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ABSTRACT The demand for regular monitoring of the marine environment and ocean exploration is
rapidly increasing, yet the limited bandwidth and slow propagation speed of acoustic signals leads to low
data throughput for underwater networks used for such purposes. This study describes a novel approach
to medium access control that engenders efficient use of an acoustic channel. ALOHA-Q is a medium
access protocol designed for terrestrial radio sensor networks and reinforcement learning is incorporated
into the protocol to provide efficient channel access. In principle, it potentially offers opportunities for
underwater network design, due to its adaptive capability and its responsiveness to environmental changes.
However, preliminary work has shown that the achievable channel utilisation is much lower in underwater
environments compared with the terrestrial environment. Three improvements are proposed in this paper
to address key limitations and establish a new protocol (UW-ALOHA-Q). The new protocol includes
asynchronous operation to eliminate the challenges associated with time synchronisation under water,
offer an increase in channel utilisation through a reduction in the number of slots per frame, and achieve
collision free scheduling by incorporating a new random back-off scheme. Simulations demonstrate that
UW-ALOHA-Q provides considerable benefits in terms of achievable channel utilisation, particularly when
used in large scale distributed networks.

INDEX TERMS MAC protocol, medium Access control, reinforcement learning, underwater acoustic
networks.

I. INTRODUCTION
The Earth’s surface comprises 71% water [1] and the mar-
ket value of coastal resources is estimated to be 3 trillion
USD per year [2], with our oceans contributing 1.5 trillion
USD annually in value-added to the global economy [3].
It is therefore unsurprising that the marine environment is
central to a vast diversity of industries and areas of scientific
importance. Examples of underwater applications include
disaster detection far off coast, underwater security surveil-
lance, as well as environmental and ecosystem data gathering.
However, most of the ocean has not been explored since
ocean exploration is significantly hampered by the inherently
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hostile and harsh environment for both people and equipment.
To deal with the challenges of the underwater environment,
wire free communication is necessary in order to monitor
the oceans more effectively, remotely, and potentially in real
time.

Wireless Sensor Networks (WSNs) using radio technology
are used for monitoring purposes in many applications in
the terrestrial environment. However, this technology can-
not be directly applied to the underwater environment since
radio signals are heavily absorbed by water. Acoustic signals
are the most viable means of communicating underwater,
but technologies for underwater acoustic communications
are complex and demand sophisticated signal processing,
hence underwater devices tend to be bulky and expensive [4].
Moreover, the slower propagation speed (≈ 1500 m/s) of
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acoustic signals in water compared to radio signals in the air
(≈ 3 × 108 m/s) leads to poor channel utilisation in under-
water networks, and the limited and distance dependent
bandwidth brings about low fundamental capacity based on
Shannon’s channel capacity theory [5].

To address these problems limiting the efficient use of
acoustic networks for underwater monitoring, we describe
a novel reinforcement learning based Medium Access
Control (MAC) protocol, UW-ALOHA-Q. The merits of
UW-ALOHA-Q lie in providing a low complexity approach
through reinforcement learning to achieve high channel utili-
sation in distributed networks where centralized scheduling is
not feasible and distributed scheduling introduces significant
signalling overheads and complexity.

ALOHA-Q was designed for WSNs in the terrestrial envi-
ronment and uses reinforcement learning as a technique
whereby nodes learn through trial-and-error interactions with
the environment [6]. The underwater environment continu-
ously changes and hence underwater networks need to be
capable of adapting to such time varying changes. Rein-
forcement learning based protocols are able to inherently
adapt to these environmental changes through the learning
process. Therefore, the objective of this study is to transform
the design of an established reinforcement learning based
protocol (ALOHA-Q) into one suitable for the underwater
environment (UW-ALOHA-Q).

Specific contributions of this paper include:
• Transformation of ALOHA-Q (developed for terrestrial
networks) to a new protocol for underwater acoustic net-
works (UW-ALOHA-Q) through three improvements:
asynchronous operation; optimisation of the number of
slots in a frame; incorporation of a new back-off scheme.

• Design of the new protocol for asynchronous and self-
organised distributed underwater networks, achieving
collision free scheduling and high channel utilisation
alongside low overheads.

• Investigation of the baseline channel utilisation of the
new protocol for different network sizes and topologies
through a simulation.

A preliminary paper was presented at the IEEE International
Conference on Computing, Electronics and Communication
Engineering (iCCECE’ 2018) which received a best paper
award [7].

Section II of this paper provides a summary of the related
literature. Section III details the ALOHA-Q protocol and
provides a summary of the preliminary paper [7]. Section IV
describes the transformation processes underpinning the
development of UW-ALOHA-Q from ALOHA-Q. Section V
presents simulation results showing key performance
characteristics of UW-ALOHA-Q under various network
configurations.

II. PREVIOUS WORK
The MAC layer is responsible for organising the access of
each node to their shared transmission medium. The general
objective of the MAC layer is to minimise collisions and

overheads in the channel through a suitable protocol. The
operation of the MAC layer also has an impact on achiev-
able Quality of Service (QoS) including latency, energy effi-
ciency, network scalability, and adaptability. Therefore, the
MAC layer can play a key role in underwater acoustic net-
works in maximising channel utilisation, both in the presence
of a limited bandwidth and slow propagation speed.

MAC protocols can be generally categorised as centralised
or distributed. Centralised MAC protocols can achieve good
channel utilisation through collision-free scheduling, but
require infrastructure to provide a coordinating node and
time synchronisation. Typical examples of centralised MAC
protocols include Time Division Multiple Access (TDMA)
and polling based protocols. Distributed MAC protocols do
not require such infrastructure, however, significant addi-
tional overheads are incurred for distributed scheduling, or to
otherwise incorporate techniques such as handshaking or
carrier sensing whenever a sender initiates transmission in
order to help reduce the probability of collision. Examples of
these include Carrier Sense Multiple Access (CSMA) [8] and
Multiple Access with Collision Avoidance (MACA) [9].

Recently, reinforcement learning schemes have been
applied to MAC protocols in WSNs for terrestrial networks
and the results are promising [10]–[16]. ALOHA-Q [13]
is a reinforcement learning based protocol designed to be
used in Low Rate - Personal Area Networks (LR-PANs).
The protocol is based on framed slotted ALOHA [17] which
is a distributed protocol employing time synchronisation to
reduce data packet collisions. Due to its low complexity and
lack of infrastructure requirements, framed slotted ALOHA
is used as a fundamental system for many different types
of network. For example, it is a primary protocol in Radio
Frequency Identification (RFID) tag systems [18] and has
also been considered for use in Machine to Machine (M2M)
networks [19].

In framed slotted ALOHA, all nodes are synchronised into
time frames and slots across the network. Each node must
deliver a data packet within a defined slot period. Since there
is no means of coordinating the times in which data packets
are transmitted by nodes, collisions occur regularly leading
to an unreliable service. ALOHA-Q takes the advantages
of framed slotted ALOHA which are simplicity and low
overheads. However, ALOHA-Q avoids collisions through a
reinforcement learning process as nodes in the network can
determine which slots to transmit in to avoid collisions. As a
consequence, the ALOHA-Q protocol approaches centralised
style scheduling without the need for any form of central
controller and achieves a nearly identical level of channel
utilisation [13] as that of a centralised scheme in steady-state
conditions. ALOHA-Q is discussed further in section III.

While reinforcement learning based MAC protocols have
been researched extensively for terrestrial networks, there
has, however, been very little research into underwater rein-
forcement learning based protocols. Most of these are for
routing [20]–[24] and only one protocol has been found for
the MAC layer [25] which uses a reinforcement learning
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TABLE 1. Typical ALOHA-Q parameters for terrestrial use.

approach to extend the lifetime of underwater acoustic wire-
less sensor networks. The study was proposed in 2013 and
the aim of the proposed protocol is to extend the lifetime of a
network. It is a distributed protocol based on slotted CSMA
with time synchronisation. Nodes learn optimal decisions for
three aspects of the next data packet transmission: the next
relay node, the sub-channel to sense, and the level of trans-
mission power to use. The protocol requires periodic control
message exchange for neighbour discovery which can lead to
high overheads and thereby a decrease in channel utilisation
due to the slow propagation speed. In addition, multi-channel
communication is used in the design, which is not optimal for
underwater acoustic networks since the channel bandwidth
is so limited, especially over longer distances. Moreover,
the protocol uses carrier sensing and exponential random
back-off which can deteriorate channel utilisation. Carrier
sensing, in particular, potentially requires long guard bands
due to the long propagation delay, otherwise it is ineffective
underwater.

III. ALOHA-Q
ALOHA-Q is a reinforcement based MAC protocol designed
for WSNs in the terrestrial environment. All nodes in an
ALOHA-Q network are time synchronized. Table 1 gives
typical parameters related to the slot and frame structures of
ALOHA-Q as used in the terrestrial environment [13] and
Fig. 1 illustrates an example of a packet flow between a
generating node and a sink.

For the terrestrial environment, the propagation speed
of 3× 108 m/s is used for the radio signals and a 250,000 bps
data rate is used reflecting IEEE 802.15.4 LR-WPANs [26].
One slot is sufficient to accommodate a data packet,
an acknowledgement packet, and a guard time. After sending
the data packet, if the generating node does not receive an
acknowledgement from the sink node before the guard time
ends (i.e. a stop and wait acknowledgement policy), the trans-
mission is assumed to have failed and a retransmission must
be initiated.

A. REINFORCEMENT LEARNING
Reinforcement learning enables agents to learn an opti-
mal action through trial-and-error interactions in a dynamic
environment, with future actions determined by prior

FIGURE 1. Packet flow between a generating node and a sink node.

FIGURE 2. An example of Q-table in a single node when one frame
comprises four slots.

experience [9]. This established artificial intelligence strat-
egy has recently been applied to MAC layer protocols for
terrestrial networks and shows promising results [10]–[16].
Stateless Q-learning [27] is used in the ALOHA-Q protocol,
in which each node uses the Q-learning scheme to select
one slot in a frame to send one data packet at the start of
each frame. All nodes have their own Q-table which contains
individual Q-values for each slot in a frame. Equation (1) is
used to determine how Q-values are updated:

Qt+1(i, k) = Qt (i, k)+ a(r − Qt (i, k)) (1)

where the ith node has sent a data packet in the kth slot in a
frame. Qt is the Q-value at time t , t is a time epoch, a is the
learning rate, and r is the reward. A standard implementation
of ALOHA-Q uses a = 0.1 and r = 1 if the transmission is
successful, otherwise, r = −1.
Fig. 2 illustrates a simple example of how the Q-values of

each frame in the Q-table might become updated. Since all
Q-values in the Q-table are initially zero in this example, a
node randomly selects a slot in the next frame for data packet
transmission. If the node receives a positive acknowledge-
ment before the guard time ends, meaning the transmission
was successful, the Q-value for the first slot in the Q-table
becomes updated to 0.1 as shown through the application
of (1). Thus, after one frame, the Q-table has Q-values
of 0.1/ 0/ 0/ 0 and the first slot has the highest Q-value in
the node’s Q-table.

At the start of the second frame, the node transmits a data
packet in the first slot, since the Q-value of the slot has the
highest value (i.e. 0.1) in the node’s Q-table. If the node
does not receive an acknowledgement packet before the guard
time ends, the node assumes that the transmission has failed
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and the Q-value for the first slot in the Q-table is updated
to −0.01. Therefore, after the second frame, the Q-values of
the Q-table are −0.01/ 0/ 0/ 0.
At the beginning of the third frame, the node selects a slot

number randomly since the 2nd, 3rd, and 4th slots all have
the same highest Q-value of zero. By repeating this trial-and-
error learning, and as long as there are sufficient slots in a
frame, it can be shown that individual nodes are able to find
distinct slots to transmit in, and thereby avoid collisions with
other nodes in the same network.

Importantly, each node operates independently of each
other as each node only refers to its own Q-table to determine
the transmission order in a frame. ALOHA-Q does not need
any periodic message exchange for neighbor discovery nor
any control message exchange for scheduling. These char-
acteristics of low overheads and high simplicity are highly
significant and unique to ALOHA-Q because existing dis-
tributed protocols require each node to have information
about its neighbors or to reserve a channel before every
transmission to avoid collisions.

B. LIMITATIONS OF ALOHA-Q FOR UNDERWATER
ACOUSTIC NETWORKS
It is expected that a reinforcement learning based protocol can
offer underwater networks the capability of adapting through
constantly interacting with the time-varying underwater con-
ditions. Therefore, it is of interest to explore the possibil-
ity that ALOHA-Q can be used for underwater networks.
An initial simulation based study has been undertaken in [7],
comprising 50 generating nodes in a single-hop ring topology
with one sink node located centrally. All nodes are consid-
ered to be within interfering range. The packet inter-arrival
time is exponentially distributed and a collision-based error
model is used for reception in the simulation. The purpose
of the initial simulation is to compare the performance of
ALOHA-Q in both terrestrial and underwater environments.
Table 2 shows the simulation parameters used for ALOHA-Q
in the underwater environment. The same simulation param-
eters for the previous study [13] are used in this section
and only two notable parameters for the underwater network
have been changed for fair comparison: the propagation speed
of 1500 m/s is used for acoustic signals under water and
the use of a state of the art underwater modem which is
currently on the market with a data rate of 62,500 bps [28]
is considered.

Not all parameters are realistic for a practical underwater
deployment, but it is important to keep the network topol-
ogy parameters unchanged for the comparison to be useful.
Beyond this initial comparison, realistic parameters are used
for underwater network simulations in section V.

The result of this simulation shows that ALOHA-Q can be
operated in the underwater environment but that the protocol
only achieves a channel utilisation of 0.48 Erlangs, much
lower than the 0.95 Erlangs achieved by the same protocol
within a terrestrial environment [7]. The unit of Erlang corre-
sponds to the fractional proportion of time during which data

TABLE 2. Typical ALOHA-Q parameters for underwater use.

traffic is usefully received. 1 Erlang therefore corresponds
to the fundamental capacity of the channel. The slow prop-
agation speed of acoustic signals is the primary cause for
low channel utilization. Equation (2) shows the calculation
for the duration of a slot (Ts) which is proportional to the
propagation delay (τp). During the propagation of the data
and acknowledgement packets, the channel remains in an
idle state which consequently causes a decrease in achievable
channel utilisation.

Ts = (Tdp + Tap + Tg)+ 2× τp (2)

Therefore, conclusions from the initial simulations [7] show
that although ALOHA-Q can be operated in an underwater
environment, it is constrained by low channel utilisation due
to the slow propagation speed of acoustic signal underwater.

IV. UW-ALOHA-Q
To transform ALOHA-Q for the underwater environment,
we consider three improvements to the protocol: asyn-
chronous operation, optimisation of the number of slots per
frame, and a new random back-off scheme. Each improve-
ment is discussed in this section.

A. ASYNCHRONOUS OPERATION
Generally, terrestrial networks can be time synchronised
based on use of a global time reference, thereby reducing
the probability of collision in contention based schemes by
shortening the vulnerable period. For example, ALOHA-Q
also uses time synchronisation in the terrestrial environment
and achieves collision free scheduling through reinforcement
learning, but for the same topology and parameters, it shows a
decrease in channel utilisation without time synchronisation
from 0.95 Erlangs to 0.64 Erlangs [13]. However, the reliance
on time synchronisation in the underwater environment is
costly and complex since GPS is not available [29]. Con-
sequently, as a first step we consider asynchronous imple-
mentation of ALOHA-Q for underwater networks. It would
be expected that collisions will occur in the absence of time
synchronisation, since transmissions from nodes will arrive
at a receiver at random times. However, utilising the idle time
caused by the propagation delay (τp), reinforcement learning
can still achieve collision free reception in the same way as
described in section III in the underwater environment.
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FIGURE 3. Reception of data packets at a sink node in the terrestrial and
underwater environments.

FIGURE 4. How reinforcement learning removes collisions in the
underwater environment in the absence of time synchronisation (The
acknowledgment processes are omitted in Figs. 4, 5 and 6 for the purpose
of simplicity.).

Fig. 3 compares the difference in reception patterns of
data packets at a sink node with ALOHA-Q in the two
different environments. In the terrestrial environment, packet
receptions are time synchronised and the propagation delay is
negligible, so that the data packets from different generating
nodes arrive close to each other at the sink and only small
guard bands are required. Channel utilisation is high under
this condition; however, if asynchronous operation is applied,
a significant number of collisions occur because data packets
will then overlap with each other at the receiver due to the
short slot duration. In the underwater environment, however,
the length of a slot needs to be much greater for stop and wait
ALOHA-Q, to accommodate the long propagation delays.
The long propagation delay results in a long idle time at the
sink node such that the channel utilisation becomes lower, but
the idle time tends to be sufficient to avoid overlapping recep-
tion, so the protocol is less prone to experiencing collisions.

Even if packets overlap at the receiver, reinforcement
learning can achieve collision free operation using the idle
time without relying on synchronisation in the underwater
environment as shown in Fig. 4.

The four nodes (N1∼N4) have to choose a slot number
from slot1, slot2, slot3 or slot4 for their data packet trans-
missions in each frame. The nodes are not synchronised,
so the frame start time for each node is different. In the

FIGURE 5. Reduced number of slots per frame and increased channel
utilisation.

first frame, N1 randomly chooses slot2 and transmits a data
packet in the slot, N2 in slot1, N3 in slot3, and N4 in slot2.
At the sink node, packets from N1 and N2 overlap with
each other and collide in the first frame transmission process.
Therefore, the two nodes do not receive acknowledgements
from the sink node. As a result, the Q-values of the slots in the
Q-table are negatively reinforced so the two nodes change
slot numbers for the next transmission: N1 chooses slot1 and
N2 chooses slot2. The new order no longer results in overlap-
ping data packets at the receiver from N1 and N2. Whereas
N3 and N4 continue to use the same slot numbers they used
for their first transmissions since they successfully received
acknowledgements.

By repeating the learning cycle, the four nodes can learn
which slot number they need to use and finally all four packets
can arrive at the sink node without interfering with reception
from other nodes in the network: this status is called conver-
gence. Convergence only applies in a relatively static envi-
ronment. In practical underwater scenarios, what is required
is effective adaptation of transmission timing in response to
changing conditions to retain higher utilisation than can be
achieved without reinforcement learning. Though, the scope
of this paper is understanding the baseline capability and
fundamental behavior of UW-ALOHA-Q, convergence and
conditions where network convergence are considered as dis-
cussed in section V.

The slots allow collisions to be avoided despite the absence
of time synchronisation through reinforcement learning due
to the long propagation delay (τp) and consequently long slot
duration (Ts). However, despite the reduction in collisions,
the achievable channel utilisation remains low.

B. OPTIMISATION OF THE NUMBER OF SLOTS
Building on the benefits of asynchronous operation, it then
becomes feasible to explore the possibility of increasing
channel utilisation by reducing the number of slots per frame.
This concept is depicted in Fig. 5 which shows an example of
how collision free reception can be obtained when only two
slots are used to support four generating nodes in a frame.

By comparing Figs. 4 and 5, it is clear that channel util-
isation can be improved simply by reducing the number
of slots in a frame. In time synchronised networks such
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as ALOHA-Q, if a smaller number of slots is used than
the number of interfering nodes, collisions occur since all
transmitting nodes cannot obtain a dedicated slot to send their
packets reliably. However, in the absence of time synchroni-
sation, reducing the number of slots is feasible since there is
space to accommodate multiple packets within a single frame
in the underwater environment, due to the long propagation
delay and given different frame start times.

C. UNIFORM RANDOM BACK-OFF SCHEME
Incorporation of the first two improvements provides the
potential for high channel utilisation to be achieved under-
water. However, using a reduced number of slots per frame,
a possibility arises that the network cannot converge due
to the randomly inherited frame start time which cannot
be changed. A new time-based random back-off scheme is
proposed to address this problem and allow convergence to
be achieved.

Traditionally, in wireless communication networks, when
a transmission fails, a node does not send the retransmission
immediately, but delays it in order to avoid a potential col-
lision. This delay is called back-off and the delayed time is
often calculated as a number of slots. As an example, the
back-off algorithm in the IEEE 802.11 Wireless Local Area
Networks (WLANs) standard [30] delays retransmissions
based on the number of slots in a contention window with
an exponential increase in the window size in response to
successive failures.

However, if the same slot based strategy is applied to
ALOHA-Q with the two proposed improvements in the
underwater environment, the possibility of non-convergence
continues to exist since some nodes cannot find a distinct
slot from the reduced number of slots per frame having the
fixed frame start time. Therefore, we propose a new back-off
scheme called uniform random back-off. This scheme oper-
ates independently from the slot learning process (described
in section A) and provides a chance for nodes to adapt their
frame start times. Using this scheme, for every collision,
nodes randomly delay the next frame start time according to
a uniform distribution. By repeated trial-and-error learning,
all nodes can discover an appropriate frame start time and
slot to use in successive frames. Operation of the proposed
uniform random back-off scheme is illustrated in Fig. 6 in
which one slot is used in a frame for two generating nodes in
the network.

Inclusion of this scheme leads to collision free schedul-
ing and permits convergence in UW-ALOHA-Q underwater
acoustic networks under the assumption that any environmen-
tal changes are covered by the guard duration (Tg). Therefore,
an appropriate guard duration needs to be chosen for a partic-
ular environment to accommodate for changes in propagation
delay arising from node movement in the water.

In summary, the proposed UW-ALOHA-Q scheme can
achieve high channel utilisation with low costs and overheads
without the need of time synchronisation and any centralised
controller in the underwater environment. The following

FIGURE 6. Uniform random back-off scheme for UW-ALOHA-Q when one
slot per frame is used for two generating nodes.

simulations demonstrate the behaviour of UW-ALOHA-Q
with different network configurations and serve to validate
the envisaged channel utilisation capacity of the protocol.

V. SIMULATIONS
Simulations have been carried out to understand the base-
line channel utilisation of UW-ALOHA-Q. Identical con-
figurations and parameters to those described earlier in
section III.B are used and simulations are carried out for
different network topologies, comprising 25 and 50 nodes,
as well as with propagation distances varying from 100 m
to 1000 m.

A. PARAMETERS AND PERFORMANCE MEASURE
Channel utilisation (U ) is evaluated as fractional amount of
time in which data traffic is successfully received at the sink
node and is calculated by (3),

U =
R× Tdp

Mesaurement duration
(3)

where, R is the number of data packets successfully received
at the sink node over the period of interest which is the
measurement duration from network convergence frame to
the end of a simulation.

We define two parameters for simulation analysis:
• Scvg: the number of slots per frame which can per-
mit convergence to be achieved for a certain size of a
network

• Index B: the ratio between ‘the duration of a single
frame excluding acknowledgement packets and guard
times’ and ‘the total duration of data packets in a frame
generated from all nodes in a network’

As described in (4), this ratio represents the overheads of a
system to total capacity of frame related to the data carrying
capacity of the frame:

B =
S × (2× τp + Tdp)

N × Tdp
(4)

where, S is the number of slots per frame. The potential range
of S considered in this paper is 0 < S ≤ N .
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TABLE 3. Trade-off between channel utilisation and the chance of
convergence according to the number of slots per frame.

B. THE TRADEOFF BETWEEN CHANNEL UTILISATION AND
CONVERGENCE AS A FUNCTION OF THE
NUMBER OF SLOTS PER FRAME
The number of slots per frame is a key parameter
of UW-ALOHA-Q since the selection of the number of slots
significantly impacts upon the achievable channel utilisation
and the end to end delay performance of UW-ALOHA-Q
networks. An excessive number of slots in the frame will
lead to poor channel utilisation, whereas insufficient slots
in a frame will not provide a sufficient duration for the
transmitting nodes to find collision free space. Therefore,
this section provides simulation results of channel utilisation
according to the number of slots per frame and highlights
a tradeoff between channel utilisation and the probability of
convergence.

Table 3 shows the simulated channel utilisation of
UW-ALOHA-Q when the number of slots per frame varies,
for a network comprising 25 generating nodes equally
spaced around a 100 m radius ring topology with a central
receiver. The simulations include the first two improvements
and exclude the uniform random back-off scheme in order to
particularly understand the impact of changing the number
of slots per frame. For each value of the number of slots per
frame, 100 simulations are carried out and one simulation
comprises 5000 frames to ensure sufficient time to converge.
Convergence is considered to have occurred when all gen-
erating nodes send packets using the same distinct slot for
800 consecutive frames.

During the simulations, each of the 25 nodes uses rein-
forcement learning to find a distinct slot in a frame which
does not interfere with the transmission of any of its neigh-
bors. Increasing the number of slots up to 8 per frame
increases the flexibility in the selection of any particular slot
and it is, therefore easier for the network to converge through
the learning process of each node, despite a relatively low
channel utilisation of 0.34 Erlangs. However, as shown in
the results, a trade-off is observed when the number of slots
is lowered from 8 to 5, with the highest average of channel
utilisation is achieved at 0.46 Erlangs but with convergence
occurring less frequently: the UW-ALOHA-Q network con-
verges 28 times out of 100 simulation trials. Therefore, it is
observed that UW-ALOHA-Q shows a trade-off between
average channel utilisation and the chance of convergence as
the number of slots varies.

TABLE 4. Simulation results when uniform random back-off is used.

As stated earlier, these simulations do not include the new
back off scheme. As shown in Table 3, the network fails to
converge on 3 occasions out of 100 trials when 8 slots per
frame is used. This low probability of convergence failure
can be overcome by the uniform random back-off scheme by
finding the appropriate frame start time, and thereby allowing
the UW-ALOHA-Q protocol to converge every time.

Table 4 compares simulation results with and without
the uniform random back-off scheme. Applying the scheme,
nodes which cannot find a distinct slot are able to adjust
their frame start time. Consequently, all nodes can find an
appropriate frame start time and a distinct slot so that sim-
ulation results shows that the network converges 100 times
out of 100 trials. However, during this process, the scheme
disturbs nodes which already find their own distinct slot and
thus triggers additional learning processes. Therefore, overall
network convergence takes more frames (i.e. more trial-and-
error learning processes) than UW-ALOHA-Q without the
back-off scheme.

Simulations have also been carried out for different sizes
of networks, using 25 and 50 nodes, as well as with differ-
ent propagation distances varying from 100 m to 1000 m.
An identical tradeoff is observed for all variables under a
condition that the index ratio (B) is greater than 1.5. This
also implies that the highest average channel utilisation of
UW-ALOHA-Q is achievable under a condition of the index
ratio equal to 1.5. However, this paper focuses on validating
the baseline channel utilisation of UW-ALOHAQ, therefore,
simulation results of this paper demonstrate UW-ALOHA-Q
in casewhen the network reliably converges, rather thanwhen
the highest average channel utilisation is achieved.

C. CHANNEL UTILISATION AS A FUNCTION
OF NETWORK SIZE
In terms of network deployment, the size of a network and
the number of nodes in the network are determined by the
requirements of individual applications. Therefore, it is nec-
essary to predict the channel utilisation of UW-ALOHA-Q
across a range of different size networks in order to define
the baseline performance which UW-ALOHA-Q can provide
for a range of different applications. Fig. 7 illustrates the
simulated channel utilisation of UW-ALOHA-Q following
convergence in a ring topology where the network size varies
from 100 m to 1000 m radius with 25 nodes. Identical
configurations to those in the earlier section B are used for
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FIGURE 7. Channel utilisation of UW-ALOHA-Q networks for a 25 node
ring topology at a variable network sizes when network converges (Scvg).

the simulations, but the uniform random back-off scheme is
applied for network convergence.

These results present the detailed UW-ALOHA-Q behav-
ior based on the index ratio (B). The main observation is that
network convergence is achievable when the index ratio (B)
is greater than 2.6 as Fig. 7 specifies. The number of slots
per frame for network convergence (Scvg) varies from 1 to 8
as the network size decreases. In the larger networks, such
as those with a 900 m and 1000 m radius, the propagation
delay primarily accounts for one slot as referred to by (2).
During the propagation delay, the channel is idle and the
amount of idle time in one slot is sufficient for 25 nodes to
find a distinct time period for transmission. Therefore, the
network can converge and achieve collision free scheduling
when the number of slots per frame is 1. However, the amount
of available time in one slot for 25 nodes in an 800 m network
is insufficient, therefore, adding one more slot in a frame is
necessary so that the network achieves convergence when the
number of slots per frame equals 2. Adding one more slot
in a frame, however, causes a decrease in channel utilisation
due to redundant idle time. We term this change in channel
utilisation as ‘the effect of a slot’.

Once a network has converged, all nodes use the same
number of slots and timing in a frame. Therefore, a cen-
tralised data transmission pattern is formed and this pattern is
repeated as long as convergence is maintained. Based on this,
the theoretical channel utilization under network convergence
can be determined by considering the proportion of time
available for data transmission in just a single frame, as given
by (5):

Ucvg =
N × Tdp
Scvg× Ts

(5)

Fig. 7 shows a comparison of the theoretical channel uti-
lization (based up on the frame parameters and calculation
using (5)) with the simulation results for the purpose of
validation. It can be seen that a very close match is obtained.

FIGURE 8. Channel utilisation with a 50 node ring topology and variable
network size.

Fig. 8 illustrates simulation results of channel utilisation
of UW-ALOHA-Q using 50 nodes and shows a similar trend
to the channel utilisation results obtained when 25 nodes are
used. The number of slots for network convergence (Scvg)
varies from 2 to 17 as the network size decreases and is
achieved when the index ratio is larger than 3.0. ‘The effect of
a slot’ is moderated in the network with 50 nodes compared
to the network with 25 nodes, because a greater number of
data packets compensates for the inefficient use of time in a
frame.

For a comparative analysis, simulation results of
framed slotted ALOHA and ALOHA-Q are also shown
in Fig. 8 when 50 slots per frame and the number of slots
for network convergence (Scvg) are used. UW-ALOHA-Q
achieves a much higher channel utilisation compared to
ALOHA-Q when the number of slots per frame is equal to
the number of nodes (i.e. 50). This improvement is greater in
larger networks, for example, a 2.8 fold increase in a 100 m
size network and a 24.6 fold increase in 900 m and 1000 m
size networks. This result demonstrates the great benefits of
UW-ALOHA-Q particularly in large networks where most
underwater acoustic networks struggle due to the increas-
ing propagation delay in the acoustic channel. Compared
with framed slotted ALOHA, UW-ALOHA-Q shows lower
channel utilisation. However, framed slotted ALOHA cannot
guarantee collision free communication and requires time
synchronisation. When framed slotted ALOHA is simulated
using the number of slots for network convergence (Scvg),
most cases show almost zero channel utilisation.

D. END TO END DELAY
Most importantly, one of the outstanding benefits
of UW-ALOHA-Q is that the network achieves maximum
channel utilisation when the number of slots for network
convergence (Scvg) is used whereas ALOHA-Q and framed
slotted ALOHA achieves maximum channel utilisation when
the number of slots per frame is equal to the number of nodes
as Fig. 9 shows.
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FIGURE 9. The number of slot per frame used for UW-ALOHA-Q, ALOHA-Q
and framed slotted ALOHA in different sizes of network.

In any size of networks, one node of ALOHA-Q (and
framed slotted ALOHA) needs to wait for a much longer
time for the next transmission than UW-ALOHA-Q and this
becomes more serious in the underwater environment. In a
1000 m network, a slot duration is 1.35 seconds calculated
by (2). UW-ALOHA-Q uses only one slot to accommo-
date 25 nodes in a frame to achieve network convergence,
so the frame duration is 1.35 seconds. However, ALOHA-Q
needs 25 slots in a frame, hence the frame duration becomes
33.75 seconds. Using the reduced number of slots per frame,
UW-ALOHA-Q can provide the significantly lower end to
end delay than ALOHA-Q as shown in Table 5. The table
shows the average end to end delay and channel utilisation of
100 simulation trials for each result.

When 50 nodes are deployed, this benefit of
UW-ALOHA-Q is magnified as shown in Table 4.
UW-ALOHA-Q uses 2 slots in a frame for a 1000 m size
network, so the frame duration becomes 2.7 seconds, whilst
ALOHA-Q needs 50 slots in a framewhich has 67.55 seconds
duration.

Through reducing the number of slots per frame,
UW-ALOHA-Q improves channel utilisation and decreases
the end to end delay. Notably, greater benefits can be obtained
in larger networks using a greater number of nodes in a net-
work. This results demonstrate that UW-ALOHA-Q becomes
more efficient in large scale networks where high propagation
delay and high collision probability exist.

E. NETWORK CONVERGENCE
As tables 5 and 6 show, standard ALOHA-Q using 25 and
50 slots per frame (i.e. S = N ) exhibits low channel util-
isation due to the propagation delay. However, the protocol
achieves network convergence in a short time since the slots
allow the network to converge easier.

It is useful to see a clearer picture of how the channel
utilisation varies over time, to better understand the impact
of the network being able to converge. Fig. 10 shows the

TABLE 5. End to End delay of UW-ALOHA-Q and ALOHA-Q in a 100 m and
1000 m network when 25 nodes are deployed.

TABLE 6. End to End delay of UW-ALOHA-Q and ALOHA-Q in a 100 m and
1000 m network when 50 nodes are deployed.

FIGURE 10. Channel utilisation as a function of time of ALOHA-Q using
25 slots per frame and UW-ALOHA-Q using 4 slots per frame (Scvg) in a
200 m network when 25 nodes are deployed.

channel utilisation as a function of time of UW-ALOHA-Q
with/without the uniform back-off scheme and compared
with ALOHA-Q in a 200 m network where 25 nodes are
deployed. Three asterisk marks in Fig. 10 indicate the times at
which the network converges. Channel utilisation ismeasured
using (3) from the first frame at the end of every frame.

Applying two improvements on top of ALOHA-Q
(i.e. UW-ALOHA-Q without the uniform random back-off
scheme), most simulation result shows fast (77% converge
within 34 frames) convergence so that the network reaches
the maximum channel utilisation rapidly. However, there is a
small possibility that the network cannot converge due to the
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TABLE 7. The range of number of frames used for network convergence.

randomly inherited frame start timewhich cannot be changed.
In that case, the network never converges hence the channel
utilisation remains low. It is because there is a high instance of
collisions in the channel and these collisions are not avoidable
using the fixed frame start time. The back-off scheme solves
this problem.

UW-ALOHA-Q using 4 slots per frame (Scvg) needs more
frames to converge since the uniform back-off scheme dis-
turbs nodes which achieves convergence and consequently
triggers multiple additional learning processes. However,
applying the scheme, the protocol can provide network
convergence and collision free scheduling. The channel
utilisation of UW-ALOHA-Q using 4 slots per frame
in Fig. 10 fluctuates when the simulation starts which shows
that nodes are learning the optimised frame start time and
a distinct slot number through trial-and-error learning pro-
cesses. Once the network converges, the result shows an
increasing channel utilisation due to collision free scheduling.

It is important to note that UW-ALOHA-Q achieves much
higher channel utilisation than standard ALOHA-Q when it
converges, and its channel utilisation performance remains
superior to ALOHA-Q even in a situation where it does
not converge. This implies that UW-ALOHA-Q can obtain
higher channel utilisation in the time-varying environment: if
environmental changes occurs the channel utilisation and the
end to end delay performance fluctuate temporarily but the
scheme is capable of adapting and maintaining a good level
of performance overall.

Please note that each graph in Fig. 10 shows typical exam-
ples of four individual results rather than the average of
multiple simulation trials. The time at which convergence
occurs varies and Table 7 shows the results of 100 simulation
trials.

This paper focuses on the network performance follow-
ing convergence where collision free scheduling is achieved.
Collisions occur during the initial learning process, but this
period of time is very small with respect to the period over
which such a network would be operational. The achievable
channel utilization following convergence is therefore an
important metric and we do not consider performance metrics
during the learning process, such as collision ratio.

F. RANDOM TOPOLOGY
Let’s now look at a more practical underwater topology for
environmental monitoring where the position of each sensor
node is dictated by the location at which data must be gath-
ered. Nodes tend to be deployed in a random topology rather

FIGURE 11. Channel utilisation of UW-ALOHA-Q network converges
(Scvg) in the two different topologies using 25 nodes.

TABLE 8. End to End delay of UW-ALOHA-Q and ALOHA-Q in a 100 m and
1000m random topology when 25 nodes are deployed.

than in a well aligned ring topology and this feature of under-
water applications necessitates UW-ALOHA-Q simulations
in a random topology to determine whether the protocol can
function in the topology.

For simulations of a random topology, generating nodes are
located randomly within a circle of each network size. Sim-
ulation results show that UW-ALOHA-Q achieves conver-
gence using the identical number of slots per frame described
in section C. This is the most interesting benefit of UW-
ALOHA-Q since the protocol can provide the identical base-
line performance in the random topology. Fig. 11 shows
channel utilisation of UW-ALOHA-Q when 25 nodes are
deployed in different sizes of networks.

A successful data packet transmission is determined by an
acknowledgement packet if it is delivered before the guard
time ends. Therefore, UW-ALOHA-Q operates identically
irrespective of whether the nodes are equally spaced or not.
Nodes conduct ordinary trial-and-error learning and can find
an appropriate frame start time and a slot number for data
transmission in a random topology. A random topology in a
circle is simulated, but in principle the random topology in a
spherical area also can achieve the identical performance.

ALOHA-Q also achieves convergence and the same chan-
nel utilisation in a random topology as it does in a ring
topology as Table 8 shows.
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FIGURE 12. Real time channel utilisation of ALOHA-Q using 25 slots per
frame and UW-ALOHA-Q using 4 slots per frame (Scvg) in a 200 m
network when 25 nodes are deployed.

Fig. 12 shows the real time channel utilisation of
ALOHA-Q and UW-ALOHA-Q in the random topology.
This shows four individual results rather than the aver-
age value and the similar trend is shown as same as the
UW-ALOHA-Q in a ring topology.

The results demonstrate that UW-ALOHA-Q is robust
and tolerant to randomness in a network implying that
UW-ALOHA-Q can potentially incorporate random-moving
nodes in the operation of underwater acoustic networks.

VI. CONCLUSION
In this paper, we have proposed a reinforcement learn-
ing based MAC protocol for underwater acoustic sensor
networks, namely UW-ALOHA-Q. ALOHA-Q is designed
for the terrestrial environment and this paper has trans-
formed the protocol to UW-ALOHA-Q for use in underwater
acoustic networks. Three improvements are proposed for
UW-ALOHA-Q: asynchronous operation, reduction in the
number of slots per frame, and a uniform random back-
off scheme. End to End learning is achieved by the inter-
action using acknowledgement packet reception between a
sink node and generating node. UW-ALOHA-Q takes the
benefits of ALOHA-Q which are low complexity and low
overheads to achieve collision free high channel utilisation
for distributed networks where centralised scheduling is not
feasible and distributed scheduling introduces significant sig-
naling overheads and complexity. Practically, H/W computa-
tion for UW-ALOHA-Q requires minimum integer values of
Q-learning and little storage for Q-values of one frame.More-
over, UW-ALOHA-Q significantly improves performance
for use in underwater networks without the need for time
synchronisation. A comprehensive simulation study shows
that UW-ALOHA-Q has considerable potential for use in
practical random and large scale underwater applications. For
the example scenario considered, UW-ALOHA-Q achieves
up to a 24.6 times improvement in channel utilization with
much lower end to end delay than ALOHA-Q in a 1000m
radius underwater network.

ACKNOWLEDGMENT
S. H. Park thanks D.B. for help with academic writing in
English.

REFERENCES
[1] (May 2019).Unites States Geological Survey (USGS). [Online]. Available:

https://water.usgs.gov/edu/earthhowmuch.html
[2] (May 2019). United Nations (UN). [Online]. Available: https://www.un.

org/sustainabledevelopment/oceans
[3] (May 2019). Orgnisation for Economic Cooporation and Develop-

ment (OECD). [Online]. Available: http://www.oecd.org/sti/inno/ocean-
economy/

[4] J. Partan, J. Kurose, and B. N. Levine, ‘‘A survey of practical issues in
underwater networks,’’ACMSIGMOBILEMobile Comput. Commun. Rev.,
vol. 11, no. 4, pp. 23–33, 2007.

[5] C. E. Shannon, The mathmetical Theory of Communication, Urbana, IL,
USA: Univ. Illinois Press, 1949.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[7] S. H. Park, P. D. Mitchell, and D. Grace, ‘‘Performance of the ALOHA-Q
MAC protocol for underwater acoustic networks,’’ in Proc. IEEE Int. Conf.
Comput., Electron. Commun. Eng., Sep. 2018, pp. 189–194.

[8] L. Kleinrock and F. Tobagi, ‘‘Packet switching in radio channels: Part I—
Carrier sense multiple-access modes and their throughput-delay character-
istics,’’ IEEE Trans. Commun., vol. COMM-23, no. 12, pp. 1400–1416,
Dec. 1975.

[9] P. Karn, ‘‘MACA—A new channel access method for packet radio,’’
in Proc. ARRL/CRRL Amateur Radio Comput. Netw. Conf., Sep. 1990,
pp. 134–140.

[10] Z. Liu and I. Elhanany, ‘‘RL-MAC: A QoS-aware reinforcement learning
based MAC protocol for wireless sensor networks,’’ in Proc. IEEE Int.
Conf. Netw., Sens. Control, Apr. 2006, pp. 768–773.

[11] S. Galzarano, A. Liotta, and G. Fortino, ‘‘QL-MAC: A Q-learning based
MAC for wireless sensor networks,’’ in Proc. Int. Conf. Algorithms Archi-
tectures Parallel Process., 2013, pp. 267–275.

[12] J. Niu and Z. Deng, ‘‘Distributed self-learning scheduling approach for
wireless sensor network,’’ Ad Hoc Netw., vol. 11, no. 4, pp. 1276–1286,
Jun. 2013.

[13] Y. Chu, S. Kosunalp, P. D. Mitchell, D. Grace, and T. Clarke, ‘‘Application
of reinforcement learning to medium access control for wireless sensor
networks,’’ Eng. Appl. Artif. Intell., vol. 46, pp. 23–32, Nov. 2015.

[14] H. Bayat-Yeganeh, V. Shah-Mansouri, and H. Kebriaei, ‘‘A multi-state
Q-learning based CSMA MAC protocol for wireless networks,’’ Wireless
Netw., vol. 24, no. 4, pp. 1251–1264, May 2018.

[15] G. Chen, Y. Zhan, G. Sheng, L. Xiao, and Y. Wang, ‘‘Reinforcement
learning-based sensor access control for WBANs,’’ IEEE Access, vol. 7,
pp. 8483–8494, 2018.

[16] Y. Yu, T. Wang, and S. C. Liew, ‘‘Deep-reinforcement learning multiple
access for heterogeneous wireless networks,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 6, pp. 1277–1290, Jun. 2019.

[17] H. Okada, Y. Igarashi, and Y. Nakanishi, ‘‘Analysis and application
of framed ALOHA channel in satellite packet switching networks—
FADRA method,’’ Electron. Commun. Jpn., vol. 60, pp. 72–80,
Aug. 1977.

[18] H. Wu and Y. Zeng, ‘‘Efficient framed slotted Aloha protocol for RFID tag
anticollision,’’ IEEE Trans. Autom. Sci. Eng., vol. 8, no. 3, pp. 581–588,
Jul. 2011.

[19] A. George and T. G. Venkatesh, ‘‘Performance analysis of M2M data
collection networks using dynamic frame-slotted ALOHA,’’ IEEE Trans.
Green Commun. Netw., vol. 2, no. 2, pp. 493–505, Jun. 2018.

[20] S. Wang and Y. Shin, ‘‘Efficient routing protocol based on reinforce-
ment learning for magnetic induction underwater sensor networks,’’ IEEE
Access, vol. 7, pp. 82027–82037, 2019.

[21] X. Li, X. Hu, W. Li, and H. Hu, ‘‘A multi-agent reinforcement learning
routing protocol for underwater optical sensor networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), May 2019, pp. 1–7.

[22] Z. Jin, Q. Zhao, and Y. Su, ‘‘RCAR: A reinforcement-learning-
based routing protocol for congestion-avoided underwater acoustic sen-
sor networks,’’ IEEE Sensor J., vol. 19, no. 22, pp. 10881–10891,
Nov. 2019.

VOLUME 7, 2019 165541



S. H. Park et al.: Reinforcement Learning Based MAC Protocol (UW-ALOHA-Q) for Underwater Acoustic Sensor Networks

[23] V. DiValerio, F. L. Presti, C. Petrioli, L. Picari, D. Spaccini, and S. Basagni,
‘‘CARMA: Channel-aware reinforcement learning-based multi-path adap-
tive routing for underwater wireless sensor networks,’’ IEEE J. Sel. Areas
Commun., vol. 37, no. 11, pp. 2634–2647, Nov. 2019.

[24] N. Javaid, O. A. Karim, A. Sher, M. Imran, A. U. H. Yasar, andM. Guizani,
‘‘Q-Learning for energy balancing and avoiding the void hole routing pro-
tocol in underwater sensor networks,’’ in Proc. 14th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jun. 2018, pp. 702–706.

[25] L. Jin and D. D. Huang, ‘‘A slotted CSMA based reinforcement learning
approach for extending the lifetime of underwater acoustic wireless sensor
networks,’’ Comput. Commun., vol. 36, no. 9, pp. 1094–1099, May 2013.

[26] (May 2019). IEEE 802.15 WPAN Task Group 4. [Online]. Available:
http://www.ieee802.org/15/pub/TG4.html

[27] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[28] (May 2019). Evo Logics. [Online]. Available: https://evologics.
de/acoustic-modem/hs

[29] L. Paull, S. Saeedi, M. Seto, and H. Li, ‘‘AUV navigation and localization:
A review,’’ IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–149, Jan. 2014.

[30] G. Bianchi, ‘‘Performance analysis of the IEEE 802.11 distributed coordi-
nation function,’’ IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547,
Mar. 2000.

SUNG HYUN PARK was born in Seoul, South
Korea, in 1982. She received the B.S. and
M.S. degrees in electronic engineering from
Kwangwoon University, Seoul, in 2005 and 2007,
respectively, and the M.B.A. degree (Hons.) from
Aston University, Birmingham, U.K., in 2014. She
is currently pursuing the Ph.D. degree with the
Communication Technologies Research Group,
Electronic Engineering Department, University of
York, supervised by Dr. Mitchell. She was also

invited to give an Undergraduate Lecture at Kwangwoon University. From
2008 to 2013, she was a Senior Researcher with Innowireless, a manufacturer
of mobile technology test solutions in South Korea. Her expertise involved
4G technologies, such asWiMax, LTE, and LTE-A. She also worked with the
world’s major mobile operators. From 2014 to 2016, she went on to work at
Qucell, an LTE small cell provider based in London, U.K. She was a Tech-
nical Support Manager and collaborated with many major British mobile
service providers, including BT, EE, and Talk Talk. She is interested in the
design and testing of novel intelligent MAC protocols, specifically in the use
of reinforcement learning for underwater acoustic communication networks.
She received a Research Scholarship for her Ph.D. degree, in 2016, and the
Best Paper Award at the IEEE iCCECE Annual International Conference,
in 2018.

PAUL DANIEL MITCHELL (M’00–SM’09)
received the M.Eng. and Ph.D. degrees from the
University of York, York, U.K., in 1999 and 2003,
respectively. His Ph.D. research was on medium
access control for satellite systems, which was
supported by British Telecom. He has gained
industrial experience with BT and QinetiQ. Since
2002, he has been a member of the Department of
Electronic Engineering, University of York, where
he is currently a Reader. He has authored more

than 110 refereed journal and conference papers. His research interests
include medium access control and routing, underwater acoustic networks,
wireless sensor networks, cognitive radio, traffic modeling, queuing theory,
and satellite and mobile communication systems. He is also a member of
the IET and a Fellow of the Higher Education Academy. He has served
on numerous International Conference Program Committees. He was the
General Chair of the International Symposium onWireless Communications
Systems which was held in York, in 2010, the Track Chair of the IEEE VTC,
in 2014, and the TPC Co-Chair of the ISWCS 2019. He is also an Associate
Editor of the IET Wireless Sensor Systems Journal and the International
Journal of Distributed Sensor Networks (Sage).

DAVID GRACE (S’95–A’99–M’00–SM’13)
received the Ph.D. degree from the University of
York, in 1999, with the subject of his dissertation
on ’’Distributed Dynamic Channel Assignment for
the Wireless Environment.’’ In 2000, he jointly
founded Skylarc Technologies Ltd., andwas one of
its directors. Hewas one of the Lead Investigator of
FP7 ABSOLUTE, where he focused on extending
LTE-A for emergency/temporary events through
the application of cognitive techniques. He was the

Technical Lead of the 14-Partner FP6 CAPANINA Project that dealt with
broadband communications from high altitude platforms. Since 1994, he
has been a member of the Department of Electronic Engineering, University
of York, where he is currently a Professor (Research) and the Head of the
Communication Technologies Research Group. He is also the Co-Director of
the York-Zhejiang Lab on Cognitive Radio andGreen Communications and a
Guest Professor with Zhejiang University. He is also the Lead Investigator of
H2020MCSA 5G-AURA and H2020MCSA SPOTLIGHT. He has authored
over 220 articles and has authored/edited two books. His current research
interests include aerial platform-based communications, cognitive green
radio, particularly applying distributed artificial intelligence to resource
and topology management to improve overall energy efficiency, 5G system
architectures, dynamic spectrum access, and interference management. He
is also a Founding Member of the IEEE Technical Committee on Green
Communications and Computing. He was the Chair of the IEEE Technical
Committee on Cognitive Networks for the period of 2013–2014.

165542 VOLUME 7, 2019


	INTRODUCTION
	PREVIOUS WORK
	ALOHA-Q
	REINFORCEMENT LEARNING
	LIMITATIONS OF ALOHA-Q FOR UNDERWATER ACOUSTIC NETWORKS

	UW-ALOHA-Q
	ASYNCHRONOUS OPERATION
	OPTIMISATION OF THE NUMBER OF SLOTS
	UNIFORM RANDOM BACK-OFF SCHEME

	SIMULATIONS
	PARAMETERS AND PERFORMANCE MEASURE
	THE TRADEOFF BETWEEN CHANNEL UTILISATION AND CONVERGENCE AS A FUNCTION OF THE NUMBER OF SLOTS PER FRAME
	CHANNEL UTILISATION AS A FUNCTION OF NETWORK SIZE
	END TO END DELAY
	NETWORK CONVERGENCE
	RANDOM TOPOLOGY

	CONCLUSION
	REFERENCES
	Biographies
	SUNG HYUN PARK
	PAUL DANIEL MITCHELL
	DAVID GRACE


