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Machine vision technologies have been widely used for automating the product quality control, but the
defect inspection for codes on complex backgrounds is still a challenging task in the plastic container
industry. In this work, an efficient and accurate inspection solution based on deep learning was proposed
aiming at the detection of codes on complex backgrounds for the plastic container such as beverage pack-
ages. Firstly, image processing algorithms such as the region translation method, morphological process-
ing, and image matching technology based on SIFT (Scale Invariant Feature Transform) features were
implemented to generate synthetic defective samples, which moderated the class-imbalance problem.
Data augmentation strategies were used to increase the amount of training data. Secondly, the
ShuffleNet V2 framework was adapted to inspect inkjet codes on complex backgrounds. Additionally,
the transfer learning was used to transfer the trained model to other inspection tasks for different kinds
of packages. Finally, the proposed approach was built onto an in-line code inspection apparatus for the
plastic container industry, and an accuracy of 0.9988 was achieved. The in-line testing results of false
detection and omission detection rates demonstrated that the proposed solution can fully meet the pro-
duction requirements. To the best of our knowledge, this report describes the first time that deep learning
has been applied to the industrial defect inspection for the plastic container industry.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The plastic packaging technologies have been experiencing
explosive growth in the beverage industry. In order to ensure the
product traceability and quality control, batch number and data
codes are marked on the curved plastic surfaces early in the pro-
duction process. The inkjet printing process, as the most commonly
used type of printer, has been widely adopted to spray a digital
image of the expiration date and manufacturing date by propelling
droplets of ink onto the container. The quality of characters is
affected by the performance of code printer and other external
factors, and Legible codes on the containers provide consumers
with important information and confidence for the inside product.
If containers or packages with defective codes such as missing,
incorrect, or unreadable codes are not identified in time, the
product quality and corporate reputation will be compromised.
Therefore, the code inspection that verifies the presence, position,
and formation of printed codes is a key checkpoint in the plastic
container industry to ensure products meet specifications prior
to release and shipment to customers.

With the development of machine learning and image process-
ing technologies [1], the Optical Character Recognition (OCR) tech-
nology has been widely used by companies in the field of
automatic code inspection on product containers, which greatly
improves the accuracy and efficiency of code detection, and
reduces their production costs as well as increases their profits.

The general code detection is a composite process that
comprises several phases such as the preprocessing, segmentation,
feature extraction, and classification. The principal purpose is to
compare the recognized characters with the correct codes
and judge whether they are qualified. The widely used pixel
binarization method for the character segmentation is the
threshold-based segmentation method, and characters are
segmented by setting a fixed or dynamic threshold. These methods
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always require high-quality images and striking contrast between
characters and the background. The result of character segmenta-
tion has a significant influence on character recognition. An appro-
priate segmentation algorithm is critical to successfully judge the
code quality.

Most of the existing code inspection solutions used in the plas-
tic container industry are based on traditional machine vision
methods. Characters of the code are segmented by image segmen-
tation or image matching technologies, and then the code quality is
judged according to the hand-craft features. Generally, these meth-
ods are capable of handling high contrast images with simple back-
grounds, for example, black codes with a white background on the
bottom of a can.

However, existing state-of-the-art inspection methods have dif-
ficulty solving code inspection problems such as detection tasks for
codes of more sophisticated and diverse forms with complex back-
grounds. Additionally, with different packaging and printing tech-
nologies, the background of codes with various fronts on the
packaging is more and more complicated, which makes the inspec-
tion more challenging. In practical applications, the captured
image quality may be inevitably affected by the illumination con-
dition, movement of the conveyor belt, product temperature, etc.
Therefore, traditional machine vision methods are difficult to seg-
ment characters and judge the code quality.

Convolutional Neural Networks (CNNs) have been applied to
visual tasks such as text recognition, and produced encouraging
results [3]. He et al. [4] designed a novel text-attentional CNN to
extract deep text features and developed a text detection system
by combining the improved MSER method, which achieves a high
accuracy of 0.93 with 0.73 recall on the ICDAR 2013 dataset. Ma
et al. [5] applied rotated proposals to improve the general object
detection algorithm in order to detect arbitrary–oriented scene
texts. Not only can the TextBoxes++ algorithm proposed in Ref.
[6] detect multi-directional texts efficiently and accurately, but it
also form a high-performance text recognition framework by com-
bining with other text recognition modules. Universal text detec-
tion and recognition methods are widely applied to automatic
number plate recognition tasks [7]. Xie et al. [7] used the angle pre-
diction and YOLO [9] algorithm to realize the detection of license
plates in any directions. Li et al. [8] designed an end-to-end
Fig. 1. Examples of positive (the first row) and n
method based on the Faster R-CNN [10] that was combined with
the RNN (Recurrent Neural Network) and CTC (Connectionist tem-
poral classification) methods for recognition of car license plates.
Zhu et al. [11] adopted the FCN [12] to segment candidate regions,
and then used the TextBoxes detector [13] to detect text-based
traffic signals. During the last few years, CNNs have become more
effective in obtaining excellent results for defect detection applica-
tions. Chen et al. [14] cascaded three CNNs to detect defects of fas-
teners on the catenary support device, in which the modified SSD
[15] and YOLO were used to locate joints and fasteners respec-
tively, and a lightweight CNN was built to recognize defects. Qiu
et al. [16] proposed a segmentation algorithm based on the FCN
[12] to achieve the pixel-wise defect detection. In addition, they
adopted several methods to improve the segmentation efficiency.

The image dataset used in this work was collected by a practical
production line, in which inkjet codes were sprayed on bottlenecks
with colorful backgrounds, as shown in Fig. 1. To fulfill the require-
ments of the practical plastic container industry, the in-line inspec-
tion solution for code inspection should be highly efficient due to
the hardware limitations of the equipment, which is controlled
by an industrial computer without Graphics Processing Unit
(GPU). Therefore, despite the effectivity of both traditional
machine vision and CNN-based text detection and recognition
methods, the problem associated with in-line inspection for codes
on complex backgrounds for the plastic container industry has not
yet been satisfactorily resolved. Inspired by the efficient CNNs for
mobile devices, we proposed a highly efficient ShuffleNetV2-
based approach that can perform defect detection algorithm for
inkjet codes with complex backgrounds on individual packages.

The main novelty and contribution of this work come from the
following four aspects:

1) A ShuffleNetV2-based approach that can perform in-line
defect detection for inkjet codes with complex backgrounds
on individual packages for the practical plastic container
industry is proposed.

2) This work aims to implement a real-time defect detection
algorithm for codes on complex backgrounds for the plastic
container industry. To the best of our knowledge, this report
for the first time describes that the deep learning has been
egative (the second row) beverage packages.



Fig. 3. The light illumination system.
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applied to the code inspection application for practical
industrial instrumentation, which provides great inspiration
and guidance to the development of real CNN-based inspec-
tion solutions for the plastic container industry.

3) Different from existing CNN based inspection approaches,
the proposed algorithm is designed for practical inspection
instrumentations. The experimental results prove that the
proposed solution is more accurate and significantly effi-
cient compared to previous approaches.

4) The proposed in-line solution has been successfully imple-
mented on the real inspection station in a beverage packag-
ing line. The real-time inspection has been successfully
carried out, and achieves outstanding inspection accuracy.
The successful application of the proposed solution will be
an important reference for the industrialization of deep
learning and the code inspection applications for modern
industrial firms.

The remainder of this paper is organized as follows. Section 2
briefly introduces the image acquisition system. Section 3
describes the proposed algorithm, including dataset processing
and detection algorithm. Sections 4 and 5 deal with the details of
our experiments and the obtained results. Section 6 draws some
conclusions and outlines further improvements.
2. System overview

The code inspection station was placed after the capper
machine and inkjet printer in a beverage packaging line. As shown
in Fig. 2, the system consists of an image acquisition system,
embedded industrial computer, control system, power supply sys-
tem, and human-machine interface. The embedded industrial com-
puter is the control unit for the inspection station. The system was
equipped with a Gigabit Ethernet vision CCD (Baumer VLG-02C)
with an image resolution of 656 � 490 pixels. As the containers
are conveyed through the inspection station, a LED light and the
CCD will be triggered. At the same time, the embedded industrial
computer will launch the image capture and carried out the real-
time inspection.

The schematic diagram of the illumination and optical system is
shown in Fig. 3. Two LED light sources are placed on the front and
back of the bottle with a certain downward angle. The camera and
light sources are set to the trigger mode, which can reduce the
entire power consumption of the system. The photoelectric sensor
Fig. 2. The code inspection station inst
is triggered and sends a signal to the camera and LED light con-
troller when the conveyor transports the product to the particular
detection area.

We collected data in a beverage packaging line from Dec. 1,
2018 to Jan. 31, 2019. The inkjet code is composed of the manufac-
turing date (year, month, day, hour, and minute) and the batch
number of the product. Due to the high speed of the packaging line,
the image acquisition system captures an image file every 10 s to
collect images with different codes as many as possible.
3. Methodology

3.1. Architecture of our solution

In this work, we proposed a novel deep learning-based in-line
inspection solution for codes on complex backgrounds. Fig. 4 illus-
trates the architecture of the solution. In the training phase, we
used Python and Tensorflow [38,39] for programming. CNN was
used to extract and classify deep features of code images. A variety
of methods were used to deal with the class-imbalance problem.
After the training is completed, we freeze the model and import
it into the detection system that was written using C-Sharp. When
alled in a beverage packaging line.



Fig. 4. Architecture of proposed solution.
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the industrial camera captures an image, the system calls the fro-
zen model to classify the image and perform the defect inspection.

3.2. Convolutional neural networks

In the past decades, deep convolutional nets have brought
about breakthroughs in the field of image processing, whereas
the related computer vision competitions and larger datasets have
promoted, such as ImageNet dataset [17].

Since the birth of AlexNet [18] in 2012, various deep convolu-
tional neural networks have emerged in an endless stream, con-
stantly refreshing the accuracy of various task on the ImageNet
dataset. From AlexNet to GoogLeNet [19], VGGNet [20], ResNet
[21], DenseNet [22], and SE-Net [23], the image classification accu-
racy has been getting higher and higher. In addition, the Squeeze-
Net [24], MobileNet [25], and ShuffleNet [26], which have shone
light on compressing models and increasing speed, have also been
proposed. The ShuffleNet V2 is superior to many advanced net-
works in accuracy and speed metrics with the same computation
condition, especially when it was applied to devices with limited
computing resources. Deep learning based methods must have suf-
ficient accuracy and speed before being applied to the industrial
Fig. 5. Architecture of the S

Fig. 6. Separabl
field. These advantages make the ShuffleNet suitable for industrial
applications. In this paper, the ShuffleNet V2 network [27] was
integrated into our inspection system to detect inkjet codes on
complex backgrounds. The ShuffleNet V2 network is proposed to
improve model acceleration and compression while keeping high
accuracy. Fig. 5 shows the architecture of the ShuffleNet V2
network.

The ShuffleNet V2 network adopts a modular design, which
consists of three repeated building shuffle blocks, as shown in
Fig. 5. Each block is composed of a 2 � down sampling unit and
several basic units that are residual structures [21]. The use of
residual structures facilitates the efficient flow of gradients within
the network. The network finally uses the global average pooling
operation to reduce the dimension, avoiding a large number of
parameters brought directly by the full connectional layer.

Lots of separable Depthwise Convolutions (DWConvs) were
used to replace traditional 3 � 3 convolutions in the ShuffleNet
V2 network, which helps to reduce a large amount of parameters
and accelerates the forward propagation. The DWConv is com-
posed of the depthwise convolution and 1 � 1 convolution. Each
filter kernel of depthwise convolution deal with one channel of
the input feature map, which is different from traditional convolu-
huffleNet V2 network.

e DWConv.
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tions, whose filter kernel deal with all channels of the input feature
map. The number of filter kernels of DWConvs must be equal to the
number of input and output channels. The 1 � 1 convolution, also
called pointwise convolution, is used to fuse information of all
channels and change the number of feature channels. Compared
to traditional convolutions, separable DWConvs have fewer param-
eters and improved efficiency. Fig. 6 illustrates the separable
DWConv.

Each convolutional layer is followed by a Batch Normalization
(BN) layer, which is used to normalize the output of the current
batch [28]. This can accelerate the training process and avoid the
overfitting problem. It can be determined as:

y ¼ c
x� lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ e

p þ b ð1Þ

where x and y represent the current batch and its normalization
output, respectively. l and r2 represent the mean and variance of
the current batch x, respectively. c and b are the trainable parame-
ters. e is a small constant, which is used to avoid zero-division.

The ShuffleNet V2 network uses ReLU (Rectified Linear Unit) as
the activation function. The ReLU [29] is a widely used activation
function in deep learning, which can enable the network to quickly
converge. The ReLU does not saturate and can deal with the gradi-
ent disappearance problem. It can be expressed by:

f xð Þ ¼ max 0; xð Þ ð2Þ
Fig. 7. Examples of generated defective images through the region translation
method.
3.3. Data creation

3.3.1. Data augmentation
The data augmentation is an effective way to virtually enlarge

the dataset size, which can reduce the overfitting and increase
the generalization ability of the network. In this work, data adjust-
ments are made to the original images in the training and valida-
tion datasets before being used in training. Specifically,
adjustments that include scaling, rotating, cropping, and changing
contrast is applied to the original images, respectively. For each
negative original sample, we randomly employ data augmentation
several times and creates pairs to synthesize new samples. The fol-
lowing steps are performed for each original image:

(1) Randomly crop a patch from the original image with differ-
ent scales and aspect ratios from a fixed position. Every
cropping adjustment has an equal probability.

(2) Rotate the image by a small angle with a probability of 0.2.
(3) Flip the image horizontally, with a probability of 0.2.
(4) Change the contrast of the image with a random factor that

is sampled from [0.7, 1.5], with a probability of 0.25.
(5) Change the brightness of the image with a random factor

that is sampled from [0.7, 1.4], with a probability of 0.25.
(6) Resize the image to a scale of 224 � 224.

The number of negative original samples is much less than that
of positive samples. In order to balance the positive and negative
samples, we used some image processing technologies that are
described in the following sections to automatically synthesize
some new negative samples based on the positive samples.

3.3.2. Region translation method
Due to the vibration of the printer and conveyor in the packag-

ing line, part of the printed codes may burn into the background as
a ghosting image and leave double interloped codes behind. There-
fore, the region translation method was proposed to synthesize
this kind of defects since the code color is darker than the back-
ground. The region translation method can be defined as the
following:
Pg x; yð Þ ¼ min Po x; yð Þ; Ps x; yð Þð Þ ð3Þ

Ps x; yð Þ ¼ Po xþ dx; yþ dyð Þ ð4Þ
where Pg(x, y) is the synthesized image, Po(x, y) is the original image,
and Ps(x, y) is the image translation transform. We obtain the image
translation transform by translating the original image along the x
and y-axis directions with dx and dy, respectively. The region trans-
lation method compares corresponding pixel values from two
images one by one, and selects the minimum value as the new pixel
value for the synthesized image.

Instead of using the entire image, we select a region of interest
to process, which contains the complete code and is as small as
possible to reduce the impact of the region translation method
on the entire image. We separately transform code images along
the x and y-axis to get two kinds of defected images. Examples of
synthesized images are shown in Fig. 7.

3.3.3. Morphological processing
Morphological method [37] is one of the most widely used tech-

niques in image processing. It is mainly used to extract image com-
ponents that are meaningful for expressing and depicting the
shape of the region in the image, so that the subsequent recogni-
tion work can grasp the most essential shape features of the target
object, such as the boundary and connected areas. In addition,
techniques such as pixel refinement and trimming burrs are also
often used in image pre-processing and post-processing, which
are powerful complements to image enhancement technologies.
In this paper, three kinds of inkjet code defects, code missing, code
blur, and code adhesion are generated by dilation and opening
operations of the morphological method.

Erosion and dilation are two most basic operations in morphol-
ogy. Suppose A and B are collections in Z2, where B is the structur-
ing element, and A is the object being manipulated (image). The
erosion of B to A is defined as the following:

AHB ¼ zf j Bð Þz #Ag ð5Þ



Fig. 8. Examples of generated defective images by morphological processing, where image (a) is original image, image (b), (c), and (d) are defective images with code missing,
code blur, and code adhesion, respectively.

Fig. 9. The flow chart of data processing based on the SIFT feature matching.
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This equation indicates that the erosion of B to A is a collection
of all points in Z2, which are contained in A when B is translated by
Z. In image processing, the erosion operation can shrink or refine
the object. As the structuring element of erosion gradually
increases, objects that are smaller than the structuring element
disappear one after another. Therefore, it can be used for the filter-
ing process. By selecting the appropriate size and shape of struc-
turing elements, we can filter out some noise points that do not
fully contain structural elements. The dilation of B to A is defined
as the follows:

A� B ¼ zf j B
^� �

z
\ A–£g ð6Þ

This formula indicates that the dilation of B to A is to translate B
within A, and all the reference points of B and A have at least one
common point during the translation. In contrast to erosion oper-
ations, dilation can increase or coarsen objects in the image, caus-
ing the boundary of the object to expand, and the specific dilation
results are related to the image itself and the shape of the struc-
tural elements. The dilation operation is often used to bridge the
same object that was originally broken in the image. The opening
operation of B to A is defined as B eroding A, followed by B dilating
A. The opening operation generally smooth the contour of the
object, breaks narrow necks and eliminates fine protrusions.

The code detected in this work is black dot matrix characters
and the background is relatively shallow. So the dilating operation
is used to process the image. We use rectangular structuring ele-
ments for dilation. When the size of the structuring element gets
large, the code is completely eliminated, and the defective images
with missing codes are generated. When the size of the structural
elements is small, the color of the coding becomes light, and the
defects of the coding blur are generated. By using a rectangular
structure element to process the opening operation, a defective
image with the code adhesion can be obtained. Resulting defective
images are shown in Fig. 8.
3.3.4. Image matching with SIFT
Due to the vibration of the printer and the rotation of the bottle,

the printed codes will shift. When use the morphological method
to process the captured image, we need to select a larger region
of interest. Therefore, it is not easy to finely process the images.
For example, the defect with partly missing code cannot be gener-
ated if a large region of interest is used for processing. If a small
region of interest is used, the code with a large position shift will
not be processed.

According to the production requirements, the ratio of the min-
imum missing length that should be detected in the vertical direc-
tion is 1/6. To synthesize these defective images, we need to finely
process the images.
To generate a defect at a specific location, the location must be
accurately calculated. We used the image matching technique
based on the SIFT (Scale-invariant Feature Transform) [30] features
to calculate the location, and then use the above morphological
methods to process the region of interest. The SIFT is a feature
descriptor used in the field of image processing. SIFT features are
local features of the image, which maintain invariance to rotation,
scale, and brightness variation, and maintain a certain degree of
stability against changing the viewing angle, affine transformation,
and noise.

Algorithms in this work are written in Python and OpenCV [37].
First, the template image and the image to be matched were read,
respectively. Then the template image and the image to be
matched were processed separately to obtain respective SIFT fea-
ture descriptions. The FLANN-based k-nearest neighbor algorithm
was used to perform feature matching to obtain matched feature



Fig. 10. Results of data processing based on the SIFT feature matching. Images (a) and (b) are template image and matching image, respectively. The lines in the image (a) and
(b) indicates matched feature points. The white and black rectangle in the image (a) represent the effective region and the region of interest, respectively. Image (c) is the
affine transformed image, and image (d) is the generated defective image.
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points. The matched feature points were filtered according to its
coordinates, and those in the effective region were selected. If
the quantity of the feature points in the effective region is insuffi-
cient, the image will be discarded and the next image will be pro-
cessed. The affine transformation matrix was calculated according
to the matched feature points in the effective region, and the
matched image was affine transformed to observe whether the
transformed image meets the requirements. If the matched image
does not meet the requirements, it will be discarded. The region of
interest is selected on the template image, and its coordinates were
transformed using the affine transformation matrix to obtain the
region of interest in the matched image. Finally, the region of inter-
est of the matched image was subjected to morphological process-
ing to obtain a corresponding defective image. The processing flow
chart is shown in Fig. 9.

Image processing results based on the SIFT feature matching are
shown in Fig. 10.
3.4. Industrial deployment

In addition to conducting experiments on existing datasets, we
also integrated the inspection algorithms proposed in this work
into the in-line detection system. The architecture of the in-line
inspection system is shown in Fig. 11. The industrial computer
transports the image captured by the industrial camera to the
inspection algorithm. Then the image and result are showed on
the screen. The touching screen is also used to deal with operator’s
inputs. The PLC system is used to control the production removing
device and inspect the production line. In order to adapt to the
Fig. 11. The architecture of the in-line inspection system.
device drivers of the industrial camera provided by the manufac-
turer, the inspection software was programmed by C-Sharp. We
implemented the deep learning-based algorithm proposed in this
work with the TensorFlowSharp [40].

Fig. 12 illustrates the detection process. The resolution of
images, captured by the industrial camera, is 656 � 490, while
the scale of the input of detection algorithm is 224 � 224. There-
fore, a region from the original image is cropped with a scale of
336 � 336, which is resized to 224 � 224 in the following steps.
In the detection phase, we only implement the forward propaga-
tion of deep learning. The ShuffleNet V2 network is used to extract
features and classification. The bottle will be removed from the
production line if its image is classified as a defective image.

4. Experiments

4.1. Implementation details

When we used the image matching method based on SIFT fea-
tures, the ratio of the matched image that satisfied the requirement
was actually only about 1/6 of all the positive images, since the fea-
tures that can be used to matching exist only in a small region. In
addition, even if the feature matching is successful, the calculated
affine transformation matrix is not necessarily perfect. After pro-
cessing the data with the proposed methods, we got a sufficiently
large dataset, as summarized in Table 1.

It is notable that the date of code in training and validation sets
are different. The reason why the data set was split in this way is
that we try to ensure no intersection between the training and val-
idation sets. This is also consistent with the actual situation since
the date of code on beverage packages produced every day is dif-
ferent. Such division method makes our validation results more
authentic and credible.

The prepared dataset was converted to TFRecord Format of Ten-
sorflow. We developed the algorithm on ubuntu16.04 with a single
GTX 1080TI graphics card.

The stochastic gradient descent (SGD) [31] algorithm was used
to optimize the network parameters. The configuration of the
training parameters is listed in Table 2.

The linear decay method was used to adjust the learning rate in
the training process, which is defined as

ms ¼ N
Bs

� E ð7Þ

s ¼ min gs;msð Þ ð8Þ

lr0 ¼ lr � elrð Þ � 1� s
ms

� �
þ elr ð9Þ



Fig. 12. Inspection process of the in-line inspection system.

Table 1
Dataset details.

Training set Validation set

Date of code 12.15, 12.17,
12.26, 01.09

12.13, 12.14,
01.07, 01.08, 01.10

Number of original positive samples 11,657 10,212
Number of original negative samples 198 168
Total number of positive samples 23,314 20,430
Total number of negative samples 32,016 25,195

Table 2
The configuration of training parameters.

Method Parameters Value

SGD Batch size (Bs) 128
Initial learning rate (lr) 0.0625
End learning rate (elr) 10-7

Weight decay 0.00005
Momentum 0.9

Table 3
Comparison of ShuffleNet V2 network with different complexity.

Model ShuffleNet V2

Scale factor 0.33� 0.5� 1.0�
Accuracy on the whole dataset 0.9967 0.9983 0.9988
Error Rate on the original positive images 0.0038 0.0021 0.0012
Error Rate on the original negative images 0.0000 0.0000 0.0000
Parameters 0.14 M 0.35 M 1.27 M
Training speed (step/second) 14.7 12.2 8.2

Table 4
The definitions of TP, TN, FP, and FN.

Actual Class

Predicted Class defect-free defective
defect-free True Positive (TP) False Positive (FP)
defective False Negative (FN) True Negative (TN)
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where ms, N, s and gs represent max step, the number of training
images, the step used to calculate learning rate, and the current glo-
bal step, respectively.

4.2. Experimental results

There is a scale factor in the ShuffleNet V2 network used to con-
trol the complexity of the model. For comparison, we made abla-
tion studies on the performance of the proposed algorithm with
different complexity of the ShuffleNet V2 network. Most of the
negative samples in the dataset were artificially produced. In order
to better evaluate the performance of the proposed solution, we
calculated the accuracy of the algorithm on the entire validation
dataset and the error rate on original images. In addition to the
necessary clipping and scaling, we did not perform other data aug-
mentation operations, but instead used the trained model to
directly predict the original images. The experimental results are
shown in Table 3.

We compared the ShuffleNet V2 network with different com-
plexities of 0.33�, 0.5�, and 1.0�. According to the results shown
in Table 3, the more complex the model is, the more parameters
and the slower the model becomes. For the accuracy on the whole
validation set, the accuracy becomes higher as the complexity of
the model increases.

The highest accuracy rate of 0.9988 was obtained with the com-
plexity of 1.0�. The accuracy is defined as

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð10Þ

where TP, TN, FP and FN are defined in Table 4.
The Error Rate (ER) on original positive images is called the

False Detection rate (FDr), which is defined as

FDr ¼ FN
TP þ TN þ FP þ FN

ð11Þ

The ER on original negative images is called the Omission
Detection rate (ODr), which can be defined as

ODr ¼ FP
TN þ FP

ð12Þ

The ODr is 0.0000 for the three models, which indicates that our
algorithm is able to detect all defective images. Among the three
models, the FDr of ShuffleNet V2 network with the complexity of
1.0 is lowest, which is 0.0012. Reliability is of the utmost impor-
tance in industrial applications. Considering the lowest FDr and
ODr, we chose ShuffleNet V2 network with the complexity of
1.0� as the final inspection model.

We compared our proposed algorithms with some existing code
detection methods. For each method, we list the objects that it
detects, main methods, accuracy, and possible applications, as
shown in Table 5.

As shown in Table 5, though these existing methods have high
accuracy, their applications are limited and can only be used for
simple background or high contrast images. It’s also noted that
they are incapable of processing images with complex back-
grounds. Traditional machine vision methods can also handle com-
plex background images by designing sophisticated illumination
methods, pre-processing technologies, etc. Additionally, they can-
not learn many features simultaneously, therefore only target
images with fewer content changes can be processed. Sometimes
a change in the image brightness will require additional manual
adjustment of the parameters, which requires frequent post-
maintenance and increases business costs.

The proposed model can learn enough features to handle vari-
ous types of image changes and implement code defect inspection.
Specifically, images with changes of brightness, contrast, or charac-
ter size can be appropriately inspected by the proposed model.
Another benefit of the model is that the required subsequent main-



Table 5
The performance comparison of different methods.

Method Inspection object description Accuracy Application

Pedersen et al. [2] (2016) Printed text Local thresh-based binarization & projection
histogram & character recognition

0.9857 Printed text & high contrast image

Feng et al. [33] (2018) Laser code on the cap
of beer bottle

Feature points-based template matching &
Machine learning

0.99997 Laser code & simple background image

Sun et al. [34] (2018) Dairy production date
code

Gray value-based segmentation & Improved
template matching

0.97 High contrast image & simple
background image

Feng et al. [35] (2018) Printed character SIFT features-based image matching &
binarization & pixel value difference algorithm

– Printed text & high contrast image

Qian et al. [36] (2018) Bottle cap printed code Improved template matching algorithm
based on Matlab image integral

0.8883 High contrast image

Ours Inkjet code on beverage
package

Morphological processing & image
matching & deep CNN

0.9988 Simple or complex background image

Fig. 13. Examples of synthesized defective images.

Fig. 14. The positive (a) and negative (b) image samples. Two images are nearly the
same, and their characters are both supposed to be ‘201901082242T3e’. However,
the second line of characters in Fig. 14(b) is incomplete (almost half codes is
missing in the vertical direction), which is the difference between the two images.
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tenance is simple due to the strong generalization ability and
robustness of deep learning.

4.3. Visualization

4.3.1. Synthesized defective images
In the training and validation datasets, most of defective images

are synthesized using the proposed algorithms. This is mainly
because that products with defective codes in the production line
do not occur frequently. Actually, the case of missing parts of the
code is the most difficult to be inspected in all kinds of defects.
Therefore, the amountof defective imageshavebeenextremelyaug-
mented to ensure the high performance of the inspection model.
Fig. 13 shows some examples of synthesized defective images.
4.3.2. Deep features of ShuffleNet V2
It is well known that the success of CNN in the field of image

processing depends on its powerful feature extraction capabilities.
Researchers have been trying to improve its feature extraction
capability by deepening and widening the network. Displaying
feature maps during training helps us understand the feature
extraction process of deep learning and improve the algorithm.
Fig. 14 shows positive and negative images, and Fig. 15 illustrates
their comparison of feature maps.

From the Conv1 to Conv5 layer, the network is getting deeper
and deeper, and the extracted features become more and more
abstract. Comparing the feature maps of positive and negative
images, one can know that the feature maps of the two are very
similar in the lower layers. The more convolutional layers are,
the greater the difference in feature mapping, which enables the
CNN to classify.
4.4. In-line testing results

The proposed framework is implemented on an industrial
computer (eBox-3622 series, NODKA) with a 3.20 GHz Intel Core



Fig. 15. Output feature maps of the positive and negative images. For the sake of observation, we scale all feature maps to the same size. Conv1: the first convolutional layer.
Blocks 1–3: blocks of the ShuffleNet V2. Conv5: the final convolutional layer.

Fig. 16. The user interface of the inspection system.
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i5-3470 CPU, 4G RAM, and the operating system is 64-bit Windows
7. Fig. 16 shows the user interface of the detection software, in
which the ROI represents the cropped image. The detection results
are displayed in real time on the right side of the interface.

A large dataset containing more than 100,000 images was cre-
ated using all the images we collected. After training, the model
is used for on-site inspection. Fig. 2 demonstrates our code inspec-
tion system that was working on a practical production line.

According to the results of the inspection system that are
obtained in the production line, the detection speed is about 25
FPS (Frame Per Second), which is much faster than that of the con-
veyor belt, and all the defective types can be detected. The false
detection rate of the defective products is around 0.08%. The
defects that can be detected on the site include missing code, miss-
ing part of the code, code repetition, and blurred code, etc. In the
vertical direction, the inspection system can detect a minimum
missing length ratio of 1/6, which fully meets the production
requirements.

5. Transfer learning

Deep learning practitioners can always obtain satisfactory per-
formance with large-scale datasets. However, sometimes such
large-scale datasets, especially defective images, are always inac-
cessible in practical applications. In this work, a large number of
positive samples are easy to collect, but there are few negative
samples, which leads to very serious data imbalances. Therefore,
it takes a lot of time to manually create plenty of negative samples
using the data processingmethods that were described in Section 3.
Additionally, reusing knowledge from the source domain to the
target task is usually an ideal scenario. The transfer learning
method is a popular machine learning method, in which a model
developed for a task is reused as a starting point for a model on
a second task.

In this work, we collected a total of 22,000 original images, and
a dataset with 100,000 images was created using data preprocess-
ing methods. The transfer learning [32] techniques were used to
transfer the trained models to other code inspection tasks for dif-
ferent kinds of bottle packages. Specifically, the trained model
was used to inspect the coding defects of the two other types of
bottles, as shown in Fig. 17.

Unlike the previous scenario, we only randomly collected 2084
images in five days, and 175 of them were defective images. We
used half of them as a training set and the others as a validation
set. In the training phase, we used the model that was trained on
the old dataset as the pre-trained model, and then use the new
dataset to fine-tune the model. We set the initial learning rate to
0.00625 and trained for 60 epochs. In the end, an inspection accu-
racy of 0.9959 was obtained on the validation set, with an FDr of
0.0019 and an ODr of 0.0000. More importantly, the entire training
process took only 5 min.
Fig. 17. Examples of two other types of bottle with different sizes.
Similarly, we also tested the model in a practical production
line. The results showed that various defects can be successfully
detected with a false detection rate of 0.1%, and the minimum ratio
of the missing segment that can be detected is 1/6. Through the
transfer learning, we only need to collect a small amount of data
to get a satisfying model, which greatly shortens the development
period of new inspection systems.

6. Conclusion

This work proposed a novel in-line inspection solution for code
on complex backgrounds for plastic containers. We introduced
some image processing methods to deal with data imbalance,
including the data augmentation, region translation method, mor-
phological processing, and SIFT features-based image matching.
The ShuffleNet V2 network was employed to perform an accurate
defect detection with an accuracy of 0.9988. Compared to existing
methods, the proposed algorithm can deal with images on complex
backgrounds. In addition, we integrated the proposed algorithm
into a practical industrial inspection system. In-line testing results
demonstrated that our solution obtained excellent performances,
with lower false detection rate and omission detection rate. The
proposed solution can automatically identify containers or pack-
ages with missing, incorrect, or unreadable codes to ensure only
properly coded items reach customers. Furthermore, the use of
transfer learning required fewer images to train a new detection
model and greatly reduces the development costs of new inspec-
tion systems for different types of beverage packages.

We hope the proposed solution could inspire future works of
practical inspection formodern industrial firms. Future researchwill
focus on improving light-weight architectures and applying them to
inspect defects of other practical industrial instrumentations.
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