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ABSTRACT The intermittent characteristics of microgrids (MGs) havemotivated the development of energy
management systems (EMSs) in order to optimize the use of distributed energy resources. In current studies,
the implementation of an EMS followed by experimental-based analyses for both grid-tied and stand-alone
MG operation modes is often neglected. Additionally, the design of a management strategy that is capable
of preserving the storage device lifetime in battery-based MGs using a power gradient approach is hardly
seen in the literature. In this context, this work presents the application of an EMS for battery-based MGs
which is suitable for both grid-tied and stand-alone operation modes. The proposed EMS is formulated as
an optimal power flow (OPF) problem using the ε-constraint method which is responsible for computing
the current references used by the EMS to control the MG sources. In the optimization problem, the total
generation cost is minimized such that the active power losses are kept within pre-established boundaries,
and a battery management strategy based on power gradient limitation is included. Finally, the effectiveness
of the proposed EMS is evaluated by two scenarios which enable detailed analyses and validation. The first
considers a dispatchable and a non-dispatchable source, whereas the second a dispatchable source and a
storage device. The experimental results showed that the proposed EMS is efficient in both operation modes
and is also capable of smoothing the state of charge (SoC) behavior of the storage device.

INDEX TERMS Battery power gradient, distributed generation, energy management system, microgrid,
optimal power flow, storage device.

I. INTRODUCTION
The connection of distributed generators (DGs) to electrical
power systems and the renewable energy sources intermittent
characteristics have motivated the study of energy manage-
ment strategies to optimize microgrids (MGs) operations,
therefore improving DGs performance in an intelligent, safe,
reliable and coordinated way [1].

The control concepts applied to MGs are established hier-
archically through the primary, secondary and tertiary levels.
The energy management is executed at the tertiary level by

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Li.

solving an optimal power flow (OPF) problem which opti-
mizes the energy resources usage [2]. This is performed based
on an objective function differentiation. Typically, the OPF
considers power balance constraints, emission of pollutants,
fuel cost, performance, security boundaries, power sharing
and stability [1], [3]–[9].

Basically, an energy management system (EMS) is
addressed following either a decentralized or a centralized
architecture. In the former, the management strategy runs
locally with slow communication links. In the latter, on the
other hand, it operates on the highest control layer and fast
communication links are required [10]. The advantage of the
centralized approach is that the EMS configuration provides
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broad observability of the MGs, which promotes optimal
overall operation in terms of voltage and current (amplitude
and phase) minimal requirements to run an optimization algo-
rithm which computes each operating point that will be sent
to the DGs.

In terms of MGs applications, it is important to state that
although the centralized approach incorporates the aforemen-
tioned advantages, the data communication link between the
control unit and the management unit must be implemented
in a way to avoid unnecessary power consumption and data
congestion, leading to low efficiency and additional delays,
thus compromising the EMS performance. Depending on the
amount of data demanded by the management unit and the
MG size, the event trigger or data-driven strategy for data
processing and communication can be suitably used to reduce
or overcome these issues [11], [12].

Unfortunately, there are conditions where the centralized
EMS algorithm does not consider connection impedances
among sources, in which case the equality constraints are
solely described by the power balance at the point of com-
mon coupling (PCC) [13]–[16]. However, when impedances
are considered, the equality constraints are given by power
flow equations and the MG buses voltage constraints can be
introduced into theOPF formulation [6], [9], [17]. In this way,
the optimization algorithm is capable of finding solutions
in which the voltages are kept within the limits established
according to power quality standards.

In general, the OPF problem optimizes multi-objective
functions using heuristic-based methods, such as genetic
algorithm, ant colony and particle swarm, or even classical
methods as weighted sum and ε-constraint [6], [7], [9], [16],
[18]–[20]. The heuristic-based methods are procedures in
which the gradient information is not used into the searching
process [18]. Although these methods find feasible solutions
for the objective function, they do not ensure optimality [21].

Some proposed algorithms solve the OPF problem by
using the weighted sum method that assigns weights for
the objectives and transforms the multi-objective searching
into a mono-objective problem [9]. Even though weighted
sum methods are intuitive and easy to approach, it does
not find the optimal Pareto’s solutions when the problem is
non-convex, which is the case of the OPF [18]. In addition,
the normalization and the weights assigned to each function
have to be performed accurately, since it is important that
the weights express the different objectives real effect [18].
The ε-constraint method is an alternative solution to reduce
the difficulties of the weighted sumwhen solving non-convex
problems. This method optimizes one objective and considers
the others as inequality constraints [18].

The MGs operate in grid-tied and stand-alone modes.
Nevertheless, in the majority of papers only one of them
is evaluated, where the droop controller technique is usu-
ally employed to ensure power sharing among the DGs and
the main grid [4], [9], [14], [22], [23]. However, its dis-
advantage appears when the MG is in stand-alone mode,
where a secondary control loop is required to correct the

steady-state voltage and frequency deviations caused by the
droop controllers.

Alternatively, a switching control strategy can be used as
another technique to keep MGs in proper operation. In this
case, the operation in the grid-tied mode is performed by reg-
ulating theDGs output currents injected into the grid, whereas
in the stand-alonemode the voltage and frequency regulations
are performed according to a master DG with slave DGs
operating in current control mode [16]. This approach is
addressed in [16], [24] and [25]. However, the power flow
equations and battery power gradient are not considered as
constraints, what leads to an untied bus voltage and battery
lifetime degradation, respectively.

As for batteries, the power gradient, the large state of
charge (SoC) variations (>50%), the charging and discharg-
ing cycles and the idle-time are commonly responsible to
speed-up the battery degradation [8], [26]–[28]. An effec-
tive solution for saving the device lifetime, which is usually
approached in the literature, is based on the battery power
gradient limitation introduced in the objective function or
in the optimization problem constraints [8], [17]. In [17],
a quadratic term was inserted into the objective function
to penalize high rates of power variation in the storage
devices. Nevertheless, this type of procedure underuses the
battery power delivery capability and thus increases opera-
tional costs. In order to overcome this drawback, an inequality
constraint that limits the power gradient can be included in
the OPF problem formulation [8]. However, this constraint
alone does not ensure the optimization algorithm convergence
along all the operating points, specifically when the SoC
reaches its minimum or maximum thresholds.

This work proposes an optimal centralized EMS for
grid-tied and stand-aloneMGs composed by dispatchable and
non-dispatchable sources, as well as energy storage devices.
In a way to reduce the weighted sum method implementation
difficulties, which are related to the weights definition and
the objectives normalization values, the EMS optimization
algorithm is based on the solution of an OPF problem per-
formed according to the ε-constraint method. This algorithm
minimizes the MG total generating cost and keeps the active
power losses below a pre-established value. Since batteries
are expensive devices in MGs, an additional power gradient
constraint which is set to prevent its degradation and thus
preserve their lifetime was introduced in the optimization
problem formulation. Experimental tests were carried out to
evaluate the proposed EMS in terms of MG energy manage-
ment and effectiveness in reducing battery degradation by
avoiding high battery power and SoC gradients.

II. SYSTEM DESCRIPTION
TheMG studied in this work is composed by two three-phase
voltage source inverters (VSIs). These VSIs are connected to
the main grid through LCL filters, leading to the three buses
shown in Fig. 1.

The buses 1, 2 and 3 correspond to the connection
point of the two capacitors and the PCC, respectively. The
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FIGURE 1. Microgrid general diagram with the proposed EMS.

three-phase currents of the LCL filters flowing through the
input inductors (Li) are iabciinv1

and iabciinv2
, whereas those flowing

through the output inductors (Lo) are iabcoinv1 and iabcoinv2 . In the
proposed approach, the three-phase voltages measured on
buses 1, 2 and 3 correspond to vabc1 , vabc2 and vabc3 , and
the current flowing through the grid is represented by iabcgrid .
Local loads are connected to the bus 3 and their three-phase
currents are denoted as iabcload . Moreover, the voltage vabcgrid is
used to synchronize and connect the inverters to the grid. The
circuit breakers K1 and K2 can be closed to form the MG,
while the circuit breaker Kgrid is responsible for switching
the MG between grid-tied and stand-alone operation modes.

The design of controllers is performed according to the pro-
cedures shown in [29].

III. PROPOSED ENERGY MANAGEMENT SYSTEM
The proposed EMS structure is composed by a data pro-
cessing unit and a control unit, both running at a frequency
of 10.8 kHz, along with a low-frequency energy management
unit which runs at 0.1 Hz as illustrated in Fig. 1. The EMS
operates by updating the MG energy resources references
with a fixed time-step, named as TEMS , in an online scheme.
The solution of an optimization problem yields proper values
for the references of the EMS.
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FIGURE 2. EMS real-time processing scheme.

Considering that N indicates the current iteration of the
EMS after N TEMS seconds, Fig. 2 illustrates how the entire
algorithm is processed in real-time. The upward arrows rep-
resent the moments where each iteration starts. At the begin-
ning of each iteration, the processor takes Tw seconds to
write the previous iteration optimization results in the vari-
ables associated with the inverters reference currents. In the
sequence, voltage and current measurements are acquired
and the related RMS values are computed, which lasts up to
Tacq seconds. The current iteration optimization step is then
performed in the interval Topt seconds, which is based on the
measured values. The corresponding results are written at the
beginning of the next iteration.

From Fig. 2, it is possible to conclude that the quantity

TEMS − (Tw + Tacq + Topt ) (1)

gives the idle time that prevents the EMS algorithm from los-
ing its real-time synchronization. In this case, the constraint

Tw + Tacq + Topt ≤ TEMS (2)

must be observed to ensure the EMS proper operation.

A. DATA PROCESSING UNIT
In this unit, the measured data are processed, the con-
trol signals are calculated and sent to the inverters, and
the commands are sent to the breakers K1, K2 and Kgrid .
It contains a processor board DS1007, which is responsible
for processing the entire algorithm, a high-speed analog-to-
digital board DS2004 for analog signals acquisition, and a
digital waveform output board DS5101, which is used to
generate the pulse width modulation (PWM) signals to the
inverters.

B. CONTROL UNIT
The control unit is embedded in the real-time platform
dSPACE 1007, where the signal conditioning, the sec-
ond order generalized integrator (SOGI)-based fundamen-
tal frequency estimation algorithm, the frequency locked
loop (FLL) algorithm and the proportional-resonant con-
trollers (PRs) are run along with the RMS and average cur-
rents, voltages and phases values computation. For all control
steps, the Simulink/MATLAB environment is used to pro-
duce the system description file (SDF) according to the MG
description.

FIGURE 3. Calculating the angular frequency and phase difference
between two signals.

The buses 1, 2 and 3 voltages measurements (v), currents
measurements (i) and phases displacements (φ) are defined
as

v = [v(1)1 v(1)2 v(1)3 ] (3)

i = [i(1)oinv1 i
(1)
oinv2 i

(1)
load i

(1)
grid ] (4)

φ = [φ(1)v1 φ
(1)
v2 φ

(1)
v3 φ

(1)
ioinv1

φ
(1)
ioinv2

φ
(1)
igrid φ

(1)
iload

×φ
(1)
v1−ioinv1

φ
(1)
v2−ioinv2

φ
(1)
v3−igrid

φ
(1)
v3−iload

] (5)

where φ(1)v1−ioinv1
and φ(1)v2−ioinv2

are the phases between the
inverters 1 and 2 capacitors voltages and inductors Lo cur-
rents, respectively. The phase displacements φ(1)v3−igrid

and

φ
(1)
v3−iload

are between the PCC voltage and the grid and load
currents, respectively. Furthermore, the phase displacements
φ
(1)
v1 , φ

(1)
v2 , φ

(1)
v3 , φ

(1)
ioinv1

, φ(1)ioinv2
, φ(1)igrid and φ(1)iload are referenced

to the signal v(1)grid . The index (1) refers to the fundamental
frequency.

From v, i and φ, it is possible to calculate the RMS volt-
ages on each bus, the RMS currents and the average phase
displacements, which are denoted as

V = [V1 V2 V3] (6)

I = [Ioinv1 Ioinv1 Iload Igrid ] (7)

8 = [8v1 8v2 8v3 8ioinv1
8ioinv2

8igrid 8iload

×8v1−ioinv1
8v2−ioinv2

8v3−igrid 8v3−iload ]. (8)

As shown in Fig. 3, the extraction of the angular fre-
quency, denoted as ω(1)

signal1
, and the phase difference between

signal1 and signal2, denoted as φ
(1)
signal1−signal2

, are calculated
in the stationary reference frame (αβ) by the SOGI algorithm.
In order to obtain the grid voltage fundamental frequency
(ω(1)

vgrid ), a FLL procedure is used along with the SOGI, form-
ing the SOGI-FLL. Further details about SOGI and FLL
structures can be obtained in [30].

The inverters control loops are implemented in the αβ
frame, as presented in Fig. 4. The control structure is based on
the PR voltage and current controllers, which can be designed
following the procedure in [31]. When the inverters operate
in the voltage control mode, the voltage across the LCL filter
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FIGURE 4. Inverter control loops in the αβ reference frames.

capacitor is adjusted and synchronized with the main grid
according to the references

vα∗ =
√
2V ∗cos(ω(1)

vgrid t) (9)

vβ∗ =
√
2V ∗sin(ω(1)

vgrid t) (10)

in which V ∗ is the root mean square (RMS) phase-to-neutral
grid voltage reference value. In addition, the voltage control
mode is also used to provides MG voltage and frequency
regulations in the stand-alone mode.

In the grid-tied mode, both inverters are set to operate
in current control mode, since the voltage and frequency
are defined by the main grid. In the current control mode,
the current references are calculated by optimization, which
correspond to

iα∗o =
√
2I∗o cos(ω

(1)
io t +8

∗
io ) (11)

iβ∗o =
√
2I∗o sin(ω

(1)
io t +8

∗
io ) (12)

where ω(1)
io is the fundamental angular frequency of the

current flowing through the inductor Lo, extracted from
the SOGI-FLL algorithm, I∗o and 8∗io are the OPF solu-
tion, obtained in the management unit, which is described
next.

C. MANAGEMENT UNIT
The optimization algorithm, responsible for the MG energy
management, runs on this unit. It is implemented in a MAT-
LAB script and yields the solution of the OPF problem estab-
lished according to the flowchart in Fig. 5.

From the RMS and the average values, denoted by V ,
I and 8, the active and reactive powers of the inverters,
the load and the main grid, which are named as

P = [Pinv1 Pinv2 Pload Pgrid ] (13)

Q = [Qinv1 Qinv2 Qload Qgrid ] (14)

can be calculated.
From breaker Kgrid current state, the MG operation mode

is checked. In the sequence, the optimization problem initial
conditions vector, which is denoted as x0, is updated by
using (6), (7), (8), (13) and (14). For the grid-tied mode, x0 is
given as

x0(grt) = [Pinv1 Qinv1 Pgrid Qgrid V1 8v1

×V3 8v3 Pinv2 Qinv2 V2 8v2 SoC] (15)

and, for the stand-alone mode, it is

x0(sta) = [Pinv1 Qinv1 V1 8v1 V3 8v3

×Pinv2 Qinv2 V2 8v2 SoC]. (16)

The vector x0 corresponds to the system real operating
point at the moment that the optimization is performed. After
the vector x0 is updated, the OPF problem is executed accord-
ing to the power flow equations between buses j and k , which
are

Pjk = GjkV 2
j − GjkVjVkcos(8vj −8vk )

+− BjkVjVksen(8vj −8vk ) (17)

Qjk = −BjkV 2
j + BjkVjVkcos(8vj −8vk )

+− GjkVjVksen(8vj −8vk ) (18)

where Gjk and Bjk are the line conductance and susceptance
between j and k buses, respectively. Other inputs of the OPF
problem, which are properly discussed in Section V, are the
renewable source profile along with the inverters and the grid
generation fees, denoted as c1, c2 and c3, respectively.

If the convergence of the OPF reaches the specified tol-
erance, the algorithm computes the RMS current and phase
displacement references for each inverter, yielding the opti-
mization problem solution denoted as x.

It is important to state that the OPF is executed by the
fmincon MATLAB solver, which finds the minimum of
a constrained nonlinear multi-variable function. For solving
the optimization problem, the sequential quadratic program-
ming (SQP) algorithm is used. At each iteration, an approx-
imation of the Hessian of the Lagrangian function using a
quasi-Newton updating rule is performed. This is then used
to generate a quadratic programming sub-problem whose
solution is employed to form a search direction for a line
search procedure. In this way, the SQP algorithm imple-
mented in this work preserves the optimal characteristic of
the computed solutions since it minimizes the Lagrangian by
following decreasing directions until the first order optimality
measure reaches a given tolerance. More details about the
SQP algorithm can be found in [32].

The optimization horizon defined for the energy manage-
ment is named as H , the control level sampling time as
Ts and the renewable source profile sampling rate as Treal .
The management unit is scaled down from Treal to TEMS ,
allowing the optimization to run H/Treal times across the
period H , according to aux in Fig. 5. The values Treal and
H are expressed in hours, whereas TEMS and Ts in seconds.

For the purpose of keeping a consistent updating time of
TEMS seconds, the algorithm waits until the cont counter
reaches the defined TEMS/Ts value, which allows the refer-
ences to be written in the SDF. As a protection mechanism,
if the OPF problem converges to an infeasible point, the algo-
rithm maintains the current references previous values.

As for the communication link, the data traffic between
the control unit and the management unit is established only
by the RMS voltages on each bus, the RMS currents and
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FIGURE 5. MG energy management flowchart.

the average phase displacements, which are denoted as V ,
I and 8, respectively. In this work, the amount of data in the
communication link for the MG studied is small, hence data
congestion and additional delays are not introduced by the
proposed EMS implementation strategy. Nevertheless, if vast
communication is required, the event trigger or data-driven
strategy presented in [11] and [12] are interesting solutions
to successfully address communication issues.

IV. OPTIMIZATION PROBLEM FORMULATION
The optimization problem is formulated according to a main
objective function, the mth objective function, the equality
and inequality constraints, which are denoted as f1(x), fm(x),
ceq(x) and c(x), respectively. It is important to state that both
the equality and inequality constraints are responsible for
establishing the system behavior. The optimization method
used in this work is the ε-constraint method, which allows to
treat a problem with multiple objectives in a mono-objective
way. The optimization problem is thus formulated as
follows [18]:

Minimize f1(x)

such that fm(x) ≤ εm, m = 2, 3, . . . , n

ceq(x) = 0

c(x) ≤ 0

where εm is themth objective function upper limit and n is the
number of objectives.

In the proposed strategy, n = 2, which yields objective
functions f1(x) and f2(x). As j starts from 2, hence only ε2 is
used. In this way, f1(x) is minimized and f2(x) is defined as
an inequality constraint.

A. OBJECTIVE FUNCTION
In this work, the considered objective functions are the MG
total generation cost and the active power losses in the LCL
filter of each inverter.

1) TOTAL GENERATION COST
The MG total generation cost is represented by the function

f1(x) = c1Pinv1 + c2Pinv2 + c3Pgrid (19)

where the generation fees c1, c2, and c3, expressed in R$/pu,
correspond to the assigned gain for each analyzed scenario.
When the MG operates in the stand-alone mode (Kgrid = 0),
c3 = 0 and Pgrid = 0.

2) ACTIVE POWER LOSSES
The connection lines among the buses are represented by Lo
and their active power losses equations are inserted in the
optimization problem objective function. The active power
losses can be defined as

f2(x) = Pinv1 + Pinv2 (20)
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in which the individual losses can be calculated via (17), such
that

Pinv1 = P13 + P31 (21)

Pinv2 = P23 + P32. (22)

B. OPERATIONAL CONSTRAINTS
The optimization problem constraints correspond to the equa-
tions that describe the MG model and also the MG limits,
which are defined by equality and inequality constraints,
ceq(x) and c(x), respectively.

1) EQUALITY CONSTRAINTS - ceq(x)
These are based on the power flow equations of each bus,
the MG bus references equations and the battery state of
charge SoC , such as

Pinv1 − P13 = 0 (23)

Qinv1 + Q13 = 0 (24)

Pinv2 − P23 = 0 (25)

Qinv2 + Q23 = 0 (26)

P31 + P32 + Pload + Pgrid = 0 (27)

Q31 + Q32 + Qload + Qgrid = 0 (28)

Vref − Vrefa = 0 (29)

8Vref −8Vrefa = 0 (30)

SoC − SoCa +1SoC = 0 (31)

where

1SoC = 100
Pinv1Treal
Pinv1TD

(32)

Vrefa and 8vrefa are the RMS voltage and the average phase
displacement references measured at the moment in which
the optimization is performed, respectively. The previous and
the current states of charge are SoCa and SoC , respectively,
and TD is the period of the total battery charge/discharge
(100% SoC variation), expressed in hours.

The positive signals in (24) and (26) are related to the
reactive power flow convention, where Q < 0 indicates
that the inverter is generating reactive power, while Q > 0
indicates it is consuming. The constraints (29) and (30) are
associated with the reference bus to ensure that, after the
optimization finishes, the RMS Vref and the average phase
displacement 8ref remain the same. Considering that the
reference bus changes according to the MG operation, in the
grid-tied mode (Kgrid = 1) the reference is established by
the grid resulting in Vref = V3 and 8Vref = 8v3 . On the
other hand, in the stand-alone mode (Kgrid = 0), the bus 2 is
set to the reference bus, using voltage and frequency control.
This bus is related to a dispatchable source, represented by
the inverter 2 and defined by Vref = V2 and 8Vref = 8v2 .

2) INEQUALITY CONSTRAINTS - c(x)
These constraints are related to the MG boundaries, which
are the sources generation capacity, as well as the buses

voltages limits, and are given by

P2inv1 + Q2
inv1 ≤ S

2
inv1 (33)

P2inv2 + Q2
inv2 ≤ S

2
inv2 (34)

P2grid + Q2
grid ≤ S

2
grid (35)

Pinv1 ≤ Pinv1 ≤ Pinv1 (36)

Pinv2 ≤ Pinv2 ≤ Pinv2 (37)

V 1 ≤ V1 ≤ V 1 (38)

8v1 ≤ 8v1 ≤ 8v1 (39)

V 2 ≤ V2 ≤ V 2 (40)

8v2 ≤ 8v2 ≤ 8v2 (41)

SoC ≤ SoC ≤ SoC (42)

in which, S inv1, S inv2 and Sgrid are the maximum apparent
power per phase of the inverters and the grid, respectively,
Pinv1, Pinv2, Pinv1 and Pinv2 are the inverters lower and upper
active power limits, V 1, V 2, 8v1 , 8v2 , V 1, V 2, 8v1 and 8v2
are the lower and upper voltage and phase displacement limits
on the buses 1 and 2, and SoC and SoC are the lower and
upper state of charge limits.

C. ADAPTIVE PENALIZATION FACTOR
Some papers address the problem of the influence of the
battery power gradient on the battery lifetime and propose
strategies to limit its fast power transients [8], [17]. In order
to mitigate this problem, in [8], it was proposed the inequality
constraint

|PB − PBa | ≤ 1P (43)

with

1P = KPB (44)

where 1P is the battery maximum power gradient, PBa is
the power produced by the battery at the previous step, PB
is the battery maximum power and K is the penalization
factor, which was chosen as 0.15. However, if K is fixed,
whenever PB ≥ KPB and the SoC is either SoC or SoC ,
the optimization algorithm fails.

When the SoC reaches the limit SoC , as exemplified
in Fig. 6, the power variation must be equal to 41P such that
the storage device output power be null (PB = 0) and the SoC
remains at the lower limit imposed by theminimum constraint
SoC . If that is not the case, the SoC will continue to decrease
until the point this constraint is violated.

This occurs because when the battery is supplying the
maximum power (PB = PB) and its state of charge is minimal
(SoC = SoC), if constraint (43) is achieved, the SoC will
be reduced to a value that is lower than SoC , while PB
remains positive. The same process occurs when the battery
is charging with maximum power (PB = PB).

To alleviate this problem, in this work, the use of an adap-
tive penalization factor K for each storage device operating
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FIGURE 6. Behavior of battery active power and SoC (red) with and (blue)
without the proposed battery power gradient constraint.

FIGURE 7. Areas of the battery power gradient constraint according to K .

FIGURE 8. Photovoltaic power profile (a) and generation fees (b) for
dispatchable and non-dispatchable sources.

point, according to the regions defined in Fig. 7, is proposed.
In this case, region-I is delimited by

(SoC + δSoC ) ≤ SoC ≤ (SoC − δSoC ) (45)

where δSoC corresponds to |1SoC | with the storage device
either producing or absorbing maximum active power
(PB = PB), which is calculated by

δSoC = 100
Treal
TD

. (46)

In region-I, K is constant and the battery maximum power
gradient is such that 1P = KPB. However, when the storage

FIGURE 9. Generation fees with dispatchable sources and storage
devices.

FIGURE 10. Experimental bench.

TABLE 1. Parameters used in the optimization problem.

device operating point reaches region-II, 1P corresponds to
the previous step of the absolute battery power |PBa |. When
the SoC is close to either SoC or SoC , the maximum power
gradient is relaxed, that is1P = |PBa |, to avoid that the opti-
mization problem solution converges to an infeasible point,
as shown in Fig. 6.

Region-III is achieved when the SoC is either SoC or SoC ,
and PB has to be zero to avoid violation of constraint (42).
The storage device operating point remains in this region
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FIGURE 11. Three-phase active power behavior of the inverters, grid and load (a) without and (b) with the constraint (48), and
(c) comparison of the MG total losses with and without constraint (48).

FIGURE 12. Behavior of the MG individual and total cost (a) without and (b) with constraint (48) and (c) a comparison between the total
cost for both cases.

until the SoC returns to the region-I. Furthermore, region-III
limits the power gradient for the next battery charging or

discharging process, eliminating fast transients on PB when
PBa = 0.
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In order to limit the battery power gradient according to the
regions shown in Fig. 7, the constraint

[PB − PBa ]
2
≤ 1P

2
(47)

which is a quadratic form of (43), is inserted into the opti-
mization problem to improve the algorithm convergence.

Additionally, the energy management algorithm uses a
constraint on the active power losses which is given as

f2(x) ≤ εPload (48)

where ε is chosen as a percentage of the maximum load of
the MG.

V. EVALUATION SCENARIOS
In order to validate the proposed EMS, two scenarios under
different operating conditions are evaluated. The analyzed
MG parameters are the losses limits, the variable genera-
tion costs and the different energy sources topologies when
a group of photovoltaic arrays, battery and conventional
sources are used.

It is important to state that both grid-tied and stand-alone
modes are considered during the scenarios evaluation. In the
grid-tied mode, as both inverters operate in current control
mode, the voltage and frequency are held by the grid. Upon
occurring the transition from grid-tied to stand-alone mode,
the inverter 1 is kept in current control mode, while the
inverter 2 is set to voltage control mode to provide MG
voltage and frequency support.

A. DISPATCHABLE AND NON-DISPATCHABLE SOURCES
In this scenario, inverter 1 is a non-dispatchable source and is
supplied by a photovoltaic array with a solar profile updated
at a 5-min sampling rate, as shown in Fig. 8(a). On the
other hand, inverter 2 is a dispatchable energy source capable
of supplying power in a controlled way, such as diesel or
thermal generators. In this context, Fig. 8(b) presents the
generation cost related to the inverters and the grid. The
inverter 1 generation cost is considered null (c1 = 0) since
it represents a renewable energy source, while the generation
cost of inverter 2 is c2 = 0.8. When compared to c2, the grid
generation cost c3 has a random profile, since it represents
the cost variations inside the optimization horizon H .

The highlighted regions in Fig. 8(b), which are defined by
0 ≤ t ≤ 1h40, 8h20 ≤ t ≤ 8h40, 13h50 ≤ t ≤ 14h10
and 21h10 ≤ t ≤ 22h50, correspond to the time intervals
at which the MG operates in the stand-alone mode. In these
time intervals, the inverter 2 operates in voltage control mode,
which maintains the MG voltage and frequency levels.

B. DISPATCHABLE SOURCE AND
ENERGY STORAGE DEVICE
In this scenario, inverter 1 is an energy storage device (bat-
tery) able to deliver maximum power during two consecutive
hours. Additionally, this device has an arbitrary generation
fee (c1 = 0.5) in the entire 24h, and it is inserted to penalize

FIGURE 13. Optimization parameters results obtained when running the
proposed EMS without considering constraint (48).

the battery discharging process. This fee is needed to pre-
serve the battery lifetime, prioritize its charging process and
keep the SoC at levels higher than SoC .
As in the previous scenario, the regions highlighted

in Fig. 9 show the moments where the MG is operating in the
stand-alone mode (the same time intervals are considered).
Furthermore, inverter 2 corresponds to a dispatchable source
with a constant generation fee (c2 = 0.8), while the grid has
a variable generation fee, as can be seen in Fig. 9.

VI. EXPERIMENTAL RESULTS
The experimental bench uses two three-phase Danfoss FC
302 inverters, a dSPACE 1007 platform with a 2GHz
dual-core processor and a 1GB DRAM memory, and a
DS2004 High-Speed A/D measurement board. The complete
experimental bench is shown in Fig. 10. The management
level is executed by a central computer and implemented
in a MATLAB script, which reads the contents in the SDF,
executes the optimization algorithm and writes the invert-
ers current references in the same SDF. The controllers
run in real-time, while in the management unit the time is
scaled down from minutes to seconds (5min:10s). Table 1
presents the system parameters used to solve the optimization
problem.

A. DISPATCHABLE AND NON-DISPATCHABLE SOURCES
Considering that inverters 1 and 2 are a photovoltaic array
and a dispatchable source, respectively, Fig. 11 shows the
behavior of the three-phase active power of these inverters
along with the grid and the load profiles, with and without
the losses constraint established in (48). The highlighted areas
in Fig. 11 correspond to the time intervals at which the MG
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FIGURE 14. Three-phase active power behavior of the inverters, grid and load (a) without and (b) with the power gradient constraint,
and the comparison with and without the power gradient constraint (c) states of charge and (d) MG total losses.

operates in the stand-alone mode, that is the active power
supplied or absorbed by the grid is zero. During these time
intervals, the grid is not available and thus the MG voltage
and frequency are established by bus 2, which is set as the
reference bus.

Taking into account that the generation fee c1 = 0 for the
photovoltaic array, this source is prioritized in terms of power
delivery. In this way, the photovoltaic source will operate at
the maximum power point whenever the power demanded
by the local load is greater than or equal to its maximum
generating capacity.

The dispatchable source and grid operate according to
the load profile and the fees c2 and c3 shown in Fig. 8(b).
In Figs. 11(a) and 11(b), when Pgrid < 0 the grid supplies
power to the MG, whereas in the moments when Pgrid > 0
the MG is delivering power to the main grid.

The comparison between the MG total electrical losses for
both cases is presented in Fig. 11(c). As can be observed,
the most significant difference between these cases occurs in
the time intervals 9h30 ≤ t ≤ 10h and 10h30 ≤ t ≤ 11h30.

During these intervals c2 < c3 in which case the EMS
adjusts the inverter 2 to operate in its maximum generation
capability without considering constraint (48) in the OPF
problem, as can be seen in Fig. 11(a). In this case, the MG
is capable of supplying all the active power required by the
load and the exceeding energy is delivered to the main grid.
Nevertheless, when the constraint (48) is included in the opti-
mization algorithm, as shown in Fig. 11(b), the inverter 2 does
not operate in its maximum generation capability. This occurs
because, although maximum generation capability is eco-
nomically desired, the EMS needs to decrease the generated
power Pinv2 to keep the MG total electrical losses below the
pre-established ε boundary.

The individual generation cost related to both the invert-
ers 1 and 2 sources (f1inv1 and f1inv2 ) and the main grid (f1grid ),
along with the total MG generation cost (f1total ), are presented
in Fig. 12. Considering that the inverter 1 is connected to a
renewable source, where the generation fee c1 = 0, no gen-
eration cost is applied. The cost f1total indicates if the MG is
operating either buying or selling energy to the main grid.
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FIGURE 15. Behavior of the MG individual and total cost (a) without and (b) with the constraint (47) and (c) a comparison between the
total cost for both cases.

When f1total < 0, the total power generated by the sources in
this case is greater than that consumed by the local load. Thus,
the MG operates in profit, since the exceeding energy is sold
to themain grid. On the other hand, when f1total > 0, theMG is
not self-sufficient, in which case it needs to buy energy from
the main grid to keep the local loads fully supplied.

The comparison between the total MG generation cost
of both cases, with and without considering constraint (48),
is shown in Fig. 12(c). Since the LCL filters inductors resis-
tive losses are relatively small (Ro = 0.12�), the active
power profiles and the MG total electrical losses are similar,
as can be seen in Fig. 11. For this reason, the total cost curves
f1total obtained for both cases also describe a similar behavior.
However, when the MG losses constraint is inserted, the total
generation cost tends to be greater owing to the fact that
the EMS starts now operating not only focusing on the best
economic approach, but also on attaining the boundaries
introduced by constraint (48).

In Fig. 13, it is possible to observe the experimental
measurements of the processing times related to the EMS
real-time operation, the first order optimality measure and the
optimization algorithm iterations when the case in Fig. 11(a)
is tested. When testing the other case, which is presented
in Fig. 11(b), the results are similar. As discussed in the
Fig. 2 description, the EMS execution time is calculated as
Tw + Tacq + Topt ≈ Tacq, which is kept around 7s along
the entire 24 hours. The value of Tw is fixed at 50ms and
Topt < 1s. Since TEMS = 10s, the EMS is consistently run
within a 10s time-frame, which ensures a fixed updating rate

of the reference variables. For all operating points, the first
order optimality measure is below 2.10−6 and the algorithm
takes less than 60 iterations to reach convergence.

B. DISPATCHABLE SOURCE AND
ENERGY STORAGE DEVICE
Considering that the inverter 1 is supplied by an energy
storage device and the inverter 2 is a dispatchable source,
Fig.14 shows the behavior of the three-phase active power of
these inverters along with the grid and the load profiles, with
and without the power gradient constraint established in (47),
in which, in this scenario, PB and PBa correspond to Pinv1 and
Pinv1a , respectively. In both cases, the storage device initial
state of charge is SoC0 = 50%. In this case, for example,
the first highlighted region, which starts at t = 0h, shows
that the battery is delivering energy to the local load, since
c1 < c2. When the state of charge reaches its lower limit, that
is SoC = 30%, the battery stops delivering power and the
load starts to be fully supplied by the dispatchable source.

In Fig. 14(a), it is possible to see the abrupt variations
occurring in the power Pinv1, which alternates instantly
between the storage device charge and discharge processes.
This is observed due to the fact that when the gradient con-
straint (47) is not considered, the power transients either pro-
duced or consumed by the battery becomes free to alternate
between the upper and the lower allowed limits, which are
Pinv1 and Pinv1.

In order to suppress fast transients that might compromise
the storage device lifetime, constraint (47) is inserted in
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FIGURE 16. Optimization parameters results obtained when running the
proposed EMS without considering the constraint (47).

the optimization problem. The penalization factor considered
was K = 0.25, which limit the storage device power gra-
dient in 25% of its maximum power between two consecu-
tive optimization algorithm executions. The behaviors of the
three-phase active powers, the battery state of charge and the
total MG electrical losses are presented in Fig. 14.

The comparison between the battery state of charge for
both cases, without and with constraint (47), is shown
in Fig.14(c). Note that after including the constraint, the tran-
sition between the charge and the discharge processes of the
battery were smooth due to the power gradient limitation.

In both cases, the losses constraint represented by (48) is
maintained in the OPF solution, as can be seen in Fig.14(d).
Note that the losses remain below the pre-established ε value
(ε = 1%) along all the universe of discourse. In addition,
with the power gradient constraint, smaller total losses in
the MG and decreased battery degradation in its lifetime are
guaranteed.

The sources and the main grid individual generation cost,
along with theMG total generation cost, are shown in Fig. 15.
From the comparison presented in Fig. 15(c), where the total
MG generation cost with and without constraint (47) is con-
sidered, it is possible to see that greater values of cost f1total
are attained when the constraint is inserted. Knowing that this
constraint limits the power generated by the battery, the cost
increases since part of the power demanded by the local load
starts to be provided by either inverter 2 or the main grid,
which have a higher generation fee than the battery.

In Fig. 16, it is presented the parameters related to
the EMS execution time, the first order optimality mea-
sure and the optimization algorithm iterations when con-
straint (47) is not applied. As observed in the previous

scenario (see Section VI-A), the EMS execution time was
around 7s. As can be seen, along the entire 24 hours the
first order optimality measure was kept below 6.10−6 and
the algorithm takes less than 60 iterations to reach conver-
gence. Since the optimization parameters results presented
in Fig. 16, which are related to the case in Fig. 14(a), describe
a similar behavior compared to those obtained when the case
in Fig. 14(b) was tested, only the former results are presented.

VII. CONCLUSION
In this work, an energy management system based on an OPF
problem forMG,which allows operation in both grid-tied and
stand-alone modes, was presented. The optimization prob-
lem was solved by the ε-constraint method and prioritized
the generation cost minimization while ensuring that the
active power losses remained below a pre-established value
ε and also suppressing damaging fast transients in the energy
storage device.

In order to validate the proposed EMS, two scenarios were
analyzed under different types of sources, such as dispatch-
able and non-dispatchable sources, and storage devices. For
the two evaluated scenarios, the first order optimality mea-
sure was kept below 6 × 10−6 during the entire observed
24 hours, which demonstrate the effectiveness of the pro-
posed approach.

According to the experimental results, the proposed EMS
was capable of smoothing fast transitions during batteries
charge and discharge processes. Considering that batteries
are expensive components in MGs, the implemented strategy,
which also focuses on the power gradient limitation of stor-
age devices, showed to be an efficient method to approach
the MGs energy management, since it allows increasing the
battery lifetime.

Although in this work the active power losses in the
connection lines are considered to be relatively small
(around 1%) due to the sources generation capacities and the
LCL filters resistance values, more significant active power
losses quantities can be foundwith otherMGs configurations.
In this way, it is interesting that an EMS be flexible to permit
setting the allowed maximum total losses values.

The proposed EMS kept the current references updating
consistently at a 10s fixed rate, as presented in the experi-
mental results. Since the tertiary control layer used in MGs
usually have a slow dynamic response, typically reaching
the minutes range, the EMS structure presented in this work
is also suitable for more complex and larger MGs, which
requires a higher algorithm convergence time and, conse-
quently, a higher EMS sampling time.

Overall, the results showed that the proposed approach,
which is based on the ε-constraint method, yields an effective
solution by considering both the MG total electrical losses
and the storage device power gradient as constraints in the
power flow optimization problem formulation. Although a
cost criterion to verify how the battery lifetime is in fact
affected by the proposed solution was not defined in this
work, it can be treated as a study-case to enrich future
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versions of our research. In this case, the benefits introduced
by our approach in preserving batteries in a MG can be
evaluated.
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