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ABSTRACT With the advances of data mining and the pervasiveness of cloud computing, online medical
diagnosis service has been extensively applied in e-heathcare field, and brought great conveniences to
people’s life. However, due to the insufficient data sharing among healthcare centers under the security
and privacy concerns of medical information, the flourish of online medical diagnosis service still faces
many severe challenges including diagnostic accuracy issues. In this paper, in order to address the security
issues and improve the accuracy of online medical diagnosis service, we propose a new privacy-preserving
collaborative model learning scheme with skyline computation, called PCML. With PCML, healthcare
centers can securely learn a global diagnosis model with their local diagnosis models in the assistance of
cloud, and the sensitive medical data of each healthcare center is well protected. Specifically, with a secure
multi-party vector comparison algorithm (SMVC), all local diagnosis models are encrypted by their owners
before being sent to the cloud, and can be directly operated without decryption. Detailed security analysis
shows that PCML can resist security threats in the semi-honest model. Moreover, PCML is implemented
with medical datasets from UCI machine learning repository, and extensive simulation results demonstrate
that PCML is efficient and can be implemented effectively.

INDEX TERMS Online medical diagnosis, privacy-preserving, collaborative model learning, skyline
computation.

I. INTRODUCTION
In recent years, the online medical diagnosis system [1],
which can provide medical diagnosis service anywhere and
anytime, has attracted considerable interest. Compared with
traditional treatment methods, online medical diagnosis is
more flexible and convenient since it breaks the geograph-
ical restriction, and reduces the waiting time of seeing
doctors [2]–[6]. To predict hidden diseases from collected
medical data, many data mining techniques have been devel-
oped for e-healthcare system in recent years. For example,
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skyline computation [7], which returns a set of interesting
points from a potentially huge data space, can be appropri-
ately used in medical data analyzing and disease classifica-
tion [6]. Specifically, with collected medical data, healthcare
centers can generate diagnosis models via medical data min-
ing with skyline query, which assists them in offering online
medical diagnosis services, and allows users to check their
health conditions expediently.

Unfortunately, in traditional online medical system,
the medical data are commonly stored distributively in differ-
ent healthcare centers, and a sole healthcare center collecting
only a small set of medical data cannot generate a sky-
line diagnosis model accurate enough [8], [9]. For example,
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FIGURE 1. Conceptual architecture of collaborative model learning.

consider the scenario shown in Fig. 1, when a user accesses
online medical diagnosis services from multiple healcare
centers, due to the limitation of diagnosis model accuracy,
healthcare centers may not be able to diagnose diseases
accurately, which will bring bewilderment to the user. Thus,
healthcare centers expect to learn amore accurate global diag-
nosis model collaboratively with their local medical informa-
tion (i.e., local skyline diagnosis models) for offering better
services.

However, owing to the data security issues, there are still
many difficulties lying ahead the collaborative model learn-
ing among multiple healthcare centers [10]–[13]. In gen-
eral, local skyline diagnosis models take large resources of
healthcare centers to generate, and are commonly regarded
as the trade secrets. Disclosure of these private information
may bring an economic loss directly. As a result, healthcare
centers are reluctant to contribute their local skyline diagno-
sis models. Therefore, it is of great importance to develop
a privacy-preserving collaborative model learning scheme
over multiple healthcare centers for online medical diagnosis
system.

To address the above-mentioned challenges, some
distributed skyline computation [14], [15] and privacy-
preserving techniques [4], [16] have been proposed. Indi-
vidually, distributed skyline computation techniques achieve
the skyline query distributively, but these techniques mainly
focus on searching the set of interesting skyline points from
the distributed dataset, while not aware how to apply skyline
computation in online medical diagnosis system to perform
range query. Furthermore, the private information of data
owners is not protected in these techniques. To address the
data security issues, many privacy-preserving techniques,
such as homomorphic encryption [16] and anonymity tech-
niques [4] are proposed to achieve data security. Homomor-
phic encryption allows direct operations over ciphertexts,
which can achieve accurate operation results on encrypted
data However, most of them contain massive, complicated
arithmetical operations, which brings considerable com-
putation overhead. Anonymity techniques are extensively
used in private information protection, which blurs private
data into a cloaked space to protect the sensitive infor-
mation, but it brings heavy communication overhead. The
above-mentioned techniques can resolve the existing issues
to some degree, but they are hard to be deployed in online
medical diagnosis system.

In this paper, we propose a privacy-preserving collabora-
tive model learning scheme with skyline computation, named
PCML. With PCML, multiple healthcare centers can learn
a global diagnosis model with their local skyline diagnosis
models in the assistance of cloud, while the private local
diagnosis models of healthcare centers can be well protected.
Meanwhile, the learned global model is also kept confidential
from the cloud. Individually, the main contributions of this
paper are fourfold.
• First, PCML addresses the privacy and data security
issues of collaborative model learning for skyline com-
putation. With PCML, the private local skyline diagno-
sis models of healthcare centers are encrypted with a
modified paillier cryptosystem, and are operatedwithout
decryption. Therefore, the sensitive medical information
of healthcare centers can be well protected, meanwhile,
the confidentiality of the final global diagnosis model is
ensured.

• Second, PCML achieves collaborative model learning
accurately. To achieve the quality of onlinemedical diag-
nosis service, we construct a secure multi-party vector
comparison (SMVC) algorithm based on paillier cryp-
tosystem with secret sharing, which supports lossless
collaborativemodel learningwhile protecting healthcare
centers’ privacy.

• Third, PCML accomplishes the fault-tolerant mecha-
nism for collaborative model learning. In the real envi-
ronment, the servers of healthcare centers may crash due
to some irresistible factors (such as physical damage,
malicious attacks).With threshold decryption technique,
PCML achieves that even if a few healthcare centers
are crashed, the global model can also be calculated
correctly.

• Fourth, PCML is efficient regarding computation com-
plexity and communication overhead. Based on man-
hattan distance, the skyline points can be extracted
easily from datasets, which improve the efficiency
of collaborative model learning. Moreover, we test
PCML through PC with a real medical dataset
to evaluate its effectiveness. Extensive results show
that PCML is efficient and can be implemented
effectively.

The remainder of this paper is organized as follows.
In section II, we formalize the system model, security
requirements, and identify our design goal. In section III,
we review the skyline computation, bilinear pairing, and
paillier cryptosystem as the preliminaries. Then, we pro-
pose our PCML in section IV, followed by the secu-
rity analysis and performance evaluation in section V
and section VI, respectively. We also review some related
works in section VII. Finally, we draw our conclusions in
section VIII.

II. MODELS AND SECURITY REQUIREMENTS
In this section, we formalize the system model and security
requirements.
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A. SYSTEM MODEL
In our system model, we mainly focus on how to provide
privacy-preserving collaborative model learning for online
medical diagnosis system. Each healthcare center is equipped
with a PC, which can connect with other healthcare centers
and the cloud. Specifically, the system consists of three parts:
1) trusted authority (TA); 2) healthcare centers (HCs) and
3) cloud server (CS). As shown in Fig. 2.

FIGURE 2. System model under considered.

• TA is a trusted authority (i.e., a government department),
which bootstraps the system initialization through gen-
erating the system parameters, and distributing keys for
HCs and CS.

• HCs = {HC1, · · · ,HCn} is a set of n healthcare cen-
ters. In our system, each HCi ∈ HCs owns a local
skyline diagnosis model built upon the collected clin-
ical datasets, and shares its encrypted local skyline
diagnosis model for obtaining a more precise global
diagnosis model via cooperative computing with other
HCs and CS.

• CS is a cloud server which assists healthcare centers to
generate global skyline diagnosis model. CS is respon-
sible for aggregating the encrypted local diagnosis mod-
els, and generating the final global diagnosis model
via cooperative computing with HCs. In our system,
CS undertakes the most calculations during the collabo-
rative model learning process.

B. THREATEN MODEL AND SECURITY REQUIREMENT
In our threaten model, we consider that CS and HCs
are honest-but-curious [17]. Specifically, CS (1) stores the
encrypted local skyline diagnosis models of HCs without
tampering them; (2) honestly executes the operations of
PCML, and returns the collaborative model learning result
reliably; and (3) tries to retrieve the underlying plaintext
of local skyline diagnosis models of HCs. In addition,
each HC (1) does not send false information; (2) tries to

analyze other HCs’ local skyline diagnosis models during
the cooperative computing process. Considering above secu-
rity issues, the following security requirements should be
satisfied.
• Privacy: Protecting the privacy of each HC’s local sky-
line diagnosis model. Concretely, during the collabora-
tive model learning process, every HC’s local skyline
diagnosis model cannot be leaked to CS and other HCs.

• Confidentiality: Protecting the learned global diagnosis
model from the cloud. Specifically, after the collabora-
tive model learning process, the golbal diagnosis model
can only be retrieved by HCs.

III. PRELIMINARIES
In this section, we review the skyline computation and its
additivity property [18], skyline diagnosis model [6], and
paillier cryptosystem [19]. These will serve as the basis of
our PCML.

A. SKYLINE COMPUTATION AND ADDITIVITY PROPERTY
1) SKYLINE COMPUTATION
Given a dataset S in m-dimensional space, and a point P ∈ S
can be represented as a vector P = {p1, p2, · · · , pn}. Without
loss of generality, let us assume that the pi in any dimension i
is greater or equal to zero (pi ≥ 0).
Definition 1 (Skyline Computation): A point P ∈ S is said

to dominate another point Q ∈ S, represented by P ≺ Q, if it
satisfies the following conditions: 1) For every dimension i,
pi ≤ qi. 2) At least there exists one dimension j such that
pj < qj. The skyline set is a set of points SKY (S) ⊆ S that are
not dominated by any other points. The points in SKY (S) are
called skyline points.

2) ADDITIVITY PROPERTY
Given a dataset S and n datasets such that S = S1 ∪ S2 ∪
· · · ∪ Sn, the additivity of skyline computation can be
represented as SKY (S) = SKY (SKY (S1) ∪ SKY (S2) ∪ · · · ∪
SKY (Sn)). Note that if there are same points in SKY (Si), i =
i, · · · , n, reserve one of them and delete the extra points.
Then, the above equation implies the two following events
are equivalent: 1) Skyline computation is calculated over
the union of the n datasets. 2) Skyline computation is
firstly calculated over each dataset to generate local sky-
line set, and then calculated over the union of local skyline
sets.

Due to the additivity of skyline computation, the skyline
query can be processed in a distributed method. As shown
in Fig. 3, assume two datasets S1 and S2 stored in differ-
ent data owners. The additivity of the skyline computation
ensures that it is sufficient to take into account only the
skyline points SKY (S1) (a, b, c, d) and SKY (S2) (e, f , g) to
retrieve the global skyline points of the dataset SKY (S) =
SKY (S1 ∪ S2) (a, e, b, g, d). This is because no other points
can be part of the global skyline points since they are dom-
inated by at least one point of SKY (S1) or SKY (S2), and the
dominance relation is transitive.
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FIGURE 3. Additivity of skyline computation in two dimension.

B. SKYLINE DIAGNOSIS MODEL
From a data set S, it can be seen that the skyline points SKY (S)
represents the boundary of S. Through modifying the size
relationship of elements in each dimension between two vec-
tor, we can define positive and negative skyline points, which
present the lower boundary and upper boundary, respectively.
Therefore, the skyline computation can be modified to a
classifier via determining whether a tested point is within
the range enclosed by the upper and lower boundaries. Then,
given a medical case dataset, a disease classifier can be
constructed as follows.

Assume that the medical case dataset S ′ in m-dimensional
space with cardinality n, P and Q are two different points
in S ′.
Definition 2 (Positive Skyline): P is said to positive dom-

inated Q, represented by P � Q, if it satisfies following
conditions, which are the same as P ≺ Q: 1) For every
dimension i, pi ≤ qi. 2) At least there exists one dimension j
such that pj < qj.
Definition 3 (Negative Skyline): P is said to negative dom-

inated Q, represented by P � Q, if it satisfies the following
conditions: 1) For every dimension i, pi ≥ qi. 2)At least there
exists one dimension j such that pj > qj.
Based on above definitions, the positive points of medical

dataset S ′, PSKY (S ′), and the negative points of medical
dataset S ′, NSKY (S ′) can be calculated to construct the sky-
line diagnosis model. Suppose that a medical query informa-
tion is presented by a point C , if C is positive dominated by
at least on point in PSKY (S), and is negative dominated by
at least one point in NSKY (S), it can be concluded that the
diagnosis result of C is positive.

C. PAILLIER CRYPTOSYSTEM
Paillier cryptosystem is a widely used additive homomorphic
encryption. The detail is presented as the following three
functions.
1) Key Generation: (pk, sk) ← KeyGen(κ). Choose two

big primes p, q, and computes N = pq, λ = lcm(p − 1,
q−1). Then, select a random g ∈ Z∗

N 2 such that gcd(L(g
λ mod

N 2),N ) = 1, where L(x) = (x − 1)/N . The public key and
the private key are pk = (N , g) and sk = λ, respectively.
2) Encryption: [[m]] ← E(m, pk), where E(·) presents the

encryption function of paillier. Let m ∈ ZN be a plaintext
and r ∈ ZN be a random number. The ciphertext is given by
[[m]] = gmrN mod N 2.

3) Decryption: m ← D([[m]], sk), where D(·) presents the
decryption function of paillier. Given a ciphertext [[m]] ∈ ZN 2 ,
the corresponding plaintext can be derived as m = (L([[m]]λ

mod N 2)/L(gλ mod N 2)) mod N .
The homomorphism of paillier cryptosystem:
For anym1,m2, r1, r2 ∈ ZN , we have additive and multiple

homomorphism as follows.
[[m1]] · [[m2]] = gm1+m2 (r1r2)N = [[m1 + m2]],
[[m1]]m2 = gm1m2rNm2 = [[m1m2]].

IV. PROPOSED PRIVACY-PRESERVING SCHEME
In this section, we present our PCML scheme, which mainly
consists of four phases: 1) system initialization; 2) local
diagnosis model encryption; 3) collaborative model learning;
and 4) collaborative learned result reading. The overview of
PCML is described in Fig. 4. At first, TA generates system
parameters, calculates the public key PK and corresponding
private key SK of paillier cryptosystem, and splits the private
key SK into multiple parts for HCs and CS to achieve thresh-
old decryption. Then, HCs encrypt their local skyline diagno-
sis models, which will be submitted to CS later. CS executes
cooperative computing with HCs to obtain the collaborative
learned result, and send the result to HCs. Finally, HCs can
obtain the global skyline diagnosis model via cooperative
decrypting the learned result. To describe PCML more clear,
we give the description of used notations in Table 1.

FIGURE 4. Overview of PCML.

A. SYSTEM INITIALIZATION
During the system initialization phase, TA generates the
system parameters, and splits the secret key SK of paillier
cryptosystem for CS and HCs.
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TABLE 1. Definition of notations in PCML.

TA first chooses a security parameter α and two large safe
prime numbers p, q, where |p| = |q| = α, and computes
N = pq, λ = lcm(p−1, q−1). Then, TA chooses a generator
g of order (p− 1)(q− 1)/2, such as g = −a2N , where a is a
random number in Z∗

N 2 (for simplicity we denote g = 1+N ).
The public key is PK = N , and the corresponding private key
is SK = λ.
Furthermore, TA calculates δ = η · λ, s.t., η · λ ≡

1 mod N 2, sets a threshold u, s.t., u − 1 ≤ n, and
defines a polynomial q(x) = λ +

∑u−1
i=1 aix

i, where
a1, a2, · · · , au−1 are u−1 random numbers from Z∗λ. Finally,
let α0, α1, · · · , αn be n + 1 distinct nonzero integers sat-
isfying |ε| ≤ N/2, where ε = (max{α0, α1, · · · , αn} −
min{α0, α1, · · · , αn})!, TA can splits the private key SK into
n+1 parts through computing q(αi). TA publishes the system
parameters < g,PK , η, α1, α2, · · · , αn, ε >.

The private key SK is splitted to n + 1 distributed secret
keys for HCs and CS. Then, each HCi ∈ HCs requests TA for
its distributed secret key skHi = q(αi). Similarly, CS requests
TA for its distributed secret key skC = q(α0).

B. LOCAL DIAGNOSIS MODEL ENCRYPTION
In this phase, in order to achieve the privacy of local skyline
diagnosis models, every HCi encrypts its original medical
data before sending to CS.

Specifically, assume that the clinical dataset with
m-dimensional, and the local skyline diagnosis model of HCi
are Si, and LMi, respectively. Referring to Section 3.2, LMi is
constructed by PSKY (Si) and NSKY (Si), where PSKY (Si) =
{Pi1, · · · ,Pis}, and NSKY (Si) = {Pi(s+1), · · · ,Pit }. In detail,
LMi can be represented with a matrix as follows.

LMi =


Pi1
· · ·

Pis
Pi(s+1)
· · ·

Pit

 =


pi11 , · · · , pi1m
· · · , · · · , · · ·

pis1 , · · · , pism
pi(s+1)1 , · · · , pi(s+1)m
· · · , · · · , · · ·

pit1 , · · · , pitm

 .

Then, HCi chooses random numbers rijk ∈ ZN (where i is
the ID of HCi, j = 1, · · · , t , k = 1, · · · ,m), and executes
the following operations to encrypt each element in LMi
with the public key PK = N .

[[pijk ]] = gpijk · rNijk mod N 2. (1)

Moreover, HCi computes the manhattan distance between
the origin and each vector in LMi as follows

mdpij =
∑k

l=1
pijk . (2)

After this, HCi can obtain the encrypted local skyline
diagnosis model

EMi =


EPi1
· · ·

EPis
EPi(s+1)
· · ·

EPit

=


[[pi11]] , · · · , [[pi1m]]
· · · , · · · , · · ·

[[pis1]] , · · · , [[pism]]
[[pi(s+1)1]] , · · · , [[pi(s+1)m]]
· · · , · · · , · · ·

[[pit1]] , · · · , [[pitm]]

,
and the manhattan distances MDPi = (mdpi1, · · · ,mdpit ).

Finally, HCi submits < EMi||MDPi > to CS.

C. COLLABORATIVE MODEL LEARNING
After receiving total n encrypted encrypted local diagnosis
model packet < EMi||MDPi >, for i = 1, · · · , n. CS is
responsible for extracting the positive and negative skyline
points from EMi, i = i, · · · , n. Concretely, the following
operations will be executed.
• Step-1: Encrypted Vectors Aggregation

Assume that each EMi has t skyline points, CS first
aggregates MDP1, · · · ,MDPn to obtain MDP =

(mdp11, · · · ,mdpnt ). Then, CS marks the vectors,
which is corresponding to the minimum and maxi-
mum in (mdp11, · · · ,mdpnt ), as Min− p and Max − p,
respectively.

For simplify, we take extracting the positive points
from EMi, i = i, · · · , n as an example. CS selects two
random numbers rc, rc′ ∈ ZN satisfying |rc′ | = α/2.
Assume thatMin− p = ([[pij1]], · · · , [[pijm]]) is a vector
in EMi, and each EMi has s positive points. Then, for
each vector EPi′j′ = ([[pi′j′1]], · · · , [[pi′j′m]]) in EMi′ ,

i′ 6= i, CS calculates

[[1]] = g · rNc mod N 2

[[p′ijk ]] = [[pijk ]]2 · [[1]]

[[p′i′j′k ]] = [[pi′j′k ]]2

acpi′j′k = ([[p′ijk ]] · [[p
′

i′j′k ]]
N−1)η·rc′

acp(CS)i′j′k = acpskCi′j′k ,

(3)

where k = 1, · · · ,m and j′ = 1, · · · , t . After
this, CS obtains the aggregated vectors AEPi′j′ =
(acpi′j′1, · · · , acpi′j′m) and its partially decryption
AEP(CS)i′j′ = (acp(CS)i′j′1 , · · · , acp

(CS)
i′j′m). Then, CS exe-

cutes π (AEPi′j′ ) and π (AEP(CS)i′j′ ) to make the order
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of elements in AEPi′j′ and AEP(CS)i′j′ chaotic. More-
over, CS computes AEP = (AEP11, · · · ,AEP(n−1)s)
and AEP(CS) = (AEP(CS)11 , · · · ,AEP(CS)(n−1)s). Similarly,
CS executes π ′(AEP) and π ′(AEP(CS)) to make the order
of vectors in AEP and AEP(CS) chaotic.
Finally, CS sends < AEP > to all HCs. Meanwhile,

CS chooses a HC ∈ HCs randomly, represented by HC′,
and sends < AEP(CS) > to HC′.

• Step-2: Intermediate Values Calculation
After receiving < AEP >, HCi computes

acp(HCi)i′j′k = acp
skHi
i′j′k ,

where i′ = 1, · · · , n − 1, j′ = 1, · · · , t , and
k = 1, · · · ,m. After this, HCi obtains AEP(HCi) =
(AEP(HCi)11 ,· · ·,AEP(HCi)(n−1)s), where AEP

(HCi)
i′j′ = (acp(HCi)i′j′1 ,

· · · , acp(HCi)i′j′m ).
Finally, each HCi (except HC′) sends < AEP(HCi) >

to HC′.
• Step-3: Dominating Relationship Judgement

Once < AEP > from CS, and < AEP(HCi) >

from n − 1 HCs are received, HC′ maps the set
{CS,HC1, · · · ,HCn} to {0, 1, · · · , n} in order. Corre-
spondingly, {acp(CS)i′j′ , acp

(HC1)
i′j′ , · · · , acp(HCn)i′j′ } will be

mapped to {acp(0)i′j′ , acp
(1)
i′j′ , · · · , acp

(n)
i′j′ }. After this, HC

′

chooses arbitrary v′ (v′ ≥ u) numbers from {0, 1, · · · , n}
to construct the aggregated vector decryption set ADS,
and decrypts each element in AEP through computing

1l,ADS (x) = ε ·
∏

l′∈ADS,l′ 6=l

x − αl′

αl − αl′

θi′j′k =
∏

l∈ADS
(acp(l)i′j′k )

1l,ADS (0)
mod N 2

θ ′i′j′k = L(θi′j′k )/ε mod N ,

(4)

where i′ = 1, · · · , n − 1, j′ = 1, · · · , t and k =
1, · · · ,m. Then, through the value of (θ ′i′j′1, · · · , θ

′

i′j′m),
HC′ can obtain the dominating relationship 2i′j′ of
Min− p and EPi′j′ (for k = 1, · · · ,m, if all |θ ′ijk | >
N/2, HC′ can determine that Min− p � EPi′j′ , oth-
erwise, Min− p and EPi′j′ are irrelevant.). Moreover,
HC′ computes 2 = (211, · · · ,2(n−1)t ), which implies
the dominating relationship between Min− p and all
vectors in EMi′ , i′ 6= i.
Finally, HC′ returns < 2 > to CS.

• Step-4: Skyline Points Extraction:
Upon receiving < 2 >, CS records Min− p as

a encrypted positive skyline point in global diagnosis
model. Meanwhile, CS discards Min− p and the vec-
tors which are positive dominated by Min− p accord-
ing to 2. After this, for the remaining vectors in EMi,
i = 1, · · · , n, CS repeats step-1 to step-4 until there is
no vector in EMi, i = 1, · · · , n.

Finally, CS can obtain the encrypted positive points of global
diagnosis EPSKY (S) = (Min− p1, · · · ,Min− ps′ ), where
S = S1 ∪ · · · ∪ Sn. Furthermore, through modifying the
dominating relationship from positive to negative in step 1-4,

Algorithm1 SMVC: SecureMulti-ParityVector Comparison
Input: Two encrypted vectors EPij (Min-p or Max-p) =

([[pij1]], · · · , [[pijm]]) and EPi′j′ = ([[pi′j′1]], · · · , [[pi′j′m]])
of CS.

Output: The dominating relationship of EPij and EPi′j′ .
1: for k = 1 to k = m do
2: CS computes the aggregated element acpijk ;
3: CS computes acp(CS)ijk ← acpijk with skC ;

4: HCi computes acp(HCi)ijk ← acpijk with skHi ;
5: end for
6: CS generates AEP(CS)ij ;

7: HCi generates AEP
(HCi)
ij ;

8: HC′ maps {CS,HC1, · · ·HCn} → {0, 1, · · · , n}, and
chooses ADS from {1, · · · , n};

9: HC′ sets temp = 0;
10: for k = 1 to k = m do
11: HC′ decrypts acpijk to obtain θ ′ijk with ADS;
12: if |θ ′ijk | > N/2 then
13: HC′ computes temp = temp+ 1
14: else
15: HC′ computes temp = temp− 1
16: end if
17: end for
18: if temp = m then
19: return EPij � EPi′j′ ;
20: else if temp = −m then
21: return EPij � EPi′j′ ;
22: else
23: return no relationship between EPij and EPi′j′ ;
24: end if

CS can obtain the encrypted negative points of global diagno-
sis EPSKY (S) = (Max − p1, · · · ,Min− pt ′ ). Then, the col-
laborative learned result EGM (encrypted global diagnosis
model) can be represented as the following matrix.

EGM =


Min-p1
· · ·

Min-ps′
Max-p1
· · ·

Max-pt ′

 =


eg11 , · · · , eg1m
· · · , · · · , · · ·

egs′1 , · · · , egs′m
eg(s′+1)1 , · · · , eg(s′+1)m
· · · , · · · , · · ·

egt ′′1 , · · · , egt ′′m

 .

Note that each element inEGM is still the ciphertext. Then,
CS computes

eg(CS)ij = egskCij ,

where i = 1, · · · , t ′′, and j = i, · · · ,m, to generate EGM (CS).
Finally, CS sends the < EGM ||EGM (CS) > to all HCs.

D. COLLABORATIVE LEARNED RESULT READING
After receiving the encrypted global diagnosis model packet
< EGM ||EGM (CS) >, HCi cooperatively decrypts EGM to
obtain the global diagnosis model GM .
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Concretely, for every element in EGM , HCi computes
eg(HCi)ij = eg

skHi
ij with it distributed secret key skHi to obtain

EGM (HCi), and shares its EGM (HCi) to other HCs through
a secure channel. Then, the global diagnosis model can be
retrieved by HCi with the follow steps.
• Step-1: Decryption Set Generation

HCi maps {CS,HC1, · · · HCn} to {0, 1, · · · , n} in
order. Correspondingly, {EGM (CS),EGM (HC1), · · · ,

EGM (HCn)} is mapped to {EGM (0),EGM (1), · · · ,

EGM (n)
}. Once the numbers of HCs, which have shared

their EGM (HC), is greater than u − 1, HCi can select
v (v ≥ u) numbers from {0, 1, · · · , n} to construct the
global diagnosis model decryption set GDS.

• Step-2: Collaborative Learned Result Decryption
HCi executes the follow calculations to obtain gij,

which is the plaintext of each element in EGM .
1l,GDS (x) = ε ·

∏
l′∈GDS,l′ 6=l

x − αl′

αl − αl′

g′ij =
∏

l∈GDS
(eg(l)ij )

1l,GDS (0)
mod N 2

gij = L(g′ij)/ε mod N .

(5)

Finally, through decrypting each elements in EGM with
executing the above steps, all HCs can obtain PKY (S) =
{G1, · · · ,Gs′}, and NKY (S) = {Gs′+1, · · · ,Gt ′} to achieve
the final global skyline diagnosis model GM , which is pre-
sented as follows.

GM =


G1
· · ·

Gs′
Gs′+1
· · ·

Gt ′′

 =


g11 , · · · , g1m
· · · , · · · , · · ·

gs′1 , · · · , gs′m
g(s′+1)1 , · · · , g(s′+1)m
· · · , · · · , · · ·

gt ′′1 , · · · , gt ′′m

 .

Correctness of PCML: The key point of proposed PCML is
to extract the positive/negative skyline points fromHCs’ local
diagnosis models over ciphertexts, which can be verified as
following.
Theorem 1: Min-p/Max-p is the positive/negative skyline

point in EMi, i = 1, · · · , n.
Proof: For simplicity, we take Min-p as an example.

Assume that there is another point EP′ = ([[p′1]], · · · , [[p
′
m]])

that positive dominates Min− p = ([[pij1]], · · · , [[pijm]]).
It means p′1 ≤ pij1, · · · , p′m ≤ pijm, and at least there
exists one dimension k ′ such that p′k ′ < pijk ′ . then, EP′

will be the vector corresponding to the minimum value
in (mdp11, · · · ,mdpnt ), which contradicts the definition of
Min-p. Therefore, it can be claimed thatMin-p is the positive
skyline point in EMi, i = 1, · · · , n. Moreover, through mod-
ifying the dominating relationship from positive to negative,
we can prove that Max-p is the negative skyline point in
EMi, i = 1, · · · , n.
Theorem 2: SMVC can correctly compute the dominating

relationships of two vectors over ciphertexts.

Proof:We describe the process of determining the dom-
inating relationship of two vectors in PCML as algorithm
SMVC, and verify the correctness of SMVC as follows.

First, based on the homomorphism of paillier cryptosys-
tem, given m ∈ ZN , we have the following characteristic
of [[m]].

[[m]]N−1 = gm·(N−1) · rN ·(N−1) mod N 2

= (1+ N )m·(N−1)rN ·(N−1) mod N 2

= (1+ (N − 1)m · N ) · rN ·(N−1) mod N 2

= [[−m]].

Then, we take EPij = ([[pij1]], · · · , [[pijm]]) and EPi′j′ =
([[pi′j′1]], · · · , [[pi′j′m]]) as inputs, and calculate equation (3)
as follows.

acpijk = ([[p′ijk ]] · ([[p
′
i′j′k ]])

N−1)η·rc′

= ([[2pijk + 1]] · [[−2pi′j′k ]])
η·rc′

= [[2(pijk − pi′j′k )+ 1]]η·rc′

= [[rc′ · (2(pijk − pi′j′k )+ 1)]]η. (6)

Moreover, in equation (4), since the number of elements
in ADS is greater than the threshold u, with shamir’s secret
sharing [21], θ ′ijk can be calculated as follows.

θijk =
∏

l∈ADS
(acp(l)ijk )

1l,ADS (0)
mod N 2

= acp
∑

l∈ADS q(αl )·1l,ADS (0)
ijk mod N 2

= [[rc′ · (2(pijk − pi′j′k )+ 1)]]ε·η·λ mod N 2

= 1+ N · ε · rc′ · (2(pijk − pi′j′k )+ 1) mod N 2

θ ′ijk = L(θijk )/ε = rc′ · (2(pijk − pi′j′k )+ 1) mod N . (7)

Note that the bit-lengths of rc′ and N are α/2 and 2α,
respectively, and the value of medical data is not big, thus,
it is obvious that SMVC satisfied the constraints rc′ · (2(pijk−
pi′j′k ) + 1) < N/2 while pijk > pi′j′k . Therefore, if |θ ′ijk | >
N/2, it can be realized that pijk < pi′j′k , and if |θ ′ijk | < N/2,
it can be realized that pijk ≥ pi′j′k . Finally, the dominating
relationship of vectors EPij and EPi′j′ can be concluded.

E. SCALABILITY DISCUSSION
In PCML, we can see that the distributed secret key for
each healthcare center is generated independently. That is,
when a healthcare center participates the system, TA can
generate a new distributed secret key for the healthcare center.
Moreover, based on the fault-tolerant mechanism, even if a
few healthcare centers are crashed, the collaborate computing
process can also be executed normally. Therefore, it can be
seen that the proposed scheme is scalable and flexible.

V. SECURITY ANALYSIS
In this section, we analyze the security of the proposed
PCML. Specifically, following the security requirements dis-
cussed earlier, our analysis focuses on how to preserve the
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private medical information during the collaborative model
learning process.
Theorem 3: PCML achieves the privacy of HCs’ local

diagnosis models LMs and the confidentiality of global diag-
nosis model GM against honest-but-curious model [17].
(i.e., CS wants to obtain the underlying plaintext of EMs
and EGM for stealing HCs’ local diagnosis model LMs and
the global diagnosis model GM , meanwhile, HCs expect to
achieve each other’s local skyline diagnosis models).

Proof:We illustrate that both HC’s LMs and GM can be
well protected during different phases of collaborative model
learning.
• In the local diagnosis model encryption phase, all ele-
ments in NSKY (Si) and PSKY (Si) are encrypted with
the public key PK = N , and a local skyline diagno-
sis model LMi is transformed to EMi by its owner via
computing [[pijk ]] = gpijk · rNijk mod N 2, where j =
1, · · · , t , and k = 1, · · · ,m. Note that N is the public
key of paillier cryptosystem with threshold decryption,
and the corresponding secret key SK is splitted into
n+ 1 distributed secret keys skC , skH1 , · · · , skHn for CS
and HCs by TA. Since a sole distributed key sk cannot
retrieve the ciphertext [[pijk ]], therefore, it is impossi-
ble for CS and a individual HCi to decrypt the EMs.
Moreover, since mdpij is the sum of elements in vector
pijk , CS cannot retrieve the elements of pijk with mdpij.
Thus, the privacy of LMs can be well protected in this
phase.

• In the collaborative model learning phase, CS aggre-
gates the encrypted vectors of EMs with the homomor-
phic characteristic of paillier cryptosystem to obtain the
dominating relationship of vectors. In this process, only
all HCs partially decrypt the acpi′j′k , HC′ can retrieve
the θ ′ijk to determine the dominating relationship of
Min− p/Max − p and EPi′j′ . In addition, since θ ′i′j′k =
L(θi′j′k ) = rc′ · (2(pijk − pi′j′k )+ 1) mod N , where rc′ is
a random number which is only known by CS, and CS
makes the order of k and j′ chaotic, thus, it is impossible
for the HC′ to obtain the original data of LMs, or infer
the size relationship of two compared tuples in a specific
dimension. In other words, HC′ can only obtain the dom-
inating relationshipMin− p/Max − p and EPi′j′ , which
is valueless for HC′ but necessary for the entire process
of collaborative model learning. Thus, during this phase,
the privacy of LMs can be verified. In addition, due to all
operations in CS are over ciphertext, CS finally obtain
the encrypted global diagnosis model EGM , which can
only be decrypted by HCs. Therefore, the confidentiality
of GM is guaranteed.

• In the collaborative learned result reading phase, note
that all HCs decrypt the EGM distributedly, and each
HCi shares its partially decryption result EGM (HCi).
Meanwhile, EGM can only be retrieved while the num-
ber of HCs participating in the decryption is greater
the threshold, thus, it is impossible for an individual
HCi ∈ HCs to decrypt the final global diagnosis earlier

than other HCs, which guarantees that all HCs can obtain
the final global diagnosis model.

VI. PERFORMANCE EVALUATION
In this section, we first evaluate the performance of the pro-
posed PCML in terms of the computation complexity of HCs
and CS. Then, we implement PCML and deploy it with a
medical machine learning dataset to evaluate its integrated
performance.

A. EVALUATION ENVIRONMENT
In order to measure the integrated performance, we imple-
ment PCML on PCs with real medical datasets. Specifically,
the test PCs are with 2.2 GHz six-core processor, 8 GB
RAM, Windows 10, are chosen to evaluate CS and HCs,
which are connected through 802.11g WLAN. Moreover,
we set the bit-length of public key N is 800, and compare
our PCML with the Paillier Cryptosystem-based Privacy-
preserving Skyline Computation (PC-based PPSKY) [8]. The
real medical datasets, which are from the UCI machine learn-
ing repository called Thyroid Disease Data (TDD) Set [22]
and Heart Disease Data (HDD) Set [23], are selected to
verify the effectiveness of PCML. Moreover, HDD are exper-
imented on PCML and PC-based PPSKY to evaluate the
performance of computation and communication. In detail,
TDD total has 3175 tuples with 15 attributes, and HDD total
has 898 tuples with 75 attributes. We choose 6 attributes
which are non-boolean data in TDD, and 8 attributes that may
closely related to heart diseases (such as age, blood pressure,
serum cholesterol, etc.) in HDD for our simulation.

B. ACCURACY EVALUATION
In order to verify the effectiveness of PCML, we choose
3 subsets from TDD and HDD, respectively, to simulate
the clinical datasets of 3 HCs. Meanwhile, we generate
the local skyline diagnosis models (LM1,LM2 and LM3),
and learn a global diagnosis model (GM ) with the three
local diagnosis models. In detail, each selected subset has
900 tuples with 6 attributes in TDD, and each selected subset
has 200 tuples with 8 attributes in HDD.Moreover, we choose
other 150 tuples fromTDD andHDD, respectively, for testing
the diagnostic accuracy of LMs and the GM . In TABLE 2,
we record the number of positive/negative skyline points in
LMs/GM , and the diagnostic accuracy. From the table, it can
be seen that the diagnostic accuracy of global diagnosismodel
is much higher than local diagnosis models, therefore, with
PCML, the quality of online medical diagnosis service can
be greatly improved.

C. COMPUTATION COMPLEXITY
The proposed PCML can offer privacy-preserving collab-
orative model learning for healthcare centers, we evaluate
PCML in the computation complexity of CS and HCs. For
simplicity, we use HC to present a normal HCi ∈ HCs
for distinguishing with the HC′ which handles some extra
operations. Specifically, assume that the dimension of vectors
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TABLE 2. Accuracy evaluation of TDD and HDD.

FIGURE 5. Performance evaluation of computation complexity.

and the threshold are n and t , respectively. For comparing
two vector, CS takes 4nmultiplication and 6n exponentiation
to aggregate the vectors. In addition, 2n multiplication and
3n exponentiation are taken by HC to encrypt the original
data and partially decrypt the aggregated vector. Moreover,
t2(t − 1)n multiplications will be taken to recover the aggre-
gated vector by HC′, or to retrieve the encrypted vector in
the final learned result by HC. Denote that the multiplication
operation and the multiplication operation are Cm and Ce,
the total computation of CS, HC andHC′ are 4n∗Cm+6n∗Ce,
n(t3−t2+2)∗Cm+3n∗Ce, and 2n(t3−t2+1)∗Cm+3n∗Ce,
respectively.

Different from other schemes, the proposed PCML
achieves privacy-preserving, multi-party model learning,
high-efficiency and fault tolerate simultaneously (as shown
in TABLE 3), for comparing with PCML, we select PC-based
PPSKY, which is a two-part diagnosis model learing scheme
relies on random permutation, 0-coding and 1-coding tech-
nique, and paillier cryptosystem. Assume that the maximum
length of the binary vector which converted from original data
is l, and the hash operation is Ch, then, For comparing two
vectors in PC-based PPSKY, the computation of CS and HC
are 4n(2s+s2)∗Ce+4ns2∗Cm, and 24n∗Ce+8n∗Cm+4∗Ch,
respectively.

Table 4 presents the comparison of PCML and PC-based
PPSKY. We can clearly see that our proposed PCML can
achieve privacy-preserving collaborative model learning with
lower complexity. The factor mainly impacting the compu-
tation overhead of CS, and HCs during the collaborative
model learning process is the number of points in medical
dataset and the dimension of vectors, in Fig. 5(a), we plot the
total running time of two-party diagnosis model learning of
PCML and PC-based PPSKY with the same dimension and
different number of the points. Concretely, both the datasets
use 3 dimensions for testing, one of the HC uses 100 points
and the number of points in another database varies from
100 to 350. From the figure, we can see that the total run-
ning time of PC-based PPSKY and PCML both increases
with the number of points. However, the total running time
of the PC-based PPSKY is much higher than our PCML.
For testing the integrated computation overhead of PCML,
we adopt that the number of HCs is 5, and in order to achieve
the fault-tolerant mechanism, we set that the threshold is 4.
Fig. 5(b) to (d) show the average running time of CS and
HCs varying with the sum of local skyline diagnosis model
points from 350 to 600, and dimension from 4 to 8, it can
be clearly seen that the time of collaborative diagnosis model
learning is available with real medical dataset. As a result,
the above analysis of computation complexity is verified, and
our proposed PCML can be applied in the real environment.

D. COMMUNICATION OVERHEAD
In PCML, during the local diagnosis model encryp-
tion phase, all HCs first submits their encrypted local
model < EMi||MDPi >, i = 1, · · · , n to CS. Then, in the
process of collaborative model learning phase, CS sends
the encrypted aggregated vector < AEP >, and the par-
tially decrypted aggregated vector < AEP(CS) > to HC
and HC′, respectively. Later on, for decrypting the aggre-
gated vector, HC sends their partially decrypted aggregated
vector < AEP(HCi) > to HC′, and HC′ returns the domi-
nating relationship of vectors < 2 > to CS. Finally, in the
collaborative learned result reading phase, CS sends the
encrypted global diagnosis model < EGM ||EGM (CS) > to
HCs, and each HC shares its EGM (HC) with other HCs. In the
real environment, we record the size of these packets, and
compare the total communication overhead with PC-based
PPSKY in one round. Similar to computation complexity,
The factor impacting the computation overhead among CS
and HCs is the number of points in medical dataset and the
dimension of vectors. Therefore, in Fig. 6(a), we set that one
of theHC uses 100 points, and the number of points in another
database varies from 100 to 350, the figure shows that with
the increasing number of points, the communication overhead
of PC-based PPSKY significantly increases and it is much
higher than that of PCML. Furthermore, in Fig. 6(b) to (d),
we adopt that the number of HCs is 5, and the threshold is 4.
The figures plot the integrated communication overhead of
PCML varying with the sum of local diagnosis model points
from 350 to 600 and the dimension from 4 to 8, it can be
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TABLE 3. Functionality comparison.

TABLE 4. Computation complexity of PCML vs PC-based.

FIGURE 6. Performance evaluation of communication overhead.

clearly seen that the communication overhead is acceptable
among CS and HCs in practice. In conclusion, our proposed
PCML can achieve better efficiency in terms of communica-
tion overhead in CS and HCs.

VII. RELATED WORK
In this section, we briefly discuss some related works
on distributed skyline computation and privacy-preserving
techniques.
Skyline computation. Recently, skyline computation has

received considerable attention in the database research com-
munity. Borzsonyi et al. [7] first presented the conception
of skyline computation with algorithms called Block Nested
Loop (BNL) and Divide and Conquer (DC). Thereafter,
many improved skyline computation schemes have been
proposed. Papadias et al. [27] developed branch-and-bound
skyline (BBS) based on nearest-neighbor search, which can
be implemented simply in practice, and support all types
of progressive processing. Zhang et al. [28] proposed an
efficient approach to compute the skyline set using balanced

partitioning, which overcomes the limitation of balancing
partitioned subspaces. Lee and Huang [29] treated both dom-
inance and incomparability as key factors in skyline compu-
tation, and proposed an algorithm named BskyTree, which
outperformed traditional skyline algorithms up to two orders
of magnitude. The above mentioned skyline schemes are
centralized, and these schemes cannot be directly used in
the distributed environment. Aiming at distributed scenar-
ios, Vlachou et al. [14] addressed the efficient computation
of subspace skyline queries in large-scale peer-to-peer net-
works, where the dataset is horizontally distributed across
the peers. Specifically, based on a super peer architecture,
the authors presented a threshold based algorithm, called
SKYPEER, which can reduce the amount of transferred data
significantly. Valkanas and Papadopoulos [15] proposed an
adaptive skyline computation algorithm towards controlling
the degree of parallelism and the required network traffic,
in contrast to state-of-the-art methods, the proposed algo-
rithm handles efficiently diverse preferences imposed on
attributes. These schemes improved the efficiency of skyline
computation, but few of them considered the data security
issues.
Privacy-preserving techniques. Homomorphic encryption

techniques are usual methods to achieve data operations
over encrypted data without decrypting it, which can be
used in privacy-preserving medical data mining. Concretely,
Rahulamathavan et al. [5] proposed a privacy-preserving
decision support system based on Gaussian kernel support
vector machine (SVM) and paillier cryptosystem, which
achieves that the patients’ data can remain in encrypto form
at all times. Liu et al. [2] used paillier to constructed a new
cryptographic tool with additive homomorphic characteristic,
and protected the sensitive medical data of users via naive
Bayesian classifier over ciphertext. Kacabas and Soyata [30]
presented a novel medical cloud computing approach that
eliminates privacy concerns associated with the cloud
provider. The proposed approach capitalizes on Fully Homo-
morphic Encryption (FHE), which enables computations on
private health information without actually observing the
underlying data. However, high time-consuming operations
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are required in the most privacy-preserving schemes based
on homomorphic encryption, which brings heavy com-
putation overhead. Traditional anonymization techniques
are widely used in privacy-preserving schemes such as
k-anonymity and l-diversity. Belsis and Pantziou [31] pre-
sented a privacy-preserving architecture built upon the con-
cept of k-anonymity, which allows to protect user’s privacy
by making an entity indistinguishable from other k sim-
ilar entities. Shin et al. [32] proposed a novel k-member
cluster seed selection algorithm based on the close-
ness centrality to provide consistent information loss
and reduce the information distortion. Nevertheless, these
anonymization techniques bring heavy communication over-
head in the real environment. Furthermore, some novel
privacy-preserving data mining techniques have been pre-
sented. Arefin and Morimoto [33] expanded the traditional
skyline query to skyline sets queries in parallel fashion
from distributed databases to protect an individual’a pri-
vacy. Liu et al. [8] introduced an efficient secure multi-party
computation (SMC) protocol, with which the privacy-privacy
skyline computation across domains can be achieved.

Different from above works, our PCML scheme aims at
efficiency and privacy issues. Based on paillier cryptosystem
with threshold decryption and distributed skyline computa-
tion, we develop an efficient and privacy-preserving collab-
orative model learning scheme for online medical system.
In particular, our proposed PCML can protect healthcare
centers’ local diagnosis models as well as ensure the con-
fidentiality of the final global diagnosis model, and can be
easily implemented in the real environment because of its
high efficiency.

VIII. CONCLUSION
In this paper, we proposed a novel privacy-preserving collab-
orative model learning scheme for online medical diagnosis
system, called PCML. Based on paillier cryptosystem with
threshold decryption and distributed skyline computation,
multiple healthcare centers can securely learn amore accurate
global diagnosis model with their local diagnosis models in
the assistance of cloud, meanwhile, the confidentiality of the
final global diagnosis model can be ensured. Specifically,
before being sent to the cloud, all of the local diagnosis
models are encrypted by their owner, and calculated without
decryption during the collaborative model learning process.
Therefore, HCs cannot obtain each other’s private medical
data, and CS cannot achieve any private information of HCs,
as well as the final global diagnosis model. Furthermore, with
threshold decryption technique, the fault-tolerant mechanism
is also achieved in our scheme. Detailed security analysis
shows its security strength and privacy-preserving ability,
and extensive experiments were conducted to demonstrate its
efficiency.

AVAILABILITY
The relevant information of the proposed scheme can be
downloaded at https://www.xdzhuhui.com/demo/PCML.
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