because their findings were based on patterns of survival from the
recent past and on forecasts based on them, it is not clear what
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Fig. 1. Annual change of life-table Prospective Old-Age Dependency Ratio (POADR) (2) vs. the Old-Age Dependency Ratio (OADR) (1), entire Human Mortality Database,
years 1950–2015: men, women, currently High- and Low-mortality countries.

causes those differences and the extent to which their findings are
more general or are specific to the era from which their data were
derived.

In this paper, we provide a theoretical analysis of the old-age
dependency ratio, a commonly usedmeasure of human population
aging, from the two perspectives. Old age dependency ratios are
ratios of the number of people who are classified as being old to
those who are classified as being in the working ages. Our analysis
uses the theoretical framework in Ediev (2013a). This framework
allows changes in human mortality schedules to be expressed us-
ing two parameters, one related to the shift of the age distribution
of deaths and the other to its compression or expansion. Sanderson
and Scherbov (2005, 2015a) showed that when changes in life
expectancy occur it matters whether a perspective based on the
number of years already lived or one based on the number of
year left to live is used in computing old-age dependency ratios.
Not only are the magnitudes of the changes different, but even
the direction of the change. The theoretical results presented here
show the analytic conditions under which this occurs.

We begin with formal definitions of the old-age dependency
ratio and the prospective old-age dependency ratio.

The conventional Old-Age Dependency Ratio (OADR) is defined
as:

OADR (t) =
OAP (t)
WAP (t)

=

∫
∞

R0
P (t, x) dx∫ R0

W P (t, x) dx
. (1)

Here, OADR (t) is the OADR at time t, OAP (t) is the old-age popu-
lation at time t obtained by summing the population P (t, x) over
ages R0, the fixed old age threshold, to the maximum lifespan
(the latter is replaced by infinity to facilitate further derivations).
The working-age population at time t, WAP(t), is the population
between the agesW , the onset of the working age interval, and R0.
In one commonly used version of the OADR,W is set to age 20 and
R0 is set equal to 65.

The definition of the Prospective Old-Age Dependency Ratio
(POADR) requires a time-varying old-age threshold, R (t), that
holds remaining life expectancy constant. To do this, we first
choose some base year t0 and compute the time varying old age

threshold as the age in year t where remaining life expectancy is
the same as at age R0 in the base year t0. For numerical illustrations,
we use a rolling base t0. For example, for year t , we use year t0 =

t − 1 as the base year. The base-year relation R (t0) = R0 assures a
similar ‘start’ for both the conventional and prospective indicators
of population aging. For example, if t0 were 2015 and R0 were 65,
then we would first find the remaining life expectancy at age 65
in 2015. Let us suppose that this life expectancy was 20 years. If
year t were 2016, we would determine R (2016) by finding the age
in 2016 where remaining life expectancy was 20 years. When the
time varying old age threshold R (t) is used instead of the fixed old
age threshold, R0, a new ratio is obtained where the numerator is
the number of people at or above R (t) and the denominator is the
number of people from age W to R (t). This new measure is called
the POADR. Specific implementations of the POADR concept can be
found in (Sanderson and Scherbov, 2010, 2013, 2015b):

POADR (t) =

∫
∞

R(t) P (t, x) dx∫ R(t)
W P (t, x) dx

, (2)

where POADR(t) is the POADR at time t.
POADRs, based on estimates and forecasts, at 5-year intervals

from 1950 to 2100, have been published for most countries of the
world (Sanderson and Scherbov, 2008;Wittgenstein Centre for De-
mography and Global Human Capital, 2014). In those POADRs, the
old age threshold, R (t), is set equal to the age at which remaining
life expectancy equals 15 years. The POADR was designed to study
population aging in an environment where the characteristics of
older people could vary markedly over time and space. This was
the motivation for making the old age threshold dynamic. For
simplicity, the age at labor force entry,W, is kept constant.

Sanderson and Scherbov (2015a) used population forecasts for
European countries to demonstrate a novel result. When the speed
of aging ismeasured using the increase in OADR, faster increases in
life expectancy lead to faster population aging. When the speed of
aging ismeasured using the increase in the POADR, faster increases
in life expectancy lead to slower increases in aging. Fig. 1 shows
a similar phenomenon in a different context. It shows the rela-
tionship between annual changes in OADRs and POADRs defined
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Fig. 2. Increments of life-table Prospective Old-Age Dependency Ratio (POADR) (2) vs. the Old-Age Dependency Ratio (OADR) (1) in model life tables: men, women, Coale–
Demeny and United Nations model life table families. Note: e0 is the life expectancy at birth (years).

over life table populations for the years 1950 to 2015 for currently
low and highmortality countries in the HumanMortality Database
(University of California (Berkeley) and Max Planck Institute for
Demographic Research (Rostock), 2018). The list of currently ‘low
mortality’ countries is obtained by excluding Eastern-European
countries from the HMD. It includes Australia, Austria, Belgium,
Canada, Chile, Denmark, England and Wales, Finland, France, Ger-
many (total population), Ireland, Israel, Italy, Japan, Netherlands,
New Zealand (Non-Maori), Northern Ireland, Norway, Portugal,
Scotland, Spain, Sweden, Switzerland, Taiwan (China), USA, UK,
and West Germany. We also exclude some relatively small pop-
ulations (Iceland, New Zealand-Maori, and Luxemburg). ‘‘High-
mortality’’ countries include the Eastern-European countries. The
annual changes in the OADRs and POADRs in Fig. 1 are both in
response to the same changes in mortality conditions.

In Fig. 1, we can see a strong negative relationship between
the annual changes in OADRs and POADRs. In this paper, we want
to understand whether the relationship extends beyond mortality
schedules currently observed in HMD. The relationship between
changes in old-age dependency ratios and changes prospective
old-age dependency ratios inmodel life tables (Coale and Demeny,
1966; United Nations, 1982) suggests the relationship is general,
with few exceptions. In Fig. 2, we plot increments of conventional
and prospective OADRs within the same model life table family
against one year increments of life expectancy at birth. The model
life tables cover a wide range of values of life expectancy at birth
from e0 = 20 years to e0 = 100 years and – unlike the empirical
schedules in Fig. 1 – are free from stochastic variations. Although
they have these advantages, they also have the disadvantage that
they are based on imputations andmay bemisleading at the lower
and upper extremes of life expectancy at birth. The model life
tables show the same inverse relationship between OADR and
POADR that is seen in the observed life tables with a few excep-
tions at low life expectancy at birth. The model life table-based
relationship is curvilinear. We explain this below in the section
on analytic derivations. The object here is to explain analytically
why this inverse relationship exists in both observed and model
life tables.

We focus on the effects ofmortality change alone. To do this, we
study dependency ratios in stationary populations with survival
constant over time and equal to the survival l (t, x) of the year t.
In that context, assuming unit radix P (t, 0) = l (t, 0) = 1 of the
life table population, P (t, x) = P (t, 0) l (t, x) = l (t, x), where
l (t, x) is the life table proportion surviving from birth to age x in
the period life table for the year t.

The analytic framework that we use here is the shift-
compression model of the age distribution of adult deaths in Ediev
(2013a) and is described in Section 2. In Section 3, we show that
the shift-compression model produces a closed form solution for
dynamic old age threshold, R (t). The analytic relationship between
shifts and compressions of mortality schedules and changes in
OADRs and POADRs is presented in Section 4. We quantify shifts
and compressions in mortality schedules using data from the
Human Mortality Database and show that the observed shifts and
compressions produce the results seen in Figs. 1 and 2 in Section 5.
For ease of following the analytical derivations, notations and the
basic relations used in the paper are summarized in Table 1.

2. The mortality model

If arbitrary mortality changes are allowed, one may easily con-
structmortality scenarioswith any pattern of change of the old-age
dependency ratios. Neither the OADR nor the POADR are affected
by mortality changes at ages below the working age. Mortality
changes in the working ages push the two old-age dependency
ratios in a similar direction. However, mortality changes at ages
beyond the old-age threshold R0 may generate complex patterns
of change depending on how they affect: (1) the old-age threshold
R (t), (2) the life table person-years below that age and (3) the
survival probability to R (t). Therefore, the possibility that the
inverse relationship between changes of OADR and POADR might
be general is ruled out. The form of the relationship depends on the
pattern of combinations of mortality change at different ages.

To study patterns of age-specific mortality rate changes, we
consider the two most important aspects of those changes: (1)
changes in the mean age at death (shift) and (2) changes in the
spread of the distribution of ages at death around the mean age
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Table 1
Notation and basic relations.
Notation Description

t Time variable
t0 Base year used as a reference in

computing prospective indicators of aging
x Age variable
P (t, x) Population density at age x, time t
ω The maximum lifespan
W The starting age of the working age

interval
R0 The time-fixed starting age of the

conventional old age interval
R (t) The time-varying ‘old age threshold’

marking the starting age of the
prospective old age interval at time t ,
Eq. (5)

OAP (t) =
∫ ω

R0
P (t, x) dx Conventional old-age population

WAP (t) =
∫ R0
W P (t, x) dx Working-age population with the

conventional definition of old age
POAP (t) =

∫ ω

R(t) P (t, x) dx Prospective old-age population above
time-dependent old age threshold

PWAP (t) =
∫ R(t)
W P (t, x) dx Working-age population with the

prospective definition of old age
OADR (t) =

OAP(t)
WAP(t) Conventional old-age dependency ratio,

Eq. (1)
POADR (t) =

POAP(t)
PWAP(t) Prospective old-age dependency ratio,

Eq. (2)
PO (t) =

OAP(t)∫ ω
0 P(t,x)dx

Proportion of the population who are old
(conventional definition)

PPO (t) =
POAP(t)∫ ω
0 P(t,x)dx

Proportion of the population who are old
(prospective definition)

d (t, x) The age distribution of life table adult
deaths at time t, Eq. (3)

A0 mortality model’s ‘‘pivotal age’’ used to
mark the amount of mortality shift

A (t) Mortality model’s parameter used to
describe the amount of shift (A (t) − A0) at
the pivotal age. A (t0) = A0 by definition.

k (t) Mortality model’s parameter used to
describe the amount of compression or
expansion of the distribution of ages at
death

A0
∗

= A0 +
A(t)−A0
k(t)−1 Age at which the mortality model

produces no shift
∆ (t, x) Mortality shift at age x and time period t,

Eq. (4)
δ (t) = A (t) − A (t − 1) The annual mortality shift
e (t, x) Remaining life expectancy at age x and

time t
µ (t, x) The death rate (the force of mortality) at

age x and time t
l (t, x) The life table survival to age x in the

period life table for the year t
σ (t, x) The standard deviation of ages at death

above age x, Eq. (27)

Base year correspondence
between the conventional and
prospective indicators:

R (t0) = R0

POAP (t0) = OAP (t0)

PWAP (t0) = WAP (t0)

POADR (t0) = OADR (t0)

PPO (t0) = PO (t0)

(compression/expansion). To this end, we use the shift-
compression/expansion model of the age distribution of adult
deaths (Ediev, 2013a). Here the age distribution of adult deaths
is expressed in relation to a baseline age distribution. The age
distribution of adult deaths can be expressed as:

d (t, x) ∝ d
(
t0, A0 −

A (t) − x
k (t)

)
, (3)

where x is age, t is time, d (t, x) is the age distribution of life table
adult deaths at time t , t0 is the base year against which we study
changes in the dependency ratios. The relationship between the

age distribution of adult deaths in year t and year t0 depends on
two parameters A (t) and k (t). A (t) − A0 is the amount of age
shift of the distribution at the arbitrarily chosen pivotal age A0 =

A (t0) in the original distribution of life table deaths. Hereinafter,
subscript ‘0’ refers to the base year t0. The parameter k (t) describes
the amount of compression or expansion of the distribution and
k0 = 1 by definition. When A (t) − A0 > 0, the age distribution of
deaths in year t is shifted rightwards relative to the distribution in
year t0. In other words, it is shifted towards longer lifespans.When
k (t) = 1, the mortality shift occurs without a change in the shape
of the distribution of ages at death. When k (t) > 1, mortality
expands and deaths stretch overmore years of life.When k (t) < 1,
the distribution of age at death is compressed.

In Fig. 3, we present four schematic scenarios for shift and
compression or expansion with the pivotal age A0 = 65. In panel
(a), the original schedule is shifted rightwards by 10 years without
compression or expansion. In panel (b), compression occurs with-
out shift. The transformed schedule is also scaled upwards so as
to sum up to the same total number of deaths as in the original
schedule. In panel (c), the distribution expands without a shift. In
panel (d), we present the more realistic scenario of shift and com-
pression. Typically, periodmortality declinemanifests itself in pos-
itive shifts combined with compression (Fries, 1980; Wilmoth and
Horiuchi, 1999; Kannisto, 2000; Canudas-Romo, 2008; Thatcher
et al., 2010), although cohort mortality decline may also manifest
itself without compression or even with expansion (Ediev, 2011,
2013b).

Before proceeding to the implications of the mortality model,
it may be useful to develop a better intuition for how the model
works. The choice of the pivotal age does not affect the fit of the
model to empirical data and, in that sense, is arbitrary. For any
pivotal age, it is always possible to set themodel parameters so that
the model produces exactly the same distribution of deaths. This
choicemakes a difference, however, for thedefinition and interpre-
tation of the shift parameter. Unlike the compression/expansion
parameter k (t) that has no link to any particular age, themortality
shift may only be defined with respect to a given age. Indeed,
if mortality would exhibit a universal shift, equal for all ages,
there could have been no compression or expansion of the mor-
tality distribution. All parts of the curve would be shifting without
changing the distance between them. Such a pure shift, however, is
a rare case. A more plausible scenario involves age-specific shifts.
In our model, the variety of age-specific shifts, say, ∆ (t, x) at
some age x and time t and ∆ (t, y) at another age y, are linked
to each other through the compression/expansion parameter k (t):
[y + ∆ (t, y)] − [x + ∆ (t, x)] = k (t) (y − x) and, therefore,

∆ (t, y) = ∆ (t, x) + [k (t) − 1] (y − x) . (4)

This makes it possible to describe the whole set of age-specific
shifts of the death distribution curve by the shift at one (arbitrarily
chosen) age A0 and by the compression/expansion coefficient k (t).

The choice of the pivotal age is arbitrary and has no con-
sequences for the kinds of changes the model describes. If one
wishes to opt for a different pivotal age, it is only necessary to
recalculate the amount of shift at new pivotal age according to
(4). When making statements about the shift, however, one must
always be clear about the age to which the shift applies. For ease
of interpretation, we set A0 = R0 = 65 in all numerical and
empirical illustrations. Indeed, the model simplifies the analysis of
real-life mortality change as it reduces the change to two param-
eters by assuming a universal compression/expansion of the age
distribution of deaths. A limitation of this simplification becomes
evident when one notices that the model produces no shift at the
age A0

∗
= A0 +

A(t)−A0
k(t)−1 . At ages below and above the age A0

∗,
the distribution of deaths is shifted in different directions. Adult
mortality, typically, changes in the same direction across all ages.
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Fig. 3. Illustrative scenarios of mortality model (3): age at death distributions (dx). Notes: The vertical broken line indicates the pivotal age A0 = 65. (a) The original
distribution of life table deaths is shifted by 10 years. (b) The original distribution of life table deaths is compressed by 25%. (c) The original distribution of life table deaths
is expanded by 25%. (d) The original distribution of life table deaths is shifted by 10 years and compressed by 25%.

That means that the model assumption of no shift at age A0
∗ might

be not realistic. However, for a typicalmortality change, the ageA0
∗

is beyond the range where most of the mortality change occurs.
In our data, the mean annual shift was about 0.2 years at age
65 and the mean annual compression, k (t) − 1, was 0.003. With
these parameters, themodelwould produce non-positive shifts, on
average, only at ages above A0

∗
= 65 +

0.2
0.003 ≈ 132 years. It may

also be noticed that, when we conducted tests of fit, not shown
here, we found that the model performs marginally better than
the Gompertz model (Gompertz, 1825). The biggest advantage of
the model for our study, however, comes from the convenience
and accuracy it offers in deriving formal relations for indicators of
population aging.

While ourmortalitymodel describes only adult deaths, real-life
mortality also includes child (most importantly infant) deaths. The
latter may not be subject to the shifting process and, therefore,
may not be described by our model. Changes in mortality at ages
younger than W , however, modify the stationary population at
working and old age in a similar proportion and, therefore, do not
alter the dependency ratios. Neither do they alter the remaining
life expectancies of working- or old-age adults and, as a conse-
quence, they do not alter the old-age threshold R (t). Therefore,
we facilitate our formal derivations,without limiting the generality
of our results, by assuming that the density function of infant and
child deaths not covered by model (3) is time-constant before age
W . A particular consequence of this assumption is time-invariance
of the integral

∫
∞

0 d (t, x) dx of the density function of the adult
deaths (3). Furthermore, unless otherwise indicated, the life table
functions discussed belowwill be assumed to apply to theworking
and old age populations, not to the ages below W where our
mortality model is not fully functional.

3. The analytic expression for the old age threshold R (t)

Theold age threshold,R (t), adoptedhere (Sanderson andScher-
bov, 2005, 2013) is determined based on a fixed remaining life

expectancy. Given our consistency constraint R (t0) = R0, which
assures the equality of the conventional and prospective indicators
of aging in year 0, the old age threshold R (t) must follow the
identity:

e (t, R (t)) ≡ e (t0, R0) , (5)

where e (t, x) is life expectancy at age x in year t . To explore
solutions of this identity, we use the following implication of the
shift-compression/expansion mortality model (3) (Ediev, 2013a):

e (t, x) = k (t) e
(
t0, A0 −

A (t) − x
k (t)

)
. (6)

Combining this with (5), we obtain the equation for R (t):

e (t, R (t)) = k (t) e
(
t0, A0 −

A (t) − R (t)
k (t)

)
= e (t0, R0) . (7)

The second equality in (7) is satisfied by the solution to

R (t) = A (t) + k (t)
[
e−1

(
t0,

e (t0, R0)

k (t)

)
− A0

]
, (8)

where e−1 (t0, z) is the inverse function of the baseline remaining
life expectancy with respect to age. In the pure mortality shift
scenario, k (t) = 1, Eq. (8) produces the following solution for the
old age threshold:

R (t) = R0 + A (t) − A0. (9)

Under the pure mortality shift scenario, the old age threshold
shifts by exactly the samenumber of years as the age distribution of
deaths. A positive mortality shift implies a time-invariant number
of life-table person years in old-age and an increasing number of
life-table person years in the working ages, defined here as the
ages 20 (the fixed onset of the working age interval) to the old
age threshold, R (t). Hence, that shift would produce a fall in the
POADR. A negative mortality shift would produce effects opposite
to those of the positive shift.

Analytically more challenging is the general case of shift com-
bined with compression or expansion, which is considered next.
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4. The analytic relationship between the OADR and the POADR
under general mortality change

In a life table (stationary) population with unit radix, the OADR
may be written as

OADR (t) =
OAP (t)
WAP (t)

=

∫
∞

R0
l (t, x) dx∫ R0

W l (t, x) dx
, (10)

where OAP (t) =
∫ ω

R0
l (t, x) dx is the old-age life table population

and WAP (t) =
∫ R0
W l (t, x) dx is the working-age life table popula-

tion.
The life table POADR is

POADR (t) =
POAP (t)
PWAP (t)

=

∫
∞

R(t) l (t, x) dx∫ R(t)
W l (t, x) dx

, (11)

where POAP (t) =
∫

∞

R(t) l (t, x) dx is the prospective old-age life
table population and PWAP (t) =

∫ R(t)
W l (t, x) dx is theworking-age

life table population (calculated using the prospective definition of
who is old).

The two sets of aging indicators are identical in the base year t0,
so that R (t0) = R0, POAP (t0) = OAP (t0), PWAP (t0) = WAP (t0),
and POADR (t0) = OADR (t0).

Under model (3), assuming a fixed total count of adult life-table
deaths (

∫
∞

0 d (t, x) dx ≡ const) subject to the model, d (t, x) =∫
∞

0 d(t0,y)dy∫
∞

0 d
(
t0,A0−

A(t)−y
k(t)

)
dy
d
(
t0, A0 −

A(t)−x
k(t)

)
. Assuming, additionally, that

the support of the age distribution of adult deaths does not include
age 0 at all times:

l (t, x) =

∫
∞

x
d (t, y) dy =

∫
∞

0 d (t0, y) dy∫
∞

0 d
(
t0, A0 −

A(t)−y
k(t)

)
dy

×

∫
∞

x
d
(
t0, A0 −

A (t) − y
k (t)

)
dy =∫

∞

0 d (t0, x) dy

k (t)
∫

∞

0 d (t0, z) dz
k (t)

∫
∞

A0−
A(t)−x
k(t)

d (t0, z) dz =

∫
∞

A0−
A(t)−x
k(t)

d (t0, z) dz = l
(
t0, A0 −

A (t) − x
k (t)

)
. (12)

Therefore,

OAP (t) =

∫
∞

R0

l (t, x) dx =

∫
∞

R0

l
(
t0, A0 −

A (t) − x
k (t)

)
dx

= k (t)
∫

∞

A0−
A(t)−R0

k(t)

l (t0, z) dz ≈

k (t)OAP (t0) − k (t) l (t0, R0)

[
A0 −

A (t) − R0

k (t)
− R0

]
≈

OAP (t0)
{
1 + (A (t) − A0)

l (t0, R0)

OAP (t0)
− [1 − k (t)]

×

[
1 +

l (t0, R0)

OAP (t0)
(R0 − A0)

]}
. (13)

WAP (t) =

∫ R0

W
l (t, x) dx =

∫ R0

W
l
(
t0, A0 −

A (t) − x
k (t)

)
dx

= k (t)
∫ A0−

A(t)−R0
k(t)

A0−
A(t)−W

k(t)

l (t0, z) dz ≈

k (t)WAP (t0) + [A (t) − A0] [l (t0,W ) − l (t0, R0)]−

[1 − k (t)] [l (t0, R0) (R − A0) − l (t0,W ) (A0 − W )] =

WAP (t0)
{
1 + [A (t) − A0]

l (t0,W ) − l (t0, R0)

WAP (t0)
− [1 − k (t)]

×

[
1 +

l (t0, R0) (R − A0) − l (t0,W ) (A0 − W )

WAP (t0)

]}
. (14)

Combining this with (10) and (13):

OADR (t) ≈ OADR (t0) ×

1 + [A (t) − A0]
l(t0,R0)
OAP(t0)

− [1 − k (t)]
[
1 +

l(t0,R0)
OAP(t0)

(R0 − A0)
]

1 + [A (t) − A0]
l(t0,W)−l(t0,R0)

WAP(t0)
− [1 − k (t)]

[
1 +

l(t0,R0)(R−A0)−l(t0,W)(A0−W)
WAP(t0)

] ≈

OADR (t0)
{
1 + [A (t) − A0]

[
l (t0, R0)
OAP (t0)

−
l (t0,W ) − l (t0, R0)

WAP (t0)

]
−

[1 − k (t)]
[
l (t0, R0) (R0 − A0)

OAP (t0)

+
l (t0, R0) (R0 − A0) + l (t0,W ) (A0 − W )

WAP (t0)

]}
. (15)

The effect of the mortality shift in (15) will be positive for
human mortality change, because

l (t0, R0)

OAP (t0)
−

l (t0,W ) − l (t0, R0)

WAP (t0)
=

1
e (t0, R0)

−
l (t0,W ) − l (t0, R0)

l (t0,W ) e (t0,W ) − l (t0, R0) e (t0, R0)
=

1
e(t0,R0)

⎡⎣1 −
l(t0,W )−l(t0,R0)

e(t0,W)
e(t0,R0)

l(t0,W )−l(t0,R0)

⎤⎦ > 0 assuming e(t0,W )

e(t0,R0)
> 1.

The effect of the compression, on the other hand, will be negative
for all pivotal ages A0 ≤ R0. Setting A0 = R0, as we do in our
empirical assessments, and assuming the limiting case of negligible
low mortality in the working ages, it follows from (15) that:

ADR (t) ≈ OADR (t0)
{
1 + [A (t) − A0]

1
OAP (t0)

− [1 − k (t)]
}

.

(16)

To express the POADR analytically, we first need to estimate
the old age thresholdR (t). To this end, we derive the first-order
approximation for the inverse function in Eq. (8) (noticing that
k (t0) = 1 by definition):

e−1
(
t0,

e (t0, R0)

k (t)

)
≈ e−1 (t0, e (t0, R0))

+
1

e′
x (t0, R0)

[
e (t0, R0)

k (t)
− e (t0, R0)

]
=

R0 +
1

e′
x (t0, R0)

[
e (t0, R0)

k (t)
− e (t0, R0)

]
, (17)

where, e′
x (t0, R0) is the partial derivative with respect to age of

e (t, x) at x = R0 and t = t0.
Substituting (17) into (8), we get the desired relation for the old

age threshold:

R (t) ≈ A (t) + k (t)
{
R0 +

1
e′
x (t0, R0)

×

[
e (t0, R0)

k (t)
− e (t0, R0)

]
− A0

}
=

A (t) + k (t) (R0 − A0) + [1 − k (t)]
e (t0, R0)

e′
x (t0, R0)

, (18)
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To simplify the equation for the old age threshold (18), we note
that e′

x (t0, R0) = −1 + µ (t0, R0) e (t0, R0) and rewrite Eq. (18):

R (t) ≈ A (t)+k (t) (R0 − A0)− [1 − k (t)]
e (t0, R0)

1 − µ (t0, R0) e (t0, R0)
.

(19)

The first two terms in (19) describe the shift of the death distribu-
tion at the age corresponding to R0 in the original distribution. The
last term shows the additional correction to the old age threshold
due to mortality compression/expansion. In the case of mortality
expansion, the old age threshold increases by more than the pure
shift. In the case of compression, it increases by less.

Having obtained the change in the old age threshold (19), we
moveon to estimate the corresponding change in the survival func-
tion. This is necessary in order to determine the old-age population.
Substituting x = R (t) in (12),

l (t, R (t)) = l
(
t0, A0 −

A (t) − R (t)
k (t)

)
. (20)

Combining this with (19) and using first-order approximations
leads to

l (t, R (t)) ≈ l
(
t0, R0 −

1
k (t)

[1 − k (t)] e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

)
≈ l (t0, R0) − l′x (t0, R0)

1
k (t)

[1 − k (t)] e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

= l (t0, R0) +
µ (t0, R0) l (t0, R0)

k (t)
[1 − k (t)] e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

≈ l (t0, R0)

{
1 + [1 − k (t)]

µ (t0, R0) e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

}
.

(21)

The life-table survival to the old age threshold is not influenced by
the mortality shift. It is only affected by the mortality compression
or decompression. It increases with compression and decreases
with mortality expansion.

Because the life-table population at old ages is the product of
the number surviving to the old age threshold multiplied by the
remaining life expectancy at that age and because the latter is, by
definition, time constant in the definition of the prospective old
age, a relation similar to (21) applies to the life table prospective
old-age population:

POAP (t) =

∫
∞

R(t)
l (t, x) dx ≈ POAP (t0)

×

{
1 + [1 − k (t)]

µ (t0, R0) e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

}
. (22)

Eq. (22) shows that the prospective old-age population does not
depend on the mortality shift, but does depend on the extent
of compression/expansion. It will increase with mortality com-
pression and decrease with expansion. Another consequence of
(22) is that the POADR will fall in the case of a mortality decline
accompanied by an expansion or pure shift.

Using the equation for the survival function, an alternative
approximation of the denominator in (11) is:

PWAP (t) =

∫ R(t)

W
l
(
t0, A0 −

A (t) − x
k (t)

)
dx

= k (t)
∫ A0−

A(t)−R(t)
k(t)

A0−
A(t)−W

k(t)

l (t0, z) dz ≈

k (t) PWAP (t0) − k (t) l (t0,W )

[
A0 −

A (t) − W
k (t)

− W
]

+ k (t) l (t0, R0)

[
A0 −

A (t) − R (t)
k (t)

− R0

]
. (23)

Substituting R (t) from (18), rearranging and keeping only the first-
order terms:

PWAP (t) ≈ k (t) PWAP (t0) − l (t0,W )

× {k (t) A0 − A (t) + [1 − k (t)]W } −

l (t0, R0) [1 − k (t)]
e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

≈ k (t) PWAP (t0) + l (t0,W ) ×

{A (t) − A0 + [1 − k (t)] [A0 − W ]} − [1 − k (t)]

×
OAP (t0)

1 − µ (t0, R0) e (t0, R0)
. (24)

Finally, combining this with (11) and (22) and noticing the base-
year equalities between the conventional and prospective indica-
tors, we obtain Eq. (25), which is given in Box I.

The effect of a positive shift in (25) is always negative, while
the sign of the effect of compression depends on the pivotal age
A0. When A0 is set equal to R0, as we do here, the effect of the
compression in (25) is typically positive, because the ratio WAP(t0)

l(t0,W )
,

the average duration of life at ages W to R0 for people surviving
to age W , does not differ much from the upper limit R0 − W . For
example, in the case of French women, withW = 20 and R0 = 65,
the expression 1 −

l(t0,W )

WAP(t0)
(R0 − W ) was −0.23 in 1900, −0.07

in 1950 and only −0.02 in 2013. These numbers were small as
compared to the magnitude of the last summand in the expression
for the compression effect in (25) where OADR(t0)+µ(t0,R0)e(t0,R0)

1−µ(t0,R0)e(t0,R0)
was

1.04 in 1900, 0.78 in 1950, and 0.71 in 2013. Hence, the effects
of both shift and compression on the change of the POADRs are
typically opposite in sign to their effects on the OADRs.

One may find it counterintuitive that the compression effect
in (25) depends on the choice of the parameter A0 describing the
mortality shift. Parameter A0 determines the age to which the
mortality shift refers. Shifts of the mortality curve at all other ages
are described by the combination of the shift and the compression
parameters (4). The higher the age A0, the more the compression
effect in (25) is ‘contaminated’ by the effects of shifts at younger
ages. Our numerical assessments, not presented here in detail,
suggest that the compression effect remains positive at allA0 below
age 90. One important implication of this observation is that the
effect of compression with respect to the modal age, often used to
describe the mortality shift, is positive.

Typically, the effect of a shift at age A0 = R0 in (25) dominates
the effect of compression and the net effect ofmortality decrease is
negative. To develop the intuition for this observation, consider the
limit case of a populationwith negligiblemortality at ages between
W and R0. In that population, (25) simplifies to:

POADR (t) ≈ POADR (t0)
{
1 − [A (t) − A0]

1
R0 − W

+ [1 − k (t)]OADR (t0)
}

, (26)

and the effect of a shift will be about −
1

65−20 ≈ −0.02 when the
mortality shift is one year, while the effect of a one percent com-
pressionwill be 0.01·OADR (t0), that is about 0.003 per one percent
of compression assuming a typical OADR (t0) ≈ 0.3. To have an
idea of the relative contributions of a shift and a compression at
age R0 = 65, consider a case when mortality compresses to age
A0

∗
= 100 years. In such a scenario, a one percent compressionwill

result in a shift of 0.01 (100 − 65) = 0.35 years at age 65. Given
the shift and compression effect coefficients in (26), the scenario
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POADR (t) =
POAP (t)
PWAP (t)

≈

OAP (t0)
{
1 + [1 − k (t)] µ(t0,R0)e(t0,R0)

1−µ(t0,R0)e(t0,R0)

}
k (t)WAP (t0) + l (t0,W ) {A (t) − A0 + [1 − k (t)] [A0 − W ]} − [1 − k (t)] OAP(t0)

1−µ(t0,R0)e(t0,R0)

≈

POADR (t0)
[
1 + [1 − k (t)]

µ (t0, R0) e (t0, R0)

1 − µ (t0, R0) e (t0, R0)
+ [1 − k (t)] −

l (t0,W )

WAP (t0)
×

{A (t) − A0 + [1 − k (t)] [A0 − W ]} + [1 − k (t)]
OAP (t0)

WAP (t0) [1 − µ (t0, R0) e (t0, R0)]

]
=

POADR (t0)
{
1 − [A (t) − A0]

l (t0,W )

WAP (t0)
+

[1 − k (t)]
[
1 −

l (t0,W )

PWAP (t0)
(A0 − W ) +

OADR (t0) + µ (t0, R0) e (t0, R0)

1 − µ (t0, R0) e (t0, R0)

]}
. (25)

Box I.

will result in a change in the POADR of −0.02 ·0.35 = −0.007 due
to the shift and a change of 0.003 due to the compression effect.

Empirically, the relative effect of shifts is even stronger be-
cause mortality declines over time even at age 100. The average
annual mortality shift at age 65 in low-mortality HumanMortality
Database countries after 1950 was about 0.2 years and the annual
compression was about 0.3%. The effect of the observed shifts
on the POADR has been stronger than the effect of the observed
compressions by about four times, 0.02 · 0.2/(0.003 · 0.3) ≈ 4.4.
Hence, the POADR, typically, decreases, as mortality declines.

One may naturally be interested in whether our conclusion
about the oppositely signed effects of shifts and compressions
on the two old-age dependency ratios, when the effect of a shift
exceeds the effect of a compression, is more generally applicable
to cases where R0 is higher than 65. We did not study this aspect
in detail, but numerical analysis of (25) and (15) suggests that our
conclusions about the signs of the effects remain valid at all R0’s up
to age 90.

Comparing (16) to (26), we see that the change in the POADR
will, approximately, be −OADR (t0), i.e., currently, about −0.3,
times the change in the conventional OADR for a population with
negligibly low mortality at working ages.

5. Empirical assessment

We examine the accuracy of the first-order approximations
based on empirical data from the HumanMortality Database (Uni-
versity of California (Berkeley) and Max Planck Institute for De-
mographic Research (Rostock), 2018) that covers 31 currently
low-mortality populations and 12 currently higher mortality pop-
ulations.

In our empirical study, we set R0 equal to age 65 for consistency
with the commonly used old age threshold. We also define A0 =

R0 = 65 to simplify the interpretation of the shift parameter. To
estimate the amounts of mortality shift and compression, k (t), we
used Eq. (6) and a similar equation for the standard deviation of
ages at death above age x (Ediev, 2013a):

σ (t, x) = k (t) σ

(
t0, A0 −

A (t) − x
k (t)

)
. (27)

We apply both equations to the pivotal age A (t) to obtain:

σ (t, A (t))
σ (t0, A0)

=
e (t, A (t))
e (t0, A0)

= k (t) (28)

Table 2
Regression results for the shift and compression effects (linear model, no inter-
cept) on the annual changes of OADR (t) and POADR (t): entire Human Mortality
Database, men, women, excluding small-size populations (Iceland, New Zealand-
Maori, and Luxemburg).
Indicator Sex Shift effect Compression effect R2

OADR (t) Women 0.0170 (0.0001) −0.356 (0.002) 0.961
OADR (t) Men 0.0139 (0.0001) −0.294 (0.002) 0.929
POADR (t) Women −0.0061 (0.0001) 0.171 (0.001) 0.862
POADR (t) Men −0.0058 (0.0001) 0.159 (0.002) 0.750

Note: numbers in the parentheses indicate standard errors of regression coeffi-
cients.

We estimate the annual shift δ (t) = A (t) − A (t − 1) by setting
t0 = t − 1 and solving the first equality in (28) numerically and
then estimating the compression coefficient k (t) from the second
equality.

In Fig. 4, we show estimates of annual changes in the shift
and compression parameters, computed separately for men and
women, using data from the Human Mortality Database coun-
tries. In agreement with the previous empirical studies and the-
ories (Fries, 1980; Wilmoth and Horiuchi, 1999; Ediev, 2013a,b),
a positive period mortality shift is, typically, accompanied by the
compression of the age at death distribution. Negative shifts, on
the other hand, usually accompany mortality expansion, which is
also in agreement with theory (Ediev, 2011). Our database covers
a wide range of the shift and compression values, and of their
combinations. The large number of negative shifts in lowmortality
countries seen in the figure is not a surprise, as the annualmortality
changes are rather volatile and may easily go against the main
trend. On average, though, the distributions of age at death were
shifting rightwards with a slight compression. The annual mor-
tality shift in low-mortality Human Mortality Database countries
after 1950 was about 0.2 years and the annual compression was
about 0.3%.

Using the Human Mortality Database data, we ran linear re-
gressions with no intercept using annual changes in the OADR
and POADR as independent variables and taking annual shifts and
compressions as dependent variables. We present the results in
Table 2. There we pooled together results for both the high- and
low-mortality populations, except for observations based on very
small populations like the New Zealand-Maori that were excluded
from the analysis. All effects are highly significant. The p-values are
not shown in the table because they are all negligible. As expected
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Fig. 4. Estimates of annual shifts and compressions of the life table distributions of deaths, entire Human Mortality Database: men, women.

Fig. 5. Increments of life-table Prospective Old-Age Dependency Ratio (POADR) divided by the initial Old-Age Dependency Ratio (OADR) vs. the increments of Old-Age
Dependency Ratio (OADR) in model life tables: men, women, Coale–Demeny and United Nations model life tables’ families.

from our formal inquiry, the effects of shift and compression are
of opposite sign, and the effects change sign when switching from
the conventional to the prospective old-age dependency ratio.
Our empirical estimates of effects, about −0.006 for a one-year
shift and 0.2 for a one-percent compression, on the change in the
POADR are somewhat different from the rough assessments based
on the first-order approximation (26), which were −0.02 and 0.3
respectively. The empirical relation between the changes of the
POADR and the OADR, however, with the POADR change being
approximately−0.38 times the change in the OADR, is close to our
first-order approximation of −0.3 times, as we discussed above.

Our analytical approximations for regimes with low mortality
in the working ages suggest that the POADR change should be
roughly equal to the minus OADR multiplied by the OADR change.
To check validity of this approximation, in Fig. 5 we present the
POADR increments divided by the initial OADR versus OADR in-
crements in model life tables (each model life table compared to
another one with one year longer life expectancy at birth from
the same family of model life tables). With the exception of cases
with low life expectancy at birth (below 60 years) the model life
tables produce patterns consistent with our analytical findings.
The anomalous results at low life expectancies may be due to two



10 D.M. Ediev, W.C. Sanderson and S. Scherbov / Theoretical Population Biology 125 (2019) 1–10

factors. First, in that range our approximations may be too rough.
Second, at low life expectancy the model life tables themselves
could be problematic. UN and Coale–Demeny model life tables
differ most from one another when life expectancy is low, possibly
because in that range they are based more on analytic approxima-
tions and less on observations.

6. Conclusion

The OADR assumes that the old age starts at some fixed age
regardless of time or place. Nevertheless, in a world where life
expectancy is increasing, where people are often healthier at given
ages than they were in the past, where age-specific cognitive func-
tioning is improving, where older people are now more educated
than they were in the past, and where people in OECD countries
will generally be facing higher normal pension ages, another mea-
sure of aging, consistent with these changes, seems appropriate.
The POADR is such a measure.

Population aging, viewed from the perspective of the POADR
looks very different from the picture provided by the OADR.
Sanderson and Scherbov (2015a) showed that faster increases in
life expectancy lead to slower rates of population aging when
measured by the percentage increase in the POADR, in contrast
to the faster rates of population aging when measured by the
percentage increase in the OADR.

We show why those differences were observed and, indeed,
that they were predictable given the sorts of shifts and compres-
sions that have been observed. Here, we have shown that, in a
wide variety of life table populations, annual changes in OADRs
and POADRs move in opposite directions. Ediev’s 2013a shift-
compression model provides an analytic two-parameter specifica-
tion of the age distribution of adult deaths. We used that model
to provide analytic expressions for both the OADR and the POADR
in terms of shift and compression parameters. The theoretical
expressions that we obtained predicted that the observed negative
relationship between annual changes in OADRs and POADRs is
exactly what we should expect to see. We estimated the shift
and compression parameters using data from the countries in the
Human Morality Database. The data showed that the change in
the POADR was around −0.38 times the change in the OADR. Our
theoretical approximation predicted that it would be around −0.3
times the change in the OADR.

Decreasing period mortality in developed countries has been
typically accompanied by a gradually diminishing mortality com-
pression. Here, we show that these sort of changes will result
in increasing numbers of people considered old even using the
prospective definition. That number will stop increasing, however,
if mortality compression stalls (Bongaarts, 2005; Canudas-Romo,
2008) and gives way to a puremortality shift. In either scenario, be
it mortality compression or shift, our results show that, in life table
populations, the number of people below the old age threshold
marking the onset of the old age will grow faster than the number
of people old, so that POADR will fall as lifespans increase. In non-
stationary populations, there are factors, other thanmortality, that
influence age structure. An earlier study (Sanderson and Scherbov,
2015a,b) of OADR and POADR changes in observed populations
suggests, however, that the effects of fertility andmigration on the

changes in those aging indicators might be secondary compared to
the effects of mortality that we have elucidated here.
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