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A B S T R A C T

The increasing spatial resolution of earth observation satellites is creating new opportunities to survey wildlife.
Satellites could be particularly valuable for surveying polar bears (Ursus maritimus) because of their remote
circumpolar distribution and status of concern in the face of Arctic warming. However, the white coloration of
bears does not contrast well with sea ice or snow in panchromatic imagery. We took advantage of the close-range
observation capabilities of a drone to determine the spectral signature of polar bears as they would appear in
multispectral satellite imagery, capturing low-altitude (≤100m) multispectral images of bears in natural
landscapes in Churchill, Manitoba, Canada. The bears' spectral curves were similar to those previously measured
from pelts, with reflectance increasing with wavelength through the visible spectrum, although live bears had
higher reflectance than pelts in the red-edge and near-infrared region. Bears had sufficiently consistent re-
flectance across the overhead surface of their body that ≥50% of pixels comprising each subject could be
confidently matched to its core spectral signature, boding well for detection in coarser satellite imagery. Bears
were clearly distinguishable from snow by their much lower reflectance in the blue and green region, but could
potentially be confounded with large bright boulders. Currently available multispectral satellite imagery may
still be too coarse (1.2 m/pixel) to reliably detect polar bears on sea ice, but resolution will likely continue to
increase in future systems. Drones are a useful tool to resolve the spectral signature of wildlife species that could
potentially be detected in satellite imagery.

1. Introduction

Satellite-based remote sensing technologies are rapidly advancing
and increasingly being used to monitor and model the abundance and
distribution of wildlife species (He et al., 2015). The tremendous value
of earth observation satellites for environmental and ecological mon-
itoring over vast swaths of the Earth's surface has long been recognized
(Kerr and Ostrovsky, 2003), but only recently has satellite imagery
achieved sufficiently high spatial resolutions to enable direct detection
of wild animals or their signs. One of the first such studies involved
detection of colonies of emperor penguins (Aptenodytes forsteri) (Barber-
Meyer et al., 2007). Subsequently, an increasing number of papers have
reported detection of a variety of wildlife species in several parts of the
world using satellite imagery (LaRue et al., 2017), including other
penguins species (Lynch et al., 2012), flamingos (Sasamal et al., 2008),
masked boobies (Sula dactylatra) (Hughes et al., 2011), seals (LaRue
et al., 2011; McMahon et al., 2014), large African mammals (Yang

et al., 2014; Xue et al., 2017), polar bears (Ursus maritimus) (Stapleton
et al., 2014a; LaRue et al., 2015), whales (Fretwell et al., 2014) and
albatrosses (Fretwell et al., 2017).

The polar bear is a species for which satellite-based monitoring
could be particularly attractive for several reasons. Polar bears occupy
large geographic areas at low densities in remote locations throughout
the Arctic and, as a result, can be challenging and expensive to monitor
using traditional techniques such as mark-recapture methods (Lunn
et al., 2016; Regehr et al., 2018) or low-level aerial surveys (Stapleton
et al., 2014b). Both approaches are expensive, labour-intensive, and
dangerous—several researchers have been killed or injured studying
polar bears in the Arctic (Stirling, 2011). Moreover, several conserva-
tion concerns related to polar bears necessitate an increase in mon-
itoring frequency and geographic scope. Shifts in the distribution and
timing of sea ice melt affect where and when bears can hunt and may
affect population health (Laidre et al., 2018). The frequency of human-
bear conflicts is increasing (Schmidt and Clark, 2018), at least partly
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related to bears spending more time on land due to changes in patterns
of sea ice breakup, including near human settlements.

To date, studies on the detection of polar bears in satellite imagery
have focussed on identifying bears when they are on land, such that
their white color contrasts strongly with the background (Stapleton
et al., 2014a; LaRue et al., 2015; LaRue and Stapleton, 2018). Even in
this situation, there may be difficulty confidently identifying potential
targets due to the occurrence of other white or bright objects and fea-
tures of similar size to bears in the landscape, particularly those that are
transient, such as patches of snow, or clumps of foam that accumulate
on the edges of water. LaRue et al. (2015) found that the bears' albedo
was insufficiently distinct to isolate them from confounding features in
single-band panchromatic imagery. However, a multi-temporal image
differencing approach proved effective in these studies for identifying
polar bears based on the assumption that a bear should not be found in
the same spot at two different time periods (Stapleton et al., 2014a;
LaRue and Stapleton, 2018).

Despite some successes in detection of polar bears on land using
satellite imagery, conducting surveys of snow- and ice-covered areas is
of interest for several reasons. First, bears in most populations remain
on sea ice year-round. Few populations are seasonally ice-free, and of
these, polar bears concentrate on islands where they potentially could
be surveyed during the ice-free period in only a few areas. LaRue and
Stapleton (2018), for example, commissioned imagery for all 6700 km2

of Wrangel Island, but only obtained cloud-free imagery for 9% of the
island. At other times of the year, bears in seasonally ice-free popula-
tions are distributed at low densities across vast expanses of sea ice.

Use of multispectral imagery has the potential to expand the geo-
graphic areas in which remote sensing could be used to detect polar
bears to include the sea ice where they spend much of the year. Grojean
et al. (1980) and Leblanc et al. (2016) showed that the spectral re-
flectance curves of polar bear pelts are quite different from clean snow,
with much higher absorption at short wavelengths (ultraviolet and
visible) and greater reflectance at longer wavelengths approaching and
into the short-wave infrared region. Although LaRue et al. (2015) found
the multispectral satellite imagery they analyzed was too coarse (2.4 m/
pixel) to resolve objects the size of bears, the spatial resolution of
commercially available multispectral satellite imagery has since in-
creased and will presumably continue to increase going forward,
thereby expanding applications for its use.

We undertook a study to assess the feasibility of using multispectral
imagery to detect and identify wild polar bears against a variety of
backgrounds. Previous studies of spectral reflectance were limited to
dried pelts that may differ from live animals due to aging and pre-
servation treatments (Leblanc et al., 2016). Furthermore, these studies
limited their comparisons to clean snow; information is lacking on how
the reflectance of potential confounding features in a natural environ-
ment compares to that of polar bears. For this study, we took advantage
of emerging drone aircraft technology—which enables unprecedented
close-range observation, including from a vertical angle, of otherwise
difficult-to-approach wildlife (Chabot and Bird, 2015)—to collect aerial
multispectral imagery of live, wild polar bears in a natural habitat
setting. Our aim was to collect and analyze imagery of multiple bears
along with a variety of potential confounding features in the sur-
rounding landscape to provide additional information that could aid in
the identification of polar bears in satellite imagery.

2. Materials and methods

Data were collected from 27 to 31 October 2014 in and around the
Cape Churchill Wildlife Management Area near Churchill, Manitoba,
Canada. Large numbers of polar bears from the Western Hudson Bay
population concentrate in this area from late summer until the bay
freezes over in early winter (Regehr et al., 2007). Daytime temperatures
during data collection ranged from −1 to −7 °C, wind speeds varied
from ~10–40 km/h, and sky conditions were cloudy/overcast with the

exception of 31 October when there was a mix of sun and cloud.
A Responder drone helicopter (ING Robotic Aviation, Ottawa, ON,

Canada) was used to carry a Mini-MCA6 multispectral camera array
(Tetracam, Chatsworth, CA, USA) that recorded 1280×1024-pixel
images in six 10-nm-wide spectral bands centered at 470 nm (blue),
550 nm (green), 660 nm (red), 690 nm (red-edge), 710 nm (red-edge)
and 810 nm (near-infrared). The field team travelled along the main
roads or the roads in the management area during daylight hours, op-
portunistically searching for resting bears. Surveys were conducted
from a Tundra Buggy bus or a pickup truck. When a bear was spotted,
the vehicle approached along the road to a reasonable proximity,
usually within 100–300m of the bear, although one flight was in-
itiated> 800m away. The drone was deployed from either the road or
the roof of the vehicle and flown toward the bear via manual radio-
control, initially approaching at an altitude of ~100m above ground
level, with the camera continuously capturing images at 2-second in-
tervals. A live video feed from the camera transmitted to the drone's
ground control station enabled the operators to maneuver the drone
into a hovering position directly above the bear. The drone was then
slowly descended to capture increasingly fine-scale images, down to a
minimum altitude of ~30m, and finally flown back to the location of
the field crew and landed on the road. Flights lasted 5–10min from
takeoff to landing. Prior to each flight, a white Teflon radiometric ca-
libration tile (Tetracam) was photographed on the ground under am-
bient light conditions for subsequent normalization of spectral mea-
surements made in images during each flight.

Polar bear images were captured in a total of 14 flights, generally
involving a single bear, although one flight captured imagery of an
adult female with two cubs. The first bear imaged on 27 October stood
up and walked away from its resting spot shortly after we began col-
lecting imagery, evidently disturbed by the drone. However, all other
bears remained where they were first observed, although they occa-
sionally shifted their posture or looked up at the drone while it hovered
overhead. Collectively, the bears were imaged against a variety of
landscape backgrounds (example images provided in Figs. A1–A3 in
appendix), which can be broadly categorized as those containing sig-
nificant amounts of rocks and gravel (27 October), those dominated by
vegetation (28 October, with most vegetation dead or senescing at that
time), and those dominated by snow (30 and 31 October) following a
snowfall on 29 October.

Raw individual images from each of the camera's channels were
spatially aligned and processed into 8-bit multiband (six bands per
image) TIFF format with Tetracam PixelWrench2 v1.2.4. All subsequent
image analyses were performed with ENVI v5.4.1 (Exelis/Harris
Geospatial, Boulder, CO, USA) and its accompanying scripting appli-
cation, IDL v8.6.1. We reviewed the images from each flight, setting
aside all images containing the bear(s) (ranging from 8 to 163 images
per flight) as well as an image of the calibration tile. Among the images
of bears, we selected six from each flight to make spectral reflectance
measurements, with the exception of one flight during which only four
sufficiently clear images of the bear were captured, and another flight
performed very early in the morning that produced unworkably dark
imagery. Image selection was primarily constrained by sharpness, as
many images were blurry due to the motion of the drone. To the extent
possible, we selected images taken from varying altitudes during each
flight and showing the target bear in varying postures. We also avoided
images in which the bear was very close to the edge of the frame where
it could be darkened by lens vignetting.

To make spectral measurements from the calibration tile and bears,
we used the ‘Region of Interest’ tool to manually draw a polygon de-
lineating the inner boundary of the subject. Because of subtle spatial
misalignment among the camera's channels, a separate polygon was
drawn in each spectral band for each image. We then computed
polygon statistics and noted the mean pixel value and standard devia-
tion within the polygon in each spectral band. To normalize the mea-
surements from the bears across the flights/image sets, for each band in
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each image we divided the mean pixel value of the bear by the mean
pixel value of the calibration tile imaged before the flight, so as to
express the reflectance of the bear in relation to the tile.

Due to miscalibration of the camera's 660-nm (red) channel, which
caused higher relative exposure in this band than the others, images
from this channel were oversaturated and unusable for eight out of the
13 analyzed image sets. In addition, during preliminary analyses, we
noted that the brightness of the bears sometimes exceeded that of the
calibration tile, particularly in the longer-wavelength bands, which is
anomalous since the tile is designed to reflect ~100% of incident ra-
diation from ~400–1000 nm. Upon careful consideration of possible
causes of these anomalies, we hypothesized that they likely resulted
from having transported the drone-mounted camera inside the heated
Tundra Buggy on 27, 30 and 31 October. Prior to each deployment, the
temperature of the camera would have been much higher than the
outdoor temperature and begun to cool upon being removed from the
bus. Since the calibration tile was imaged very shortly (< 2min) after
the camera was taken outside, we believe the camera was likely still
cooling down between the acquisition of the images of the tile and
those of the bear several minutes later. This cooling may have increased
the sensitivity of the image sensors, resulting in the images of the bear
exceeding the brightness of the tile. This hypothesis is supported by the
fact that the only image sets in which this anomaly did not occur were
collected on the day that the drone and camera were transported in the
bed of a pickup truck (28 October), where the camera would have re-
mained at the cooler outdoor temperature. Thus, only measurements
from the images captured on 28 October can likely be regarded as ap-
proximating the true reflectance of polar bears. Nevertheless, our re-
sults suggest the other images provide an accurate assessment of the
relative brightness among bands.

To assess other landscape and background features for spectral re-
semblance to polar bears, we performed a supervised classification of
each of the selected images of bears (totaling 76 images across 13
flights). For each image, we created two classes, “bear” and “back-
ground”. We traced the entire contour of the bear to serve as a training
sample for the “bear” class, and used the entire rest of the image as a
training sample for the “background” class. We then used the Maximum
Likelihood algorithm (Richards, 2013) to classify every pixel in the
image as either “bear” or “background” (according to the greatest
likelihood of belonging to either of the normally-distributed class
spectral signatures modelled from the training samples) with a prob-
ability threshold of 0.5001, meaning that only pixels calculated to
have>50% probability of belonging to either of the two classes were
classified, while pixels that did not meet this threshold were left

unclassified. This approach therefore revealed which background ele-
ments squarely overlapped with the spectral signature of the bear, as
indicated by background pixels misclassified as “bear”; while also
providing an assessment of the cohesiveness (i.e. the variation in the
distribution) of the bear's spectral signature, as indicated by the pro-
portion of pixels comprising the bear that were classified as “bear”. For
the five image sets in which the 660-nm band was usable, we performed
classifications both with and without the band to assess its impact on
results.

As a broader supplemental analysis, we manually created a classi-
fication rule set for each image set (i.e. each flight) based on the
measurements from the bear imaged during that flight. Among the
previously selected images from which measurements were made, for
each spectral band we used the image in which the bear's mean pixel
value minus one standard deviation produced the lowest value to set
the lower threshold for classifying pixels as “bear”; and used the image
in which the bear's mean pixel value plus one standard deviation pro-
duced the highest value to set the upper threshold. We then used the
IDL scripting application to batch-process all images containing the
bear from each flight (totaling 786 images, ranging from 8 to 163 per
flight) with the established rule set, generating classifications for each
individual band as well as for all bands combined. For each classified
image, we noted the total percentage of pixels classified as “bear” and
documented background features that had been misclassified. The
purpose of this analysis was to provide a general idea of which band(s)
best distinguished bears from the background in the different land-
scapes in which they were imaged.

3. Results

The spectral reflectance curves of all imaged adult polar bears re-
lative to the calibration tile are shown in Fig. 1. As a result of the
temperature-related camera calibration issues described above, there
was significant variation among the bears in their apparent overall
brightness, although the shape of their reflectance curves was generally
consistent. The distinctly high curves of two of the bears imaged on 31
October (Fig. 1, bears 9 and 11) likely resulted from variable sky con-
ditions that day, with the calibration tile imaged under cloud cover and
the bears subsequently imaged under clearer conditions several minutes
later. The reflectance curves obtained for the bears imaged on 28 Oc-
tober, which are likely closest to the true reflectance of polar bears,
showed an overall increase in reflectance with increasing wavelength,
with average reflectance increasing from ~0.35–0.45 at 470 nm, to
~0.50–0.60 at 550 nm, ~0.60–0.70 at 660 nm, ~0.70–0.85 at 690 nm,

Fig. 1. Spectral reflectance curves (relative to the
calibration tile) of adult polar bears imaged with a
drone-borne multispectral camera in Churchill, MB,
Canada, October 2014. Points represent the average
reflectance of the bears across several measured
images (calculated from the mean of each image);
error bars represent the range of mean reflectance
across the images. Large differences in measured
reflectance among the bears likely resulted from
variation in the camera's temperature; measurements
from 28 October (orange curves) are likely closest to
true absolute reflectance (see text). (For interpreta-
tion of the references to color in this figure legend,
the reader is referred to the web version of this ar-
ticle.)
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marginally higher at 710 nm, and peaking at ~0.80–0.95 at 810 nm
(Fig. 1). One noticeable characteristic was the presence of a small
“bump” in reflectance at 690 nm followed by a slight drop at 710 nm for
some of the bears but not the others (Fig. 1). No evident difference
between the bears presenting this bump and those that did not could be
visually discerned in the images. The reflectance curves of the cubs
were similar to those of the adults, only marginally exceeding the
brightness of the accompanying adult female in all bands (Fig. 2).

The results of the supervised classification analysis are summarized
in Table 1. Given the varying altitude above ground from which images
were captured, the number of pixels comprising the polar bear ranged
from 28 to 9048 (median=1080) of the ~1.3 million total pixels in
each image. The proportion of bear pixels classified as “bear” with a
probability threshold of 0.5001 was> 50% in all but two images
(49.6% and 49.7%, respectively), with a maximum of 65.8%, and an
average of 56.5% among all image sets (Table 1). Bear pixels mis-
classified as “background” only occurred in 14 out of 76 images and in
negligible numbers, in all cases affecting<1% of the pixels comprising
the bear. All other bear pixels were labelled “unclassifiable”. The pro-
portion of background pixels misclassified as “bear” averaged<0.01%
in 10 out of 13 image sets, of which five image sets had<0.001%
misclassified pixels, and two image sets had no misclassified back-
ground pixels (Table 1). In only four out of 76 images did the propor-
tion of background pixels misclassified as “bear” approach or exceed
0.1%, with 1225, 1847, 5992 and 8516 misclassified pixels,

respectively. The latter two images were the lowest-altitude shots of
Bear 2 (27 October), in which a significant amount of rocks and gravel
in the surrounding landscape was misclassified as “bear” (Fig. 3). The
next most prevalent misclassified background elements were small
scatterings of vegetation embedded with snow, with the most severely
affected image (1847 misclassified pixels) shown in Fig. 4. Notably,
areas of pure snow did not appear to be affected by misclassification, as
exemplified in Fig. 5. Including the red band (660 nm) in the analysis
for the five image sets in which it was usable only yielded a marginal
improvement in the proportion of bear pixels classified as “bear”, with
an average increase of 0.3–2.3 percentage points within each image set.
Inclusion of the red band made no difference in the number of back-
ground pixels misclassified as “bear” in three image sets, while yielding
an overall negligible decrease (−165 pixels across six images) and
negligible increase (+41 pixels across six images) in misclassified
pixels in the two other image sets, respectively.

Comparing the total proportion of each image classified as “bear”
among the individual spectral bands across images captured in the
different landscapes provides a general idea of which band(s) best
distinguished the bears and which band(s) presented the most overlap
between bears and background in each type of landscape (see Figs.
A1–A4 in appendix). Overall, the results suggest that the bears were
best distinguished from the background in the rock/gravel-dominated
landscapes in the near-infrared band (810 nm), and relatively more
poorly distinguished at shorter wavelengths (blue and green,

Fig. 2. Spectral reflectance curves (relative to the
calibration tile) of an adult female polar bear with
two cubs imaged with a drone-borne multispectral
camera in Churchill, MB, Canada, 30 October 2014.
Points represent the average reflectance of the bears
across several measured images (calculated from the
mean of each image); error bars represent the range
of mean reflectance across the images.

Table 1
Summary results of the supervised classification (Maximum Likelihood with probability threshold of 0.5001) of 1.3-megapixel aerial multispectral images (bands:
470 nm, 550 nm, 690 nm, 710 nm and 810 nm) of polar bears captured from a drone in Churchill, MB, Canada, October 2014, to assess the potential to differentiate
bears from background.

Subject (date) No. of images No. of bear pixels/image Average % of bear pixels classified as “bear” (range) Average % of background pixels classified as “bear” (range)

Bear 1 (27 Oct) 6 198–284 52.4% (49.6–54.9%) 0.0004% (0.0000–0.0017%)
Bear 2 (27 Oct) 6 28–1499 54.1% (50.4–58.9%) 0.1856% (0.0000–0.6511%)
Bear 3 (28 Oct) 6 565–1576 53.3% (50.8–55.3%) 0.0058% (0.0011–0.0106%)
Bear 4 (28 Oct) 6 1759–8826 54.8% (51.6–57.5%) 0.0292% (0.0001–0.1424%)
Bear 5 (28 Oct) 6 189–1335 54.6% (52.4–57.3%) 0.0001% (0.0000–0.0006%)
Bear 6 (28 Oct) 6 1237–9048 55.2% (51.5–57.9%) 0.0000% (−)
Bear 7 (30 Oct) 6 660–1768 53.6% (52.0–55.2%) 0.0000% (−)
Bear 8 (30 Oct) 6 1369–1924 57.0% (55.9–57.9%) 0.0009% (0.0003–0.0016%)
Bear 9 (31 Oct) 6 430–1063 59.1% (49.7–63.9%) 0.0072% (0.0010–0.0114%)
Bear 10 (31 Oct) 6 738–1432 59.1% (51.7–65.8%) 0.0035% (0.0000–0.0155%)
Bear 11 (31 Oct) 6 392–1239 60.4% (55.7–64.3%) 0.0012% (0.0000–0.0053%)
Bear 12 (31 Oct) 4 254–2097 58.4% (52.9–62.2%) 0.0434% (0.0030–0.0935%)
Bear 13 (31 Oct) 6 731–2416 62.0% (60.9–64.4%) 0.0065% (0.0015–0.0212%)
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470–550 nm) (Fig. A1). In the vegetation-dominated landscapes, the
blue and green bands were also relatively poor at distinguishing the
bears, although in this case the red and red-edge bands (660–710 nm)
tended to better distinguish the bears than the near-infrared band (Fig.
A2). In contrast, the blue and green bands (and red when available)
generally tended to best distinguish the bears in the snowy landscapes,
with overall poorer differentiation at longer wavelengths, markedly at
710 nm and 810 nm (Fig. A3).

4. Discussion

We used a drone-borne multispectral camera to evaluate the po-
tential to identify polar bears using remotely sensed multispectral
imagery, such as could be obtained from satellites or high-altitude
aerial photography. Despite some technical challenges with our
equipment, we found that spectral reflectance patterns were generally

similar to those previously reported by Leblanc et al. (2016), with bears
reflecting light much more strongly in the red than the blue end of the
spectrum. We further found that only a limited portion of the back-
ground in the natural landscapes in which we imaged the bears had
similar reflectance patterns to bears.

Compared to the curves obtained by Grojean et al. (1980) and
Leblanc et al. (2016) from polar bear pelts, the curves we obtained had
a similar shape in the visible region (470–660 nm), with reflectance
values in the properly calibrated imagery captured on 28 October
overall slightly lower than those measured in the former study and
slightly higher than those measured in the latter study. However,
whereas the reflectance of the pelts in both previous studies began to
rapidly plateau just beyond the visible red region, the curves we ob-
tained did not show this plateauing, overall continuing to increase
fairly steadily to a peak of ~0.80–0.95 in the 810-nm near-infrared
band, compared to ~0.85 for the pelt measured by Grojean et al. (1980)

Fig. 3. Example of areas of rocks and gravel misclassified as “bear” by the Maximum Likelihood algorithm with a probability threshold of 0.5001 in a multispectral
image (bands: 470 nm, 550 nm, 690 nm, 710 nm and 810 nm) of a polar bear captured from a drone in Churchill, MB, Canada, 27 October 2014. A simulated natural-
color composite of the raw image is shown on the left and the classified image on the right, with pixels classified as “bear” in green, pixels classified as “background”
in blue, and unclassifiable pixels in black. The plot compares the spectral reflectance curve of the bear to that of a manually sampled area of rocks and gravel of
similar dimensions to the bear containing a high density of pixels misclassified as “bear”. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Example of small scatterings of dead/senescing vegetation embedded with snow misclassified as “bear” by the Maximum Likelihood algorithm with a
probability threshold of 0.5001 in a multispectral image (bands: 470 nm, 550 nm, 690 nm, 710 nm and 810 nm) of a polar bear captured from a drone in Churchill,
MB, Canada, 28 October 2014. A simulated natural-color composite of the raw image is shown on the left and the classified image on the right, with pixels classified
as “bear” in green, pixels classified as “background” in blue, and unclassifiable pixels in black. The plot compares the spectral reflectance curve of the bear to that of a
manually sampled area of snow-embedded vegetation of similar dimensions to the bear containing a high density of pixels misclassified as “bear”. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and ~0.55–0.65 for those measured by Leblanc et al. (2016). This
discrepancy in the red-edge to near-infrared region may be due to ef-
fects of preparation or long-term storage of the pelts, or possibly due to
the pelts having been collected at a different time of year (information
on the timing of collection was not available for the pelts used in those
studies). The among-bear variation in reflectance that we observed for
the bears imaged on 28 October—from ~0.10–0.15 in each band—is
also comparable to the variation among the pelts measured by Leblanc
et al. (2016). The reflectance curves we measured from the bears im-
aged on 27, 30 and 31 October had similar shapes despite being overall
brighter to varying degrees than the curves measured from the bears on
28 October. The curves measured from the two cubs had an identical
shape to the accompanying adult female but were slightly brighter in all
bands.

The Maximum Likelihood classification analysis provided an in-
structive appraisal of landscape background features that present a si-
milar spectral signature to the polar bears, as well as of the degree to
which the bears' spectral signature forms a tight profile, allowing for
more precise and confident detection. Based on spectral reflectance
alone, our results suggest that landscape features that most closely re-
semble bears in the visible to near-infrared region are bright rocks and
gravel as well as snow-embedded vegetation. Regarding the latter, our
supplemental analysis of the individual spectral bands suggests that
polar bears are relatively more poorly distinguished from vegetation at
shorter wavelengths (blue and green), while it is the reverse for pure
snow. It is therefore unsurprising that a certain mixture of vegetation
(tending to overlap with bears in the blue-green region) and snow
(tending to overlap with bears toward the near-infrared region) can
produce a similar spectral signature to polar bears. However, even in
the image that was most severely affected by this type of mis-
classification (Fig. 4), the errors amounted to an extremely sparse
scattering of pixels compared to the large and dense cluster of correctly
classified pixels on the bear itself. It is doubtful that such small scat-
terings would register at all in coarser spatial-resolution satellite ima-
gery, their signature diluted by other elements sharing the same pixel
space. Similarly, only in the finest-scale images containing bright rocks
and gravel were significant numbers of pixels representing these ele-
ments misclassified as “bear”, suggesting that in the higher-altitude
shots—and by extension in coarser satellite imagery—the confounding
signature is diluted and lost. Nevertheless, the possibility of larger rocks
or boulders being confounded with polar bears in wider-ranging

imagery cannot be ruled out.
Our finding that a consistent proportion of ~50% or more of pixels

comprising the bears were correctly classified by the Maximum
Likelihood algorithm with a probably threshold of 0.5001 is also pro-
mising for detection of polar bears in coarser satellite imagery. In
practical terms, these results mean that the bulk of the spectral sig-
nature produced by individual bears is narrow enough (in terms of
distribution of values) that, on average, more than half of their over-
head surface area can be matched to their core signature with a con-
fidence level of> 50%. Combined with our finding that the remaining
pixels comprising the bears were only misclassified as “background” in
negligible numbers (with the overwhelming majority labelled “un-
classifiable”), this suggests that the distinctive spectral signature of
polar bears is less likely to become unrecognizably diluted in coarser
imagery in the same way as the smaller-grain confounding background
elements discussed above.

Overall, our results suggest that, provided a sufficient spatial re-
solution, use of multispectral remote sensing imagery to survey polar
bears could eliminate many of the most frequent false positive errors
reported in studies that used panchromatic imagery (Stapleton et al.,
2014a; LaRue et al., 2015; LaRue and Stapleton, 2018), notably snow
and ice. Currently, the best-suited earth observation satellite for po-
tential multispectral detection of polar bears is DigitalGlobe's World-
View-3 (Toth and Józków, 2016), whose blue (450–510 nm), green
(510–580 nm), red (630–690), red-edge (705–745 nm) and near-in-
frared 1 (770–895 nm) bands collectively encompass the wavelengths
we analyzed in this study (WorldView-4, equipped with similar sensors,
suffered an instrument failure in January 2019 that rendered the system
inoperable). In addition, it has a “coastal” blue sensor (400–450 nm), a
yellow sensor (585–625 nm) and a second near-infrared sensor
(860–1040 nm) that could potentially further improve differentiation of
polar bears from background features. We note, however, that although
the 1.2-m spatial resolution of WorldView-3's multispectral sensors is
finer than the 2.4-m WorldView-2 imagery deemed too coarse by LaRue
et al. (2015), a polar bear would only be comprised of 3–4 pixels at
most, which still may not be sufficient to reliably detect its distinctive
spectral signature. Nevertheless, the spatial resolution of satellite ima-
gery will likely continue to improve, making this application, as well as
the detection of other wildlife species, increasingly practicable.

Ultimately, the ideal analytical approach to a “blind” survey of
polar bears in large volumes of radiometrically calibrated multispectral

Fig. 5. Example of the clear spectral differentiation between a polar bear and pure snow by the Maximum Likelihood classification algorithm with a probability
threshold of 0.5001 in a multispectral image (bands: 470 nm, 550 nm, 690 nm, 710 nm and 810 nm) captured from a drone in Churchill, MB, Canada, 30 October
2014. A simulated natural-color composite of the raw image is shown on the left and the classified image on the right, with pixels classified as “bear” in green, pixels
classified as “background” in blue, and unclassifiable pixels in black. No background pixels were misclassified as “bear”. The plot compares the spectral reflectance
curve of the bear to that of a manually sampled area of pure snow next to and of similar dimensions to the bear. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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satellite imagery would be to identify features presenting the char-
acteristic spectral curve of bears (Fig. 1)—with more emphasis on the
reflectance ratios among the bands than on absolute reflectance va-
lues—in the framework of an object-based image analysis (OBIA) that
would additionally filter out objects that do not match the size of polar
bears. OBIA software has become increasingly accessible in recent
years, now allowing fairly straightforward workflows for detecting
wildlife in aerial imagery to be implemented by non-experts in remote
sensing (Chabot et al., 2018). Complementary use of image differencing
on multitemporal imagery could further reduce false positive errors
(LaRue and Stapleton, 2018).

Drones provide a valuable means of collecting very close-range
aerial imagery of otherwise difficult-to-approach wildlife, while causing
minimal disturbance to animals if operated responsibly (Mulero-
Pázmány et al., 2017). Aside from the first bear we surveyed that
walked away from its resting spot in apparent reaction to the drone, all
subsequent bears—initially approached at higher altitude than the
first—did not superficially appear to be significantly disturbed, with
reactions limited to shifting their posture and occasionally looking up at
the drone. Similarly, a recent study by Barnas et al. (2018) found that
vigilance behaviour displayed by polar bears that were approached by a
drone did not significantly differ from their behaviour during typical
tourist viewing activities in Churchill, Manitoba. Our field work took
place at the tail end of a period during the initial proliferation of drones
when options for employing multispectral cameras were very limited
and poorly optimized for the application. The Mini-MCA6 we used was
originally released in 2009 and was not well suited for the fast-motion
and turbulent shooting conditions typical of drone-borne operation,
resulting in frequent image blur. In recent years, multispectral cameras
for use on drones have become more numerous in makes and models,
more affordable, and significantly improved in terms of shutter and
exposure performance, miniaturization, and ease of use (Manfreda
et al., 2018). Furthermore, an increasing number of models are now
equipped with an accessory incident light sensor that records ambient
downwelling irradiance levels simultaneously with image capture for
calibration of the imagery, as an alternative to relying on a calibration
tile imaged before or after the flight. Given these favorable develop-
ments, drones could potentially be used to collect data on the spectral
signatures of a variety of wildlife species that may be detectable in
satellite imagery.
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