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ABSTRACT With the explosive growth of data, it has become increasingly popular to deploy the powerful
cloud to manage data. Meanwhile, as the cloud is not always fully trusted, personal and sensitive data have
to be encrypted before being outsourced to the cloud. Naturally, this brings a serious challenge for the
cloud to provide secure and efficient query services over huge volumes of data. Although existing works
have proposed some solutions to solve the above challenge, most of them just focus on the single keyword
query and cannot directly support multi-keyword query. Even though some works have discussed solutions
for the multi-keyword query, they cannot well balance the efficiency and privacy. Therefore, in this paper,
we propose a novel multi-keyword conjunctive query scheme over cloud, which can achieve high query
efficiency with small privacy leakage. In specific, we first design a tree-based index to support the multi-
keyword conjunctive query and employ Boneh-Goh-Nissim (BGN) homomorphic encryption technique to
protect its privacy. Then, based on the tree-based index, we propose a wildcard search algorithm to improve
its query efficiency. Finally, the detailed security analysis shows that the proposed scheme is really privacy-
preserving, and extensive simulation results also demonstrate its efficient.

INDEX TERMS Cloud computing, conjunctive query, homomorphic encryption, multi-keyword query.

I. INTRODUCTION
With the rapid development of the internet, volumes of data
are exploding by the day. According to IBMMarketing Cloud
study [1], more than 90% of data on the internet has been
created since 2016, which leads more and more individuals
and companies to store local files in the cloud to reduce
the increasing storage overhead. However, the cloud servers
may not be fully trusted in practice today, because admin-
istrators or even hackers are likely to get full access to the
servers and consequently to the files. Thus, the files with
some sensitive information (e.g., electronic health records)
have to be encrypted before outsourcing them to the cloud.
Although data encryption technique preserves data privacy,
it also hides some critical information such that the cloud
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cannot support some user’s operations over the encrypted
data, e.g., as multi-keyword conjunctive query, which returns
a set of files containing multiple queried keywords. Conse-
quently, it is challenging to perform multi-keyword conjunc-
tive query over encrypted data.

One straightforward solution is that the user downloads all
encrypted files and performs search after files are decrypted.
However, this solution is impractical because of its significant
computational cost and communication overhead. In order
to solve the above problem, searchable encryption (SE) was
introduced, which allows the cloud server to search encrypted
files without leaking information in the plaintext files. SE can
be realized with optimal security via powerful cryptographic
tools, such as Fully Homomorphic Encryption (FHE) [2] and
Oblivious Random Access Memory (ORAM) [3]. However,
these tools are also impractical and sometimes may even
be slower than the naive solution. Another set of works [4]
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utilize Property-preserving Encryption (PPE) to construct
their schemes. Nevertheless, these schemes based on PPE
inevitably leak certain properties of the underlying message
(e.g., order, frequency), which makes them vulnerable to
statistical attacks.

For balancing the leakage and efficiency, many stud-
ies [5]–[7] focus on Symmetric Searchable Encryption (SSE),
which relaxes the security of FHE and ORAM by leak-
ing the access pattern (i.e., search result) and search pat-
tern (i.e., queries have the same queried keywords). But
nothing else is leaked (e.g., order). Unfortunately, most
studies only consider single keyword query, which can
not be used directly to achieve multi-keyword conjunctive
queries. A straightforward method is to query each keyword
first. Then, the cloud server finds a set of files that only
matches each keyword and returns the intersection of all
these sets. However, this method is flawed because it allows
the cloud server to learn much extra information in addi-
tion to the results of the multi-keyword conjunctive query.
For example, the cloud server can observe which files con-
tain a certain keyword. Recently, some privacy-preserving
multi-keyword conjunctive query schemes [8]–[10] are pro-
posed to support multi-keyword conjunctive search ser-
vice with small leakage. However, these schemes are still
not perfect enough, since they can not achieve efficient
query.

To address the above problems, in this paper, we propose
a new privacy-preserving multi-keyword conjunctive query
scheme, which can well balance the efficiency and privacy in
query. Specifically, the main contributions of this work are
three-fold:
• First, we design a tree-based index, called conjunctive
tree, to represent keywords. With this conjunctive tree,
the server can efficiently conduct multi-keyword con-
junctive queries. At the same time, we employ BGN
homomorphic encryption technique to encrypt the con-
junctive tree, which can well preserve the privacy of
keywords.

• Second, we design a novel search algorithm, called
wildcard search algorithm, for the conjunctive tree to
improve the efficiency of conjunctive query, which
replaces a part of computationally expensive conjunc-
tive tree traversing operations with efficient string copy
operations.

• Third, we analyze the security of our proposed scheme
and conduct extensive experiments to evaluate its per-
formance, which indicate that our proposed scheme can
achieve efficient query with small leakage.

The remainder of this paper is organized as follows.
In Section II, we introduce our system model, security model
and design goal. Then, we describe some preliminaries in
Section III. In Section IV, we present our proposed scheme,
followed by security analysis and performance evaluation
in Section V and Section VI, respectively. Related work is
discussed in Section VII. Finally, we draw our conclusions in
Section VIII.

FIGURE 1. System model under consideration.

II. MODELS AND DESIGN GOALS
In this section, we formalize the system model, security
model, design goals, and notations.

A. SYSTEM MODEL
In our system model, we consider a typical single user/single
server searchable encryption model which consists of two
entities, as shown in Fig. 1.
• Data user: We assume the data user has a collection
of files F = {f1, f2, . . . , fn} and each file fj ∈ F
consists of a set of keywords from a keyword dictionary
W = {ω1, ω2, . . . , ωd }. Due to the limited storage
space and computational capability, the data user intends
to outsource the file collection F and its index I to
the cloud server. Then, the data user submits a multi-
keyword conjunctive query request Q generated from a
set of queried keywords and retrieves files containing all
these queried keywords from the cloud server. Note that,
since the F , I and Q are private information, they need
to be encrypted before being sent to the cloud server.

• Cloud server: The cloud server is considered to be
powerful in storage space and computational capability.
The duties of the cloud server include: i) efficiently store
file collection F and index I , and ii) process multi-
keyword conjunctive query requestQ and respond all the
matching files F ′ to the data user.

B. SECURITY MODEL
In our security model, we consider attacks from two types of
entities, one of which is the cloud server. Concretely, we con-
sider the cloud server to be honest-but-curious, which means
that it honestly executes the query processing and returns
the query results without tampering it. However, the cloud
server tries to infer as much information as possible from
the available data which include encrypted files, indexes,
and the encrypted query requests. In addition to the cloud
server, we also consider attacks from an outside entity who
can eavesdrop on the data transmitted during the query. The
outside entity is curious about the information of the queries.
For example, he/she may compare two query requests to
determine whether they have the same queried keywords.

Since our work is focused on the efficiency of commu-
nication and computation in privacy-preserving query, other
active attacks on data integrity and source authentication are
beyond the scope of this paper and will be discussed in our
future work, although it is not difficult to apply some mature
digital signature and message authentication code techniques
to tackle these attacks.
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TABLE 1. Summary of Notations.

C. DESIGN GOALS
In this paper, our design goal is to achieve an efficient
and privacy-preserving multi-keyword conjunctive query
scheme. The details are described as follows:
• Privacy-preservation. In the proposed scheme, the data
stored in the cloud server, F and I , should be privacy-
preserving during the query and update.

• Efficiency. In order to achieve the above privacy require-
ment, additional computational cost will be incurred.
Specifically, we aim to reduce this cost as much as
possible and make the proposed scheme efficient than
previous work.

D. NOTATIONS
See Table 1.
III. PRELIMINARY
In this section, we outline the bilinear groups of composite
order and the BGN homomorphic encryption [11], which will
serve as the basis of our proposed scheme.
A. BILINEAR GROUPS OF COMPOSITE ORDER
Given a security parameter κ , a composite bilinear parameter
generatorGen(κ) outputs a tuple (N , g,G,GT , e), whereN =
pq and p, q are two κ-bit prime number, G and GT are two
finite cyclic multiplicative groups of composite order N , g ∈
G is a generator, and e : G×G→ GT is a bilinear map with
the following properties:
• Bilinearity e(ga, hb) = e(g, h)ab for any (g, h) ∈ G2 and
a, b ∈ ZN .

• Nondegeneracy If g is a generator of G, then e(g, g) is a
generator of GT with order N .

• Computability There exists an efficient algorithm to
compute e(g, h) ∈ GT for all (g, h) ∈ G.

Let g be a generator of G, then g′ = gq ∈ G can
generate the subgroup Gp = {g′0, g′1, . . . , g′p−1} of order
p, and g′′ = gp ∈ G can generate the subgroup Gq =
{g′′0, g′′1, . . . , g′′q−1} of order q in G. The SubGroup Deci-
sion (SGD) Problem in G is stated as follows [11]: given
a tuple (N , g,G,GT , e, h), where the element h is drawn
randomly from either G or subgroup Gq, decide whether
h ∈ Gq or not. When we assume that the SGD problem is
hard, the security of the BGN homomorphic encryption can
be ensured [11].

B. BGN HOMOMORPHIC ENCRYPTION
The Boneh-Goh-Nissim (BGN) homomorphic encryption
includes three algorithms: key generation, encryption, and
decryption. The details are described as follows.

FIGURE 2. Examples of keywords-vector transformations.

• Key Generation: Given a security parameter κ , run
Gen(κ) to get a tuple (N , g,G,GT , e) as described in
Section III-A. The g ∈ G is a generator of order N ,
N = pq and p, q are κ-bit prime numbers. Set h = gq,
then h is a random generator of the subgroup of G of
order p. The private key is sk = p and the corresponding
public key is pk = (N ,G,GT , e, g, h).

• Encryption: We assume the message space consists of
integers in the set S = {0, 1, . . . ,1}, the size of set S is
application-oriented and much smaller than q, i.e.,1�
q. To encrypt a message m ∈ S, we choose a random
number r ∈ ZN , and compute the ciphertext c =
E(m, r) = gmhr ∈ G.

• Decryption:Given the ciphertext c = E(m, r) = gmhr ∈
G, the corresponding message can be recovered by the
private key p. Observe that cp = (gmhr )p = (gp)m,
we can set ĝ = gp. Then, to recover m, it suffices to
compute the discrete log of cp base ĝ. Since 0 ≤ m ≤ 1,
the expected time is around O(

√
1) when using the

Pollard’s lambda method [12] (p.128).

IV. THE PROPOSED SCHEME
In this section, we will present our new privacy-preserving
multi-keyword conjunctive query scheme. Before delving
into the details, we first introduce two keywords-vector trans-
formation methods which are basic building blocks of the
proposed scheme.

A. KEYWORDS-VECTOR TRANSFORMATION METHODS
In order to accurately describe the construction of index and
query requests, we define two keywords-vector transforma-
tion methods, which transform a set of keywords to a 1 × d
vector. Let W = {ω1, ω2, . . . , ωd } be a keyword dictionary,
and then the two methods are described as follows:

• Basic keywords-vector transformation method: The first
method transforms a set of keywordsW ′ ⊆W to a 1×d
vector V ′ = {k0, k1, . . . , kd−1}, where ki ∈ {0, 1}. This
method will be used to transfer a file to a file vector in
our proposed scheme later. Specifically, it first initializes
a 1×d vector V ′ = (0, 0, . . . , 0). Then, it checks the set
of keywords W ′ and sets ki−1 = 1 for each ωi ∈ W ′.
As shown in Fig. 2(a), a set of keywordsW ′ = {ω1, ω3}

is transformed to a vectorV ′ = (1, 0, 1, 0, . . . , 0), where
k0, k2 = 1 and other elements are set to 0.

• Expressive keywords-vector transformation method:
The second method transforms a set of keywords
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FIGURE 3. An example of index construction with height d = 3. (a) Build a conjunctive tree (perfect binary tree) with 2d = 23 = 8 leaf nodes. Each
root-to-leaf path in the conjunctive tree is associated with a set of file identifiers whose keywords satisfy the path. For example, all the files in ID6 have
the keyword set W6 = {ω1, ω2}. (b) Randomly permute the sibling nodes in conjunctive tree where the permutations at the same level follow the same
rule. (c) Replace the permuted conjunctive tree with a permuted tag array to save the storage. (d) Encrypt the tags in the permuted tag array T through
the secret keys generated in the system initialization.

W ′′ ⊆ W to a 1 × d vector V ′′ = {k0, k1, . . . , kd−1},
where ki ∈ {0, 1, ∗}. This method will be used to
transfer a multi-keyword query to a query vector in our
proposed scheme later. Different from the basic one, this
method considers more complex situation that the set
of keywords W ′′ = {ω1, ω3,¬ω4} concerns not only
the keywords (e.g., ω1, ω3) but also the NOT queried
keywords (e.g.,¬ω4). For eachωi ∈W ′′, ki−1 is set to 1,
and for each ¬ωj ∈ W ′′, kj−1 is set to 0. At the same
time, the rest of keywords in the keyword dictionary,
i.e., W \ W ′′, are called wildcard keywords. For each
wildcard keywordωz ∈W\W ′′, kz−1 is set to ∗. As seen
in Fig. 2, W ′′ = {ω1, ω3,¬ω4} can be transformed to
V ′′ = {1, ∗, 1, 0, · · · , ∗}where the k0, k2 are set to be 1,
k3 are set to 0, and other elements are set to ∗.

B. DESCRIPTION OF OUR PROPOSED SCHEME
In this subsection, we describe our proposed query scheme,
whichmainly consists of four phases: i) System Initialization;
ii) Local File Outsourcing; iii) Multi-keyword Conjunctive
Query; and iv) File Update.

1) SYSTEM INITIALIZATION
Given a security parameter κ , the data user first runs Gen(κ)
algorithm of BGN cryptosystem to get the public key pk =
(N ,G,GT , e, g, h) and the corresponding private key sk = p.
Next, the data user chooses the Advanced Encryption Stan-
dard (AES) algorithm as the basic encryption algorithm and
selects a random number K as its secret key. Further, the data
user initializes a one-way hash function H : {0, 1}∗ −→ ZN
and chooses two random numbers R0,R1 from ZN . Finally,
the data user keeps {K , sk,R0,R1} and keyword dictionary
W secret (stored in local), then sends {pk,H} to the cloud
server.

2) LOCAL DATA OUTSOURCING
Consider the data user has a file collection F =

{f1, f2, . . . , fn}, where each fj ∈ F includes a set of keywords

Wj ⊆ W = {ω1, ω2, . . . , ωd } and an unique identifier idj.
Then the data user builds an encrypted index and an encrypted
file collection as following steps:
Step 1: For each file fj ∈ F , the data user transforms

its Wj to a 1 × d vector Vj = (k0, k1, . . . , kd−1), called its
file vector, through the basic keywords-vector transformation
method mentioned before (see IV-A).
Step 2: In order to support efficient conjunctive query,

the data user builds an index, which consists of a tree and
an array, to support efficient conjunctive query.
• First, the data user builds a full binary tree with d height,
called conjunctive tree (see Fig. 3(a)), to represent all
the files in F . In specific, the conjunctive tree stores
a bit t ∈ {0, 1}, called tag, for each node (except the
root): t = 0/1 if the node is left/right child of its parent.
Based on these tags, the conjunctive tree labels each
leaf Nl (0 ≤ l ≤ 2d − 1) with a 1 × d binary vector
Pl = (t0, t1, . . . , td−1), called a path vector, which
consists of d tags stored in the nodes along the Nl’s root-
to-leaf path (except the root). Then, each path vector
Pl = (t0, t1, . . . , td−1) is seen as a file vector, in which
ti = 1/0 means the keyword ωi is included/not included
in the file. In this way, the conjunctive tree associates
each leaf Nl with a set of files, whose identifiers are
expressed as IDl = {idj|fj ∈ F ,Vj = Pl}. For the exam-
ple in Fig. 3(a), given a dictionary W = {ω1, ω2, ω3},
the data user builds a conjunctive tree with height d = 3,
which associates the leaf N6 (shown in gray) with a set
of files, whose identifiers form the ID6.

• Second, in order to support the wildcard search algo-
rithm described later (see Alg. 1), the data user builds
a 1× 2d array, called path-ids, to store all the sets of file
identifiers. Specifically, the path-ids stores IDl (0 ≤ l ≤
2d − 1) in the l location.

Step 3: In order to protect the privacy of path vectors,
the data user transforms the conjunctive tree and the path-ids
array to a permuted conjunctive tree and a permuted path-ids
array as follows:
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Algorithm 1 Search(Encrypted Query Vector E(Q),
Encrypted Tag Array T )
1: initialize a wildcard offset stack s
2: initialize a 1× d path vector P
3: initialize a path vector set P
4: for each i in [0, . . . , d − 1] do F Basic search
5: if E(ki) == ∗ then
6: s.push(i); P[i] = 0
7: else if T [i] == e(E(ki), h) then
8: P[i] = 0
9: else
10: P[i] = 1
11: P = {P}
12: while stack s is not empty do F wildcard search
13: i = s.top(); s.pop();
14: copy all elements in P to a new vector set P′
15: for each P′ in P′ do
16: P′[i] = 1
17: P = P ∪ P′
18: return P

• First, the data user randomly permutes the locations
of sibling nodes in the conjunctive tree. Specifically,
the data user chooses a number δi ∈ {0, 1} for each level
i (0 ≤ i ≤ d − 1). If δi = 1, the data user permutes the
sibling nodes at the level i; otherwise, no permutation
performs. Note that, the permutations at the same level
must follow the same rule, which is necessary for the
cloud server to perform wildcard search (see Alg. 1).
After these random permutations, the path vector of each
leaf Nl is transformed from Pl = (t0, t1, . . . , td−1) to
a permuted path vector P′l = (t ′0, t

′

1, . . . , t
′

d−1), where
t ′i = ti ⊕ δi (0 ≤ i ≤ d − 1). As seen in Fig. 3(a-b),
the data user randomly chooses (δ1, δ2, δ3) = (1, 0, 1)
and then conducts permutations at the level 0 and level 2.
After these permutations, the path vector P6 = (1, 1, 0)
of N6 is transformed to P′6 = (0, 1, 1) (shown in gray).

• Second, the data user permutes the locations of elements
in the path-ids array according to the permutations in
conjunctive tree; that is, the location of IDl (0 ≤ l ≤
2d − 1) in permuted array follows the location of Nl
in permuted conjunctive tree. As shown in Fig. 3(a-b),
after permutations, the ID6 in path-ids array is moved
from the 6-th location to the 3-th location, which is
corresponding to N6.

Step 4: Since the permuted conjunctive tree permutes sib-
ling nodes at the same level with the same rule, each level
on the tree only has two tag values, one for left children
and the other for right children. Therefore, the data user can
reduce the permuted conjunctive tree to a d × 2 array, called
a permuted tag array. In specific, each element stored in the
permuted tag array can be expressed as ti,s ∈ {0, 1}, where
i ∈ [0, d − 1] represents the level number and s ∈ {l, r}
represents either left (s = l) or right (s = r) children. For
example, in Fig. 3(b-c), since the permuted conjunctive tree

stores tag 1 in the left children at level 0, permuted tag array
sets t0,l = 1.
Step 5: In order to protect the privacy of path vectors and

file identifiers, the data user encrypts the permuted tag array
and permuted path-ids array as follows:

• For each ti,s ∈ {0, 1} in the permuted tag array, the data
user encrypts it as

ci,s = e(g, g)H (Rti,s ||i)·q ∈ GT (1)

where R0 and R1 are two random numbers only known
by the data user. Note that, the data user just outsources
one column of the encrypted tag array, e.g., left children
(shown in gray), to the cloud server, which is enough for
the cloud server to conduct query processing.

• For each element IDl (0 ≤ l ≤ 2d − 1) in the permuted
path-ids array, the data user uses AES encryption to
encrypt it as AESK (IDl).

Step 6: Finally, the data user encrypts each file fj ∈ F
through AES encryption and sends these encrypted files to
the cloud server with the encrypted tag array and encrypted
path-ids array.

3) CONJUNCTIVE QUERY
Given a keyword set W ′ ⊆ W , which includes queried
keywords and NOT queried keywords, the data user launches
a privacy-preserving multi-keyword conjunctive query with
the cloud server in the following steps:
Step 1: The data user first transformsW ′ to a query vector

Q = (k0, k1, . . . , kd−1) ⊆ {0, 1, ∗}d through the expres-
sive keywords-vector transformation method. Then the data
user chooses d random numbers r0, r1, . . . , rd−1 from the
ZN , encrypts the Q as E(Q) = (E(k0),E(k1), . . . ,E(kd−1)),
where

E(ki) =

{
gH (Rki ||i)+p·ri , if ki 6= ∗
∗, if ki = ∗

(2)

and sends E(Q) to the cloud server.
Step 2: After receiving the E(Q), the cloud server authen-

ticates the query request and rejects the illegal one.
Step 3: If the query request passes the authentication,

the cloud server performs the search algorithm 1 to find the
matching leaves. The details are as follows:

• Initialization: This algorithm initializes an empty stack s
to store the locations of wildcard keywords in the query,
a 1× d vector P to store the first matching result, and a
set P to store all the matching results (lines 1-3).

• Basic search: For each i (0 ≤ i ≤ d − 1), the algorithm
computes e(E(ki), h) and compares it with the i-th ele-
ment of the encrypted tag array T . If e(E(ki), h) = T [i],
it sets P[i] = 0; otherwise, it sets P[i] = 1. Note that,
if there is a wildcard keyword in the query, the algorithm
records its location to the stack s and sets P[i] = 0
without comparison. Finally, the algorithm inserts P to
the P (lines 4-11).
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FIGURE 4. An example of query, where the query vector is {1, 0, 0} and
AESK (ID4) is supposed to be returned.

• Wildcard search:Thewildcard search algorithm extracts
all the locations of wildcard keywords from s. For each
location i, it copies all the elements in the set P as a set
of backup elements, modifies the i-th location value of
these backup elements from 0 to 1, and adds them back
to the P (lines 12-17).

Fig. 4 depicts an example of query, where the query vector
is {1, 0, 0} and AESK (ID4) is supposed to be returned. In this
example, the P outputted from the search algorithm 1 only
contains one path vector, i.e., (0, 0, 1), because there is no ∗
in the query vector.
Step 4:According to the path vectors in P, the cloud server

extracts the corresponding elements from the encrypted path-
ids array and returns these elements to the data user, who runs
AES decryption algorithm to get the identifiers of matching
files. As shown in Fig. 4, the cloud server extracts 2-th
element from encrypted path-ids array, i.e., AESK (ID4), since
the path vector in P is (0, 0, 1).
Step 5: Finally, the data user requests the correspond-

ing encrypted files from the cloud server according to the
identifiers.

4) FILE UPDATE
Given a file fu with a set of keywordsWu and a file identifier
idu, the data user updates (inserts/deletes) it to the cloud
server in the following steps:
Step 1: The data user transformsWu to a 1× d file vector

Vu through the basic keyword-vector transformation method.
Then, in order to protect the privacy of the update, the data
user randomly inserts λ wildcards (i.e., ∗) to the Vu, where
the λ is a redundancy factor chosen according to the security
level of the system.
Step 2: The data user treats the vector Vu, generated from

the last step, as a query vector Q, and performs a con-
junctive query with the cloud server. After that, the data
user will receive 2λ encrypted identifier sets from the
cloud server and then decrypt them. Next, the data user

FIGURE 5. An example of dictionary division, where a tree with d height
is divided to a forest with L sub-trees of d/L height.

updates(inserts/deletes) idu to the identifier set whose path
vector is equal to Vu. Finally, the data user re-encrypts all
these identifier sets and sends them to the cloud server.
Step 3: If the update operation is insertion, the data user

needs to encrypt the file fu to AESk (fu) and sends the AESk (fu)
to the cloud server.

Note. Since the size of the encrypted path-ids array
increases exponentially with the size of keyword dictionary
(i.e., d), the computation and storage cost of the proposed
scheme will be huge if the d is relatively large. In order
to solve this problem, the data user can divide the keyword
dictionary into sub-groups by their categories and use the pro-
posed scheme separately on each sub-group. For the example
in Fig. 5, the data user divides the keyword dictionary W =
{ω1, ω2, . . . , ωd } into L sub-groups: W1, W2, . . ., WL . For
each sub-group, the data user treats it as a separate keyword
dictionary and applies the proposed scheme on it to get an
independent index. During a query, the cloud server conducts
search algorithm for each index respectively, and returns L
encrypted file identifier sets to the data user, who will decrypt
them and calculates the intersection of these file identifier
sets to get the matching results. In this way, the storage
cost can be greatly reduced from O(2d ) to O(L · 2d/L), and
the computational cost can be reduced from O(dq + 2dω ) to
O(dq+L ·2dω/L), where dq is the number of queried keywords
and dω is the number of wildcard keywords.

V. SECURITY ANALYSIS
In this section, we will analyze the security of the proposed
scheme. Specifically, we mainly focus on the privacy of
outsourcing data, conjunctive query, and updated file.

A. OUTSOURCING DATA IS PRIVACY-PRESERVING
In the proposed scheme, the outsourcing data consists of a
collection of encrypted files and an encrypted index. For the
encrypted files, they are encrypted by the AES encryption
(AES-CBC mode) and the security of AES guarantees that
they are privacy-preserving. In the following, we mainly
analyze the privacy of the encrypted index.

The encrypted index includes two data structures, i.e., an
encrypted path-ids array and an encrypted tag array. For the
encrypted path-ids array, each element in it is encrypted by
the AES encryption (AES-CBC mode). Therefore, the secu-
rity of AES encryption guarantees it is privacy-preserving.
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For the encrypted tag array, as described in subsection IV-B,
it is transformed from our conjunctive tree and con-
tains d encrypted elements (only left column), denoted as
{e(g, g)H (Rti ||i)q|i = 1, 2, · · · , d}, where ti ∈ {0, 1} represents
the permutation rule of i-th level of our conjunctive tree. In the
following, we give Theorem 1 to show that the cloud server
cannot get any information about the ti.
Theorem 1: If H is a secure cryptographic hash function,

the cloud server cannot get any information about ti (1 ≤
i ≤ d) from the encrypted tag array.

Proof: We prove the theorem from the follow-
ing two aspects. First, we consider an encrypted element
e(g, g)H (Rti ||i)q individually. On the one hand, although
e(g, g)q can be calculated by the cloud server, the cloud server
cannot directly calculate the Rti from the e(g, g)H (Rti ||i)q

becauseH is a one-way function. On the other hand, the cloud
server cannot exhaust all possible Rti to make sure the value
of Rti because the R0,R1 are randomly chosen from ZN
and N is a very large number (1024-bit). Thus, the cloud
server cannot get any information about Rti . Then, it only
has 1/2 probability to correctly guess ti = 0 or ti = 1.
Second, we consider the relation between different encrypted
elements. For each encrypted elements e(g, g)H (Rti ||i)q, Rti
is concatenated with a unique level number i before being
encrypted, which means all the encrypted elements have
different hash inputs (i.e., Rti ||i) and unlinkable hash out-
puts (i.e., H (Rti ||i)). Thus, given any two encrypted elements
e(g, g)

H (Rti1
||i1)q and e(g, g)

H (Rti2
||i2)q, the cloud server cannot

know any information about the relation between Rti1 and
Rti1 , i.e., ti1 = ti2 or ti1 6= ti2 .

Therefore, the cloud server cannot get any information
about ti (1 ≤ i ≤ d) from the encrypted tag array. �

Based on the Theorem 1, we also can obtain that the cloud
server cannot get any information about the permutation rules
of the conjunctive tree since each ti (1 ≤ i ≤ d) represents
the permutation rule of i-th level of our conjunctive tree.
Furthermore, given any leaf in the encrypted conjunctive tree,
the cloud server only has 1/2d probability to correctly guess
its original location. In other words, our conjunctive tree is
privacy-preserving.

B. CONJUNCTIVE QUERY IS PRIVACY-PRESERVING
The conjunctive query consists of three steps: query request,
query processing and query response. We consider different
attackers in different steps: for the query request and query
response, we focus on the attack from the outside entity, who
tries to determine whether two queries have the same queried
keywords; for the query processing, we focus on the attack
from the cloud server, who is curious about the content of
queries. In the following, we will show that these steps are all
privacy-preserving.

In the query request, the data user encrypts a query vector
Q = (k0, k1, . . . , kd−1) to an encrypted query vector E(Q) =
(E(k0),E(k1), . . . ,E(kd−1)). Specifically, for each ki ∈ Q,
the data user encrypts it to E(ki) = gH (Rki ||i)+pri (see Eq. (2)),

which guarantees ki is secure. Meanwhile, since the data user
selects a random value ri for each query, the above encryption
is non-deterministic. In other word, for the same query vector
Q, the ciphertext E(Q) will be different at different runs.
Therefore, the outside entity cannot determine whether two
queries have the same queried keywords.

In the query processing, after receiving the encrypted query
vector E(Q) = (E(k0),E(k1), . . . ,E(kd−1), the cloud server
computes e(E(ki), h) and compares it with the i-th element in
the encrypted tag array for each i. Then, the cloud server can
get the queried permuted path vectors for this query. Since
the permuted path vectors will not expose any information of
path vectors, we can see that the query processing will not
leak any information except the access pattern (i.e., search
result) and search pattern (i.e., which queries have the same
queried keywords) to the cloud server.

In the query response, the cloud server responds the
queried encrypted file identifier sets, which is encrypted by
AES encryption (AES-CBCmode), to the data user. Since the
AES-CBC mode can be non-deterministic, e.g., by inserting
a random number as the first block, the outside entity can-
not determine whether two queries have the same queried
keywords.

C. UPDATED FILE IS PRIVACY-PRESERVING
In the update, given a file identifier idu and a file vector vu,
the data user first randomly inserts λ wildcards, i.e., redun-
dancy, to the vu and performs a multi-keyword conjunctive
query request to retrieve 2λ encrypted identifier sets. Then,
the data user decrypts all these encrypted file identifier sets,
updates one of them (i.e., IDu), and re-encrypts them through
AES encryption (AES-CBC mode). Since the AES-CBC
mode can be non-deterministic, e.g., by inserting a random
number in the first block, the cloud server cannot distin-
guish which identifier set has been modified. As a result,
the updated file is privacy-preserving. Note that, this privacy
depends on the size of redundancy factor λ, which thus
leads to a tradeoff between the security and communication
overhead.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
scheme from both theoretical and experimental perspectives.

A. THEORETICAL ANALYSIS
In this subsection, we theoretically analyze the performance
of our proposed scheme. Since our design goal is to improve
the query efficiency, we focus on analyzing the computational
cost and communication overhead of the query. At the same
time, we compare it with some traditional algorithms.

In our proposed scheme, the search algorithm includes
two steps: basic search and wildcard search (see Alg. 1).
Assume d is the size of keyword dictionary, dq is the number
of queried keywords, and dω = d − dq is the number of
wildcard keywords. Then the basic search will cost dq pairing
operations, and the wildcard search will cost 2dω string copy
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TABLE 2. Comparisons between ours and existing schemes.

operations. Since we consider relatively small dω and the cost
of a string copy operation is very small, the 2dω string copy
operations can be ignored. Therefore, our query computa-
tional cost is approximately equal to O(dq), which is signif-
icantly more efficient than [8], [10], [13], [14] according to
the TABLE 2.Meanwhile, during a query, the communication
overhead in our scheme is O(dq + nq), where O(dq) is from
the query request andO(nq) is from the query response. From
the TABLE 2, we can see that this communication overhead
is already optimal in the existing schemes.

B. EXPERIMENTAL ANALYSIS
In this subsection, we experimentally analyze the computa-
tional cost of our proposed scheme. Since we have theoreti-
cally compared our solution with others in the last subsection,
we just implement our solution here.

We evaluate the computational cost of our proposed
scheme in terms of three phases: local data outsourcing, con-
junctive query and file update. Specifically, we implement the
proposed scheme in C/C++ (our code is open source [15])
and conduct experiments on a 64-bit machine with an Intel(R)
Core(TM) i5-4300M CPU at 2.6GHZ and 4GB RAM, run-
ningCentOS 6.6.We utilize theOpenSSL and PBC library for
the entailed cryptographic operations: the BGN parameters
are generated through the type a1 pairing in PBC library,
which is constructed on the curve y2 = x3 + x (the group
order N is a 1024-bit number); the hash function H (·) and
AES are instantiated using SHA-512 and AES-512-CBC in
the OpenSSL library respectively. Note that, we implement
the data user and the cloud server on the same machine,
which means there is no network delay between them. In
addition, our experiments are based on different synthetic file
collections, which consist of 1 × d binary vectors (i.e., file
vectors) chosen randomly. The size of file collections is from
10000 to 60000, and the size of keyword dictionary d is from
5 to 10. In the following, we will show our experiment results
and analyze them.

1) LOCAL DATA OUTSOURCING
First, we evaluate the computational cost of local data out-
sourcing. In our proposed scheme, the computational cost of
local data outsourcing is mainly from two parts: building the
encrypted tag array and building the encrypted path-ids array.

FIGURE 6. Local file outsourcing runtime versus the size of file collection
n without division, where d ∈ {6, 8, 10} and L = 1.

FIGURE 7. Local file outsourcing runtime versus the size of file collection
n with division, where d = 20 and L ∈ {1, 2}.

To be more specific, we assume the size of file collection is
n and keyword dictionary is d . Then the first part will cost d
modular exponentiations in groupGT and the second part will
cost 2d AES encryptions. As shown in Fig. 6, the runtime of
local data outsourcing versus the size of file collection (i.e., n)
is plotted, where the keyword dictionary d ∈ {6, 8, 10}. From
this figure, we can see that the computational cost increases
linearly with n and exponentially with d .

When the d is relatively large, the proposed scheme would
be impractical because of the 2d AES encryptions. To solve
this problem, the data user can divide keyword dictionary into
L sub-groups and apply the proposed scheme on each sub-
group separately. In this way, the computational cost of AES
encryptions can be reduced from 2d to L ·2d/L . Fig. 7 depicts
the local data outsourcing runtime versus the size of file
collection with different divisional size L, where d = 20 and
L ∈ {1, 2}. This figure shows that this exponential growth of
computational cost can be effectively limited by the division.
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FIGURE 8. Basic keyword query runtime versus the size of file
collection n, where 6 ≤ d ≤ 10.

2) CONJUNCTIVE QUERY
Then, we evaluate the computational cost on two types of
keyword queries: basic query and wildcard keyword query.
For the former, there is no wildcard keyword included in the
query so that the cloud server only needs to find the first
matching permuted path vector, which only requires d pairing
operations. For the latter, there are multiple permuted path
vectors satisfying the query. Assume the number of wildcard
keywords in the query is dw, then the cloud server needs
to perform d − dw pairing operations for the first matching
permuted path vector and 2dw string copy operations for the
rest.

In Fig. 8, the runtime of basic keyword query versus the
size of file collection is plotted. From this figure, we can see
that the computational cost is indeed linearly increasing to d ,
but not affected by the n.
Fig. 9 depicts the runtime of wildcard keyword query

versus the number of wildcard keywords (i.e., dw). In this
evaluation, we use the fixed size of keyword dictionary (d =
10) and file collection (n = 6×104). From this figure, we can
see that the runtime decreases as the dw increases because the
computational cost of a pairing operation is much larger than
a string copy operation. In order to clarify this, we let Te and
Tc denote the computational cost of a pairing operation and
a string copy operation respectively. Then the computational
cost of a wildcard keyword query is (d−dw)·Te+2dw ·Tc. This
formula shows that when the dw is relative small, we can get
dw ·Te > 2dw ·Tc, which means the increasing dw will reduce
the computational cost.

3) UPDATE
Finally, we consider the computational cost on the update.
According to the previous description (see IV-B.4), the data
user adds redundancies in the update request to protect the
privacy. In this way, the update can be seen as a wildcard
keyword query, whose query vector has λwildcard keywords.
Therefore, the runtime of update(insertion/deletion) is the
same as the wildcard keyword query with dw = λ.

FIGURE 9. Wildcard keyword query runtime versus the number of
wildcard keywords, where d = 10 and n = 6× 104.

VII. RELATED WORK
In the single user/single server system, a searchable encryp-
tion scheme can be realized with optimal security via
powerful cryptographic tools, such as Fully Homomorphic
Encryption (FHE) [2], [16] and Oblivious Random Access
Memory (ORAM) [3], [17]. However, these tools are extraor-
dinary impractical. Another set of works utilize property-
preserving encryption (PPE) [4], [18]–[20], which encrypts
messages in a way that inevitably leaks certain proper-
ties of the underlying message. For balancing the leakage
and efficiency, many studies focus on Searchable Sym-
metric Encryption (SSE). Song et al. [21] first used the
symmetric encryption to facilitate keyword search over the
encrypted data. Then, Curtmola et al. [22] gave a formal
definition of SSE, and proposed an efficient SSE scheme.
However, their scheme cannot support update(insertion/
deletion). Later, Kamara et al. [23] proposed the first dynamic
SSE scheme, which uses a deletion array and a homomorphic
encrypted pointer technique to securely update files. Unfor-
tunately, due to the use of fully homomorphic encryption,
the update efficiency is very low. In a more recent paper [24],
Cash et al. described a simple dynamic inverted index based
on [22], which utilizes the data unlinkability of hash table to
achieve secure insertion. However, this paper uses a revoca-
tion list to implement deletion instead of actually removing a
record from the inverted index, which will cause the storage
and computation overhead continue to increase.

Our work follows the previous works but focuses on the
multi-keyword conjunctive query. In the rest of this section,
we briefly review some recently proposed privacy-preserving
multi-keyword conjunctive query schemes. Golle et al. [13]
proposed the first scheme to support conjunctive queries.
In this scheme, they build a forward index for each file,
whichmeans the cloud server needs to traverse all the forward
indexes during search. Therefore, the query computational
cost of this scheme is linear in the number of files. In [10],
Bing et al. proposed a scheme which uses a private set
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intersection (PSI) technique (based on Paillier encryption)
to solve the conjunctive query problem. However, the com-
putational cost of query is O(d2), where d is the size of
the keyword dictionary. In [8] and [14], the authors used an
Oblivious Cross-Tag (OXT) protocol to support conjunctive
queries. This protocol builds two indexes, one of which is an
inverted index TSet and another is a forward index XSet. The
TSet is used to search for a single keyword, and the XSet
is used to filter out unnecessary file identifiers from TSet
such that only those contain all the keywords are returned.
The OXT protocol can be extended to process any form of
boolean query, but it takes time linear in the number of files
to search in the worst case. Base on the [8], Hu et al. [9]
used function-hiding inner product encryption (IPE) [25]
to implement forward indexes, which can achieve forward
security. Unfortunately, the search efficiency is still linear in
the number of files.

Different from the above works, our proposed scheme can
achieve approximate O(dq) computation efficiency for the
multi-keyword conjunctive query (see TABLE 2), where dq
is the number of queried keywords in the query. Besides,
the proposed scheme also supports NOT operation for queried
keywords, which is difficult for the prior works.

VIII. CONCLUSION
In this paper, we have proposed a novel efficient
and privacy-preserving multi-keyword conjunctive query
scheme. Specifically, we designed a tree-based index to
support multi-keyword conjunctive query, and a wildcard
search method to speed up the query processing for wildcard
keywords. In addition, we utilize the permutation and BGN
algorithm to hide the order information (i.e., path vector)
leaked from the tree-based index. Security analysis shows
the proposed scheme is privacy-preserving and performance
evaluation also validates its efficiency. In the future work,
we will take more security properties into consideration, e.g.,
forward security and backward security. Furthermore, wewill
study the efficient problem of the fuzzy query.
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