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ABSTRACT Semantic segmentation performs pixel-wise classification for given images, which can be
widely used in autonomous driving, robotics, medical diagnostics and etc. The recent advanced approaches
have witnessed rapid progress in semantic segmentation. However, these supervised learning based methods
rely heavily on large-scale datasets to acquire strong generalizing ability, such that they are coupled with
some constraints. Firstly, human annotation of pixel-level segmentation masks is laborious and time-
consuming, which causes relatively expensive training data and make it hard to deal with urgent tasks
in dynamic environment. Secondly, the outstanding performance of the above data-hungry methods will
decrease with few available training examples. In order to overcome the limitations of the supervised learning
semantic segmentation methods, this paper proposes a generalized meta-learning framework, named Meta-
Seg. It consists of a meta-learner and a base-learner. Specifically, the meta-learner learns a good initialization
and a parameter update strategy from a distribution of few-shot semantic segmentation tasks. The base-
learner can be any semantic segmentation models theoretically and can implement fast adaptation (that is
updating parameters with few iterations) under the guidance of the meta-learner. In this work, the successful
semantic segmentation model FCN8s is integrated into Meta-Seg. Experiments on the famous few-shot
semantic segmentation dataset PASCAL5i prove Meta-Seg is a promising framework for few-shot semantic
segmentation. Besides, this method can provide with reference for the relevant researches of meta-learning
semantic segmentation.

INDEX TERMS Meta-learning, few-shot, semantic segmentation.

I. INTRODUCTION
In recent years, deep learning, especially convolutional net-
works [1], have made significant breakthroughs in many
visual understanding tasks including image classification
[2]–[5], object detection [6]–[13] and semantic segmen-
tation [14]–[21]. One crucial reason driving their devel-
opment is the availability of large-scale datasets such as
ImageNet [22] that enable the training of deep networks.
Semantic segmentation aims to assign a class label to each
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pixel in an image. Deep convolutional network in semantic
segmentation, as shown in Fig. 1 (a), requires a large amount
of annotated data to ensure the robustness of the model.
It still faces the challenges of overfitting in a few-shot regime.
Nevertheless, data labeling is expensive and laborious, partic-
ularly for dense prediction tasks, e.g, semantic segmentation,
instance segmentation and panoptic segmentation. Hence,
weakly supervised semantic segmentation methods [23]–[27]
are proposed to reduce the burden of data annotation. These
methods merely solve the dependencies on annotated data,
which still require plenty of training images. In addition to
that, once the segmentation model is trained, it is difficult to
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FIGURE 1. Comparison of three different semantic segmentation models. (a) The supervised learning semantic segmentation models rely
on large-scale annotated training data of trained classes, e.g. aeroplane, but cannot work on unseen classes, e.g. person. (b) The Siamese
structure based semantic segmentation models have the generalizing ability of few-shot semantic segmentation on unseen classes, but
they mostly focus on single-class segmentation. (c) The proposed Meta-Seg can implement multi-class, few-shot semantic segmentation
as well as fast parameter adaptation on unseen classes.

use existingmodel to predict new classes. In contrast, humans
can segment a novel concept from the scene easily even with
few samples.

The gap between humans and deep neural networks in
learning ability with few samples motivates the study of
few-shot learning method. Many researches have prompted
related works in few-shot image classification [28]–[40]
and detection [41], [42]. These remarkable methods, mainly
based on transfer learning and meta-learning, have made
a certain progress in avoiding overfitting with few train-
ing examples and alleviating the heavy burden of human
annotation.

While in semantic segmentation, there are few researches
focus on the few-shot semantic segmentation problem, espe-
cially meta-learning semantic segmentation. The previous
works [43]–[47] mostly employ the Siamese structure to
implement one- or few-shot semantic segmentation by giv-
ing annotated images as a condition, shown in Fig. 1 (b).
Although these Siamese structure based methods have got

some achievements, theymostly focus on single-class seman-
tic segmentation in each forward propagation. The network
structure and the pair-wise data organization may be ineffi-
cient for multi-class semantic segmentation at the same time.

This work aims to overcome the limitations of the super-
vised learning based methods as well as implement multi-
class semantic segmentation in few-shot regime. We follow
the excellent meta-learning methods [28], [40], [42] in few-
shot image classification and object detection and propose
a generalized meta-learning framework Meta-Seg for few-
shot semantic segmentation, as shown in Fig. 1 (c). Meta-Seg,
consists of a meta-learner and a base-learner, is characterized
with multi-class, few-shot semantic segmentation and fast
parameter adaptation. To the best of our knowledge, this
is the first work to implement a generalized meta-learning
framework for few-shot semantic segmentation. In addi-
tion to multi-class semantic segmentation, another advantage
of Meta-Seg is its performance can be further improved
with the development of supervised learning based semantic
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FIGURE 2. Meta-learning process of the generalized Meta-Seg framework. θ denotes the parameters of the semantic segmentation network.
Meta-learner guides the semantic segmentation model to adjust its parameters θ according to the feedback from the training set in each task,
then is updated by leveraging the meta-info from the test-sets of a batch of tasks.

segmentation models, because Meta-Seg is a generalized
framework and the base-learner can be replacedwith different
deep-learning based semantic segmentation models.

As shown in Fig. 2, the meta-learning pipeline of Meta-
Seg can be divided into meta-training and meta-test. In meta-
training phase, Meta-Seg is trained on a series of few-shot
tasks. Within each K-way N-shot task, there are K randomly
selected classes and N annotated training images for each
class. The meta-learner is responsible to guide the base-
learner to learn quickly from few training examples by learn-
ing a good initialization and a parameter update strategy.
After trained on many meta-training tasks, meta-learner can
acquire strong prior knowledge to extend the capacities of
few-shot multi-class semantic segmentation and fast parame-
ter adaptation to the meta-test tasks with different categories
from meta-training tasks.

In this work, FCN8s is used as the base-learner. It should
be noted that other semantic segmentation models can also
be integrated into the generalized framework Meta-Seg in
theory. We evaluate Meta-Seg on the PASCAL5i [43] dataset
devised for few-shot semantic segmentation.

Our contributions are as follows:
(1) A generalized meta-learning framework named Meta-

Seg is proposed for few-shot semantic segmentation. It is
easy to integrate existing arbitrary semantic segmentation
models in Meta-Seg theoretically.

(2) Compared with the previous few-shot semantic segmen-
tation methods, Meta-Seg can implement multi-class
semantic segmentation and fast parameter adaptation
simultaneously with few training examples.

(3) The experimental results on the PASCAL5i dataset with
classical FCN8s base-learner have indicated that Meta-
Seg is an effective framework and meta-learning is a
promising method for multi-class few-shot semantic seg-
mentation.

II. RELATED WORKS
Our work aims to address the few-shot semantic segmenta-
tion problem by combining the meta-learning approach with
supervised-learning semantic segmentation method. In this

section we will expatiate the related works of semantic seg-
mentation, meta-learning and few-shot semantic segmenta-
tion respectively.

A. SEMANTIC SEGMENTATION
Semantic segmentation is an active research area where
deep learning are used to classify each pixel in the image
individually, especially since the introduction of fully con-
volutional networks (FCN) [16]. FCN replaces the fully
connected layers with convolutional layers to fit the task
of dense prediction. Plenty of state-of-art methods are
proposed based on the architecture of FCN which often
employ a convolutional neural network (CNN) pretrained
for classification as the backbone networks. At present,
the research direction in semantic segmentation can be
roughly divided into two directions, namely dilated-based
model and encoder-decoder model. Dilated-based model
utilizes dilated convolutions [48] to obtain large receptive
field of view. Besides, multi-scale context modules are often
used to obtain high-level semantic features. Encoder-decoder
model utilizes the encoder to extract feature maps and uti-
lizes the decoder to combine the feature maps into the final
predictions.
Dilated-Based Model: In order to extract multi-scale con-

text information, PSPNet [49] proposes spatial pyramid pool-
ing (SPP) at several grid scales. DeeplabV3plus [50] performs
atrous spatial pyramid pooling (ASPP) with several parallel
atrous convolution in different rates. Inspired by atrous spa-
tial pyramid pooling (ASPP), DenseASPP [51] is proposed
to further capture dense context information. FastFCN [52]
proposes a joint pyramid upsampling (JPU) module to extract
high-resolution feature maps, which can reduce the computa-
tion complexity without performance loss.
Encoder-Decoder Model: In order to gradually recover

the spatial resolution, U-Net [53] proposes skip connec-
tions as the decoder module. SegNet [54] constructs a
typical encoder-decoder model architecture which con-
sists an encoder network, a corresponding decoder net-
work followed by a dense prediction classification layer.
RefineNet [55] utilizes all the features available along the
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down-sampling process with a multi-path refinement net-
work. DeeplabV3plus [50] attempts to combine the advan-
tages from both dilated method and encoder-decoder method,
which employs a simple but efficient decoder module to
recover spatial information.

B. META-LEARNING
Meta Learning [56], also known as learning to learn, is the sci-
ence of systematically learning the experience or meta-data
which is learned by different machine learning approaches
in a wide range of learning tasks. Few-shot learning can
be regarded as an application of meta-learning in the field
of supervised learning. As a general approach to few-shot
learning, meta-learning aims to train a robust model using
only a few training data, given prior experience with similar
tasks for which we have a large amount of training data
available. In general, the meta-learning architecture usually
contains two major components, a meta-learner and a learner.
Meta-learner can be regarded as a teacher, imparting prior
experience to learner. Learner uses prior experience to learn
a common feature representation of tasks and is trained on
a distribution of similar tasks with a better model parame-
ter initialization and acquire an inductive bias which helps
guide the optimization of parameters. Thus, new tasks can be
trained much faster in such regime.

Meta-Learning has made significant breakthroughs in the
filed of computer vision. There exist many formulations
including recurrent neural network with memories [31],
learning to fine-tune models [28], [40], network parameter
prediction [30] and metric learning [33]. Reference [31] uti-
lizes a memory-augmented model for rapid generalization
on new tasks. Model-agnostic meta-learning (MAML) [28]
learns a model parameter initialization that generalizes better
to similar tasks. Based on MAML [28], Meta-SGD [40]
proposes a method to learn a set of model parameters as well
as a learning rate for each parameter. In [30], experience with
already learned samples is used to facilitate the learning of
novel samples. Relation network [33] meta-learns a distance
metric and computes the similarity score for classification.
Our work is most related to Meta-SGD [40], which is a
SGD-likemeta-learner to learn initialization, update direction
and learning rate via meta-learning in an end-to-end manner.
The Meta-Seg proposed in this work can be regarded as an
extension of meta-SGD in a dense form to tackle the task of
semantic segmentation.

C. FEW-SHOT SEMANTIC SEGMENTATION
At present, the related researches in few-shot semantic seg-
mentation [43]–[47] are relatively less than those in few-shot
image classification. Reference [43] is the first work of few-
shot semantic segmentation, which is based on a Siamese
structure. A support branch processes the annotated object as
the condition to predict the weights of the query branch which
extracts the feature of a test image for semantic segmentation.
In [44], the feature extracted from the support branch can
be viewed as a condition of the query branch for few-shot

semantic segmentation. The two methods mainly focus on
one-shot semantic segmentation.

These methods are based on Siamese structure and focus
on single-class semantic segmentation for each forward
propagation. We argue that the two-branch structure is incon-
venient and ineffective for multi-class few-shot semantic seg-
mentation. Therefore, we address the multi-class semantic
segmentation from the perspective of meta-learning.

III. METHODOLOGY
The goal of this work is to implement multi-class few-shot
semantic segmentation and fast parameter adaptation via
meta-learning. The proposedMeta-Seg is a generalized meta-
learning framework which can be combined with any super-
vised learning based semantic segmentation model in theory.
In this section, we first introduce the related concepts about
meta-learning and give the problem formulation of few-shot
semantic segmentation, followed by a brief description of
the base-learner in Meta-Seg. Then, the whole meta-learning
pipeline is illustrated in detail.

A. PRELIMINARY FOR META-LEARNING
Meta-learning, also known as learning to learn, has been
widely used in few-shot image classification [28], [40],
regression and object detection [42]. As shown in Fig. 2,
a common meta-learning framework, consists of a meta-
learner and a base-learner, aims to learn a good initialization
and a parameter update strategy for few-shot semantic seg-
mentation. Different from supervised learning, meta-learning
is trained on a series of tasks. The whole meta-learning
pipeline is composed ofmeta-training andmeta-test phases.
Herein, we introduce some concepts in meta-learning.
Task: The basic training unit of meta-learning is "task" T .

For each task T , there are two sub parts: meta-training T tr

and meta-test T te. A K-way N-shot task is defined by the
number of categories and the number of training images per
category in T tr . That is, there are K categories and N training
images per category in T tr of a K-way N-shot task. The
categories and training images are randomly selected and
usually vary from task to task.
Data Organization: As shown in Fig. 3, the meta-learning

dataset D can be divided into two sets: meta-training set Dtr

and meta-test set Dte. The categories and images of the two
sets are non-overlapping. In general, the categories on Dtr

can be called meta-training classes or seen classes, similarly,
the categories onDte can be calledmeta-test classes or unseen
classes. This setting can mimic the fact that there may not
always have sufficient training images for some categories
and can ensure the effective evaluation for meta-learning
methods.
Meta-Training: In meta-training phase, the meta-learning

model is trained on meta-training set Dtr . We sample cate-
gories and training images to build a task T . In each K-way
N-shot task T , for T tr , there are K categories and N training
images per category, and for T te, there are same K categories
but different N training images per category from T tr . Within
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FIGURE 3. The data organization of meta-learning semantic segmentation of 5-way 1-shot. The dataset is composed of meta-training and
meta-test sets. In each task (denoted by blue box), there are training and test subsets sampled from meta-training or meta-test set, and
they have same classes. One image per class is randomly selected for training, test subsets of meta-training and training subset of
meta-test, while fifteen images per class are randomly selected for test subset of meta-test. Note that the classes of meta-training set are
not present in meta-test set.

each task, the base-learner is trained on T tr , then update its
parameters under the guidance of meta-learner by leverag-
ing the feedback from T tr . Hence, we can get a temporary
semantic segmentation model for the current task. The per-
formance of the temporary segmentation model is evaluated
on T te, then the loss from T te is collected to update the
meta-learner.
Meta-Test: In meta-test phase, the trained meta-learning

model is evaluated on meta-test set Dte. The sampling of
categories and images is same as that in meta-training phase.
But it should be noted that the number of images per category
on T te is usually more than that in meta-training phase for
effective evaluation. The meta-learning model update the
parameters of the base-learner according to the loss from
T tr , then the updated base-learner is evaluated on T te. The
accuracies from all T te in meta-test phase are averaged as the
final evaluated result.

B. PROBLEM FORMULATION
With the introduction for meta-learning mentioned above,
the proposed Meta-Seg is to learn a good initialization and a
parameter update strategy from the meta-training tasks. Once
trained, the meta-learner should be capable of guiding the
base-learner to update its parameters with few available train-
ing images and few update iterations for multi-class seman-
tic segmentation. Generally, the meta-training and meta-test

tasks are from a same distribution p(Ti) of few-shot tasks, but
they have different categories.

The proposed Meta-Seg can combine with any deep
learning semantic segmentation models theoretically, which
can bring two advantages. Firstly, it is easier and more
efficient to implement multi-class semantic segmentation
than the previous Siamese structure based models. Sec-
ondly, the performance of Meta-Seg will be further improved
with the development of supervised learning based semantic
segmentation models.

C. FCN8s REVISIT
As illustrated in Fig. 4, the proposed meta-learning semantic
segmentation model utilizes FCN as the learner to obtain
the segmentation results. In this section, we will not go
into the details of FCN. Readers can refer to [16] for more
details about architecture design and experimental setting.
FCN is a semantic segmentation network based on a convo-
lutional neural network, which has demonstrated significant
improvement than conventional methods. FCN employs clas-
sification network VGG [3] as the base network for feature
extraction. In order to apply classification network to pixel-
level prediction task, FCN replaces the fully connected layers
with the fully convolutional layers. In the FCN framework,
several stages of strided convolutional and spatial pooling
reduce the predictions by a factor of 32, which leads to
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FIGURE 4. The architecture of semantic segmentation network FCN8s [16]. FCN8s employs VGG16 as the base
network to extract features, then employs deconvolution layers for upsampling. Besides, FCN8s utilizes features
extracted from different layers for dense prediction.

inaccurate predictions for losing fine spatial details. FCN
employs deconvolution layers to connect coarse outputs to
dense pixels as the interpolation methods. Deconvolution
operation simply reverse the forward and backward passes
of convolution, thus upsampling is performed for an end-to-
end learning. Another way to refine the output predictions is
combining coarse, high layer information with fine, low layer
information. FCN32s directly upsamples the final prediction
with stride=32 back to original resolution. FCN16s combines
final predictionwith prediction from low layer and upsamples
with stride=16. Based on FCN16S, additional predictions is
utilized in FCN8s as illustrated in Fig. 4. Comparedwith orig-
inal FCNnetwork, FCN8s combinesmore spatial information
from different layers and further improves the segmentation
results.

This work is devoted to solving the problem of semantic
segmentation from the perspective of meta-learning. Thus a
simple semantic segmentation model is needed to evaluate
the feasibility of the meta-learning framework. FCN8s has
become the prototype of the mainstream segmentation model
because of its efficient and simple architecture. In this work,
we select FCN8s to implement meta-learning semantic seg-
mentation, called Meta-Seg. It should be noted that our goal
of this work is to verify the feasibility of Meta-Seg frame-
work, rather than pursue the accuracy of the model. Meta-
Seg can embed other complex and well-designed semantic
segmentation models flexibly, which will be left for future
work.

D. META-LEARNING SEMANTIC SEGMENTATION
In this subsection, we introduce how to meta-learn a few-shot
semantic segmentation model.

For a standard supervised learning pipeline, we train the
semantic segmentation model for hundreds of thousands of
iterations on a large-scale dataset as the following:

θ ′ = θ − α∇L(θ ) (1)

here, α denotes the learning rate and L is the cross-entropy
loss for semantic segmentation.

While the meta-learning pipeline is different. An effective
approach of meta-learning is to learn a good initialization
as well as a parameter update strategy. This is based on the
following reasons.
(1) Themeta-learningmodel can only acquire limited knowl-

edge from the few training images on meta-test classes.
It is very difficult to converge well from scratch. Thus,
a good initialization is crucial.

(2) The parameter updatemethods in supervised learning can
not work well in the few-shot regime, because few train-
ing images will cause overfitting and poor performance.
Therefore, a good parameter update strategy is necessary.

With the above analysis, the proposed meta-learning
frameworkMeta-Seg is designed elaborately to solve the few-
shot semantic segmentation problem, inspired by the famous
meta-learning methods [28], [40]. Meta-Seg can learn a good
initialization and a good parameter update strategy to imple-
ment few-shot semantic segmentation and fast parameter
adaptation. Once trained on many meta-training tasks, Meta-
Seg can extend the few-shot semantic segmentation ability to
the meta-test tasks of unseen classes.

In concretely, Meta-Seg consists of a meta-learner and a
base-learner. Within each task, Meta-Seg works in the super-
vised learning manner. The base-learner is trained on T tr ,
then update network with the guidance of the meta-learner.
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This process can be formulated as follows:

θ ′ = θ − α∗∇LT (θ ) (2)

Note that the learning rate α∗ is provided by the meta-learner
rather than an optimizer such as stochastic gradient descent
(SGD). Obviously, α∗ is the representative of the parameter
update strategy and reflects the role of the meta-learner.

After training the base-learner on T tr , the next step is how
to learn the learnable learning rate α∗ and a good initializa-
tion θ . We test the updated base-learner on T te. The objective
of meta-learning is to get a good temporary base-learner for
each task and can be formulated as the following:

min
θ

∑
Ti∼p(T )

LTi (φθ ′ ) =
∑

Ti∼p(T )

LTi (φθ−α∗∇LTi (φθ )
) (3)

Herein, we follow [40] and update the base-learner’s
parameters with one step in each task, which is significantly
different from supervised learning. This setting can avoid
overfitting and speed up the meta-learning speed. The one-
step update corresponding to the fast parameter adaptation
mentioned above.

We collect the losses from T te of a batch of tasks as the
meta-info to update the meta-learner (that is, updating α∗

and θ ). This parameter update for meta-learner can be imple-
mented by stochastic gradient descent (SGD) as follows:

(θ, α∗) = (θ, α∗)− β∇
∑

Ti∼p(T )

LTi (φθ ′ ) (4)

Here, β is the learning rate for the meta-learner just like in
supervised learning. So far, the whole meta-learning frame-
work can be trained in the supervised learning manner and
is easy to implemented based on the common deep learning
framework, e.g. Pytorch [57].

Algorithm 1 Meta-Learning for Few-Shot Semantic
Segmentation
Input: Few-shot semantic segmentation task distribution

p(T ), learning rate β for meta-learner
Output: Few-shot semantic segmentation model’s parame-

ters θ , learnable learning rate α∗ for base-learner
1: Initialize θ , α∗

2: while not end do
3: Sample n tasks from p(T )
4: for all j = 1; j ≤ n do
5: LTjtrain =

1∣∣∣Tjtrain∣∣∣
∑

i∈Tjtrain
`(φθ (i))

6: θ ′ = θ − α∗∇LTjtrain
7: LTjtest =

1
|Tjtest |

∑
i∈Tjtest

`(φθ ′ (i))

8: end for;
9: (θ, α∗) = (θ, α∗)− β∇

∑
j∈(1,n)

LTjtest

10: end while

TABLE 1. The settings of training and test sets for baseline Seg-JT and
Seg-FT. S indicates all examples of meta-training classes and n/U
indicates n examples per meta-test classes. Note that: S1⊆S, S2⊆S, U1⊆U,
U2⊆U, S1∩S2= ∅,U1∩U2 = ∅.

TABLE 2. Meta-test classes for each fold of PASCAL5i .

E. IMPLEMENTATION
In this work, Meta-Seg is implemented by integrating FCN8s
as the base-learner, which is a simple and effective semantic
segmentation model. It is an end-to-end framework. The
learnable learning rateα∗ is set for every parameter of FCN8s,
such that the meta-learner can guide it to update parameters
quickly with few training images. Besides, in each task,
FCN8s works in the supervised learning manner and can
implement multi-class semantic segmentation effectively.

The whole system is trained on a series of meta-training
tasks and can learn a temporary few-shot multi-class seman-
tic segmentation model for each task. The meta-learner is
updated by leveraging the feedback from each T te. The
meta-training task T tr is consistent with the meta-test task
T te, which ensures the successful generalization to meta-test
classes. This meta-learning framework is so generic that other
semantic segmentation models can be integrated in the future
research.

IV. BENCHMARK
We train and evaluate Meta-Seg on the famous few-shot
semantic segmentation dataset PASCAL5i, which is com-
monly used in related few-shot semantic segmentation meth-
ods. It has 4 random class partitions for effective evaluation of
few-shot models, there are 15 classes as meta-training classes
and 5 classes as meta-test classes in each partition, the detail
is shown in Table 2.

V. EXPERIMENTS
A. BASELINE
1) BASELINES FOR FAIR COMPARISON
In order to highlight the effectiveness of Meta-Seg, we com-
pare it with two baselines. The first baseline jointly train
segmentation network (FCN8s) on meta-training classes with
sufficient labeled examples and meta-test classes with one
labeled example per class. For the sake of simplicity, we will
refer to the baseline network as Seg-JT. The second baseline is
a two-stage training process. The baseline train segmentation
network only on meta-training classes with sufficient labeled
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examples and then fine-tune it on meta-test classes with few
examples. we will refer to the baseline network as Seg-FT.

2) BASELINES FOR QUALITATIVE COMPARISON
We note that some relevant researches [43], [44] implement
the one-shot semantic segmentation based on two-branch
structure, which is different from this work. The two-branch
based frameworks just focus on single class during each
forward computation. This is inconvenient and ineffective
for multi-class few-shot semantic segmentation. Besides the
two-branch based models are trained and evaluated based
on the support-query image pairs. Therefore, we can not
compare our model with them fairly and just use them for
qualitative comparison. We also provide the performances of
three baselines (1-NN, LogReg and Siamese) inOSLSM [43],
the detailed instructions can be found in [43].

3) WHY NOT COMPARE WITH THE SEMANTIC
SEGMENTATION MODELS USING LABELS
OF ALL TRAINING IMAGES?
We don’t compare with the supervised learning based seman-
tic segmentation models which are using labels of all training
images. The reasons are as follows. Firstly, the few-shot
image segmentation models still lag behind the state-of-the-
art deep learning based semantic segmentation models in
performance, i.e., 48.6%mIOUof 1-shotMeta-Seg vs. 62.7%
mIOU of FCN8S. Secondly, the comparison between the
few-shot image segmentation models and the state-of-the-art
deep learning based models is not fair. For the test classes,
the deep learning models are trained with all training images,
while the few-shot learning models are trained with a few
training images. Besides, the training and evaluation of the
deep learning based models are on same classes, while the
training and evaluation of the few-shot segmentation models
are on different classes (seen and unseen classes). Thirdly,
the relevant few-shot semantic segmentation models also
didn’t compare with the state-of-the-art deep learning based
models. Finally, the goal of this work is to implement a few-
shot image segmentation model. Therefore, the comparison
with the deep learning based image segmentation models is
not necessary.

B. EXPERIMENTAL SETTING
For Meta-Seg and two baselines, we fine-tune the model
weights of the Imagenet-pretrained VGG16 network to adapt
them for the segmentation task. Truncated normal distribu-
tion initializes the rest parameters which are not included in
the pretrained model. All of our networks are implemented
on Tesla P100 GPU. The basic learning rate β for meta-
learner is set to 10−3. The learnable learning rate α∗ for
base-learner is initialized to 10−3. All models are optimized
by the SGD optimizer. The meta-learning model is trained
with 30000 episodes and the inner task is 4 (that is, every
episode has 4 tasks). Seg-JT is trained with 20 epoches and
12 batch size with the learning rate of 10−3 for fair compari-
son. Seg-FT is pre-trained in the same setting as Seg-JT, then

TABLE 3. Semantic segmentation results of Meta-seg and baseline
methods. The numbers in the table indicate the mIOU (%) on different
folds.

is fine-tuned with 1000 epoches and 5 batch size. Table 1
shows the training and test data organization of two baselines.

We just train Meta-Seg in 1-shot setting due to the limita-
tion of graphic memory. This is a challenge for Meta-Seg and
we will solve this problem in the future research. However,
we still evaluate the 5-shot performance of Meta-Seg using
the trained 1-shot model. It should be noted that the 5-shot
performance of Meta-Seg will be better theoretically.

C. PERFORMANCE
In order to prove the effective of the proposed Meta-Seg,
we evaluate it with 4 different class partitions. The experiment
results are shown in Table 3. Meta-Seg achieves promising
results for 4 different class partitions. For split-1, Meta-Seg
yields the best performance of 59.6% than other class par-
titions. This is because the objects in split-1 are relatively
larger and easier for segmentation. While the mean IOU
42.2% in split-0 is lowest due to the small objects such as
bird and bottle. As mentioned in experimental setting, the
5-shot performance of Meta-Seg is obtained by evaluating
the trained 1-shot Meta-Seg in 5-shot setting. The experiment
results are shown in Table 3, there is a slight performance gain
(1.6% mean IoU).

The experiment results indicate that Meta-Seg is an effec-
tive multi-class few-shot semantic segmentation framework.
Once trained on the distribution of few-shot semantic seg-
mentation tasks on meta-training classes, Meta-Seg can suc-
cessfully classify the pixels of meta-test class objects with
only few training examples and iterations.

D. COMPARISON WITH BASELINES
As shown in Table 3, both the two baselines yield worse per-
formance than Meta-Seg, which can highlight the advantages
ofMeta-Seg.We visualize the results ofMeta-Seg and the two
baselines in Fig. 5 for better comparison. Although Seg-JT,
shown in the third row in Fig. 5, can distinguish objects from
background, it cannot even recognize the correct category of
themeta-test class objects. For example, Seg-JT classifies bus
as train. It means that Seg-JT is disturbed by meta-training
classes with more training examples. This can explain why
the performance of Seg-JT is so poor. In contrast, Seg-FT
can focus on the meta-test classes after fine-tuning. While
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FIGURE 5. Schematic diagram of semantic segmentation results on split-1.The first row shows the original input images.The second row shows the ground
truths. The third and fourth rows show the predicted results of Seg-JT and Seg-FT, respectively. The last row shows the predicted results of Meta-seg.

Seg-FT can not perform well sometimes. As shown in the
fourth row in Fig 5, Seg-FT fails to distinguish chair and cat
from background. This indicates the difficulty of few-shot
segmentation. Although Seg-JT and Seg-FT can get strong
prior knowledge from themeta-training classes, they can only
acquire limited information from few meta-test examples.
The proposed Meta-Seg can learn good initialization and
update strategy from meta-training classes. Therefore, Meta-
Seg works better on meta-test classes.

The 5-shot performance of Meta-Seg is evaluated using
the trained 1-shot Meta-Seg, shown in Table 3. Although
slight performance gain is obtained by Meta-Seg in 5-shot
test setting, it also performs better than the two baselines.

The experimental results indicate that the performance
gap is due to the intrinsic characteristics of the parameter
optimization of Meta-Seg.

E. QUALITATIVE COMPARISON
There are some relevant works based on two-branch
structure, which mainly focus on single-class for each

forward computation. This is inconvenient and ineffective
for multi-class few-shot semantic segmentation. Besides,
the evaluation of single-class semantic segmentation is eas-
ier than our multi-class semantic segmentation in principle.
As mentioned in baseline (Section V-A), the data organi-
zation is different between Meta-Seg and the two-branch
structure based models. Herein, we provide the results of
the two-branch structure based models in Table 4 just for
qualitative comparison. Meta-Seg can also yield a com-
petitive results with the single-class semantic segmentation
approaches.

F. COMPUTATIONAL OVERHEAD
The number of parameters, run time and memory usage of
Meta-Seg and FCN8s, shown in Table 5, are obtained by
experiments to analyze the computational overhead of Meta-
Seg. The training and test times are the average of 100 runs
for every row in Table 5. We set batch size as 1 for FCN8S.
We set the batch size of task as 1 and sample 1 image
for training and test respectively in each task for Meta-Seg.

VOLUME 7, 2019 166117



Z. Cao et al.: Meta-Seg: Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation

TABLE 4. Semantic segmentation results of Meta-seg and other
state-of-art methods. The numbers in the table indicate the mIOU (%) on
different folds.

TABLE 5. The comparison of computational overhead for Meta-Seg and
FCN8S.

The number of parameters of Meta-Seg is twice as much as
that of FCN8S for training and test, because the learnable
learning rate α∗ is set for each parameter of FCN8S. There-
fore, Meta-Seg requires more memory. Specifically, for the
training of Meta-Seg, it requires 5217MiB memory and more
time to update α∗ and the parameters of FCN8S. While for
the test of Meta-Seg, it just requires 1971MiB memory and
the same time as the test of FCN8S whose α∗ needn’t to be
updated. From Table 5, we can conclude that the training of
Meta-Seg has a higher computational overhead due to the
update of α∗, which should be solved in the future. But Meta-
Seg can perform few-shot semantic segmentation as efficient
as FCN8S.

G. FAST ADAPTATION
In this subsection, we expatiate the fast adaptation ability
of Meta-Seg, which is another advantage in addition to the
multi-class few-shot semantic segmentation. With the help of
the learned parameter update strategy,Meta-Seg can converge
quickly. As shown in Fig. 6, Meta-Seg can yield better perfor-
mance with just one update iteration. While both Seg-JT and
Seg-FT have worse performance even trained for thousands
of iterations. The very fast adaptation ability of Meta-Seg
means that it can receive scarcely labeled novel classes in
any time and process the test examples of novel classes in
real time, which makes Meta-Seg become a perfect few-
shot semantic segmentation model in practice. Furthermore,
the fast adaptation ability enables Meta-Seg to learn knowl-
edge in a life-long learning manner.

FIGURE 6. Adaptation speed comparison between the proposed
Meta-Seg and the two baselines (Seg-JT, Seg-FT). Besides, to further
analyze the effectiveness of the initialization learned by Meta-Seg,
we provide the adaptation process of Seg-FT∗, which means that
fine-tuning the segmentation network on meta-test classes with the
initialization parameters of Meta-Seg learned on meta-training classes.

H. FINE-TUNING WITH THE INITIALIZATION OF META-SEG
Meta-Seg can learn a good initialization from the distri-
bution of few-shot semantic segmentation tasks. To further
verify the effectiveness of the learned good initialization
on meta-training classes, we fine-tune the semantic seg-
mentation model on meta-test classes based on the learned
good initialization. This fine-tuning process is shown as
Seg-FT∗ in Fig. 6. Obviously, Seg-FT∗ yields better perfor-
mance than Seg-FT, indicating the effectiveness of the learned
good initialization. This also opens up Meta-Seg’s potential
in supervised-learning semantic segmentation, which means
that the supervised-learning models may converge better and
faster by leveraging the good initialization of Meta-Seg.

I. VISUALIZATION OF UPDATE STRATEGY
To further analyze the update strategy, e.g. the learnable learn-
ing rate α∗, learned by Meta-Seg, we compute the arithmetic
mean of α∗ along the output channel, then visualize them
from the first 64 input channels in each layer in Fig. 7 (a).
Besides, the values of α∗ in layer 0 to 13 and layer 15 to 16 are
visualized in smaller ranges respectively in Fig. 7 (b), (c) for
better visualization.

Obviously, the learnable learning rateα∗ vary from channel
to channel. The parameters of the base feature extractor learn
the general knowledge from different tasks, such that they
have small learnable learning rate values (see the light green
areas in Fig. 7 (a)). Layer 14 increases the dimensions, which
may be different for different tasks. Similarly, the dimension-
ality reduction and classification are executed in layer 17,
which are sensitive to the change of tasks. Hence, the values
of α∗ in layer 14 and layer 17 change tempestuously in larger
range. While the values of α∗ in layer 15 and 16 are small,
the underlying reason may be that the two layers execute
linear calculation in the same dimensions. Even though the
values of α∗ are smaller in the light green areas in Fig. 7,
they have complicated distributions, which are difficult to set
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FIGURE 7. Visualization of update strategy. In Meta-Seg, the meta-learner
learns an update strategy (that is the learnable learning rate α∗) for each
parameter of the base-learner. The learnable learning rates of the first
64 channels from each layer are visualized.

TABLE 6. The performance of Meta-Seg with different initialized
learnable learning rate α∗ and learning rate β.

manually for different few-shot tasks. This can further prove
the effectiveness of the learned update strategy in Meta-Seg.

J. THE INITIALIZATION OF LEARNING RATE
In this subsection, we analyze the effect of different initial-
ized α∗ and β on the performance of Meta-Seg respectively,
as shown in Table 6. The experiment result indicates that the
performance of Meta-Seg are sensitive to the initialized value
of α∗. However, the experiment results demonstrate relatively
little effect of different leaning rate β on the performance of
Meta-Seg. This is because that the values of α∗ can only be
adjusted around the initialized value. The small values of α∗

may cause under-fitting, such as 10−4 and 10−5 in Table 6.
While larger value of α∗, e.g. 10−2 can cause over-fitting.
Therefore, an appropriate initialized value of α∗ is important
for Meta-Seg and this should be set as the case may be.

K. ANALYSIS
Few-shot semantic segmentation has attracted much
attention, while most of the previous works are based on
two-branch structure based framework and execute single-
class semantic segmentation. These methods train and test
models with many support-query image pairs, this is incon-
venient and ineffective for multi-class segmentation. This
work solves the few-shot semantic segmentation problem
from the perspective of meta-learning and opens a new door
for this research direction. The experiment results prove the
effectiveness of Meta-Seg and meta-learning is a promising
approach for few-shot semantic segmentation. In addition,
we just implement Meta-Seg by combining the meta-learning
pipeline with FCN8s in this work. It should be noted that any

successful semantic segmentation models can be integrated
into Meta-Seg. This means that the performance of Meta-Seg
can be further improved with the development of supervised-
learning semantic segmentation.

VI. CONCLUSION
This work proposes to solve the few-shot semantic segmen-
tation problem via meta-learning. We design a generalized
few-shot semantic segmentation framework named Meta-
Seg, which consists of a meta-learner and a base-leaner.
In this work, FCN8s is integrated into Meta-Seg. In theory,
any supervised-learning semantic segmentation models can
be embedded into Meta-Seg. The proposed Meta-Seg can
learn a good initialization and a parameter update strategy
from the distribution of few-shot semantic segmentation tasks
on meta-training classes. After trained, Meta-Seg can imple-
ment fast parameter adaptation with few training examples on
meta-test classes. The experiment results prove the effective-
ness ofMeta-Seg. Besides,Meta-Seg can segmentmulti-class
objects efficiently than the previous two-branch structure
based models. Although this work proposes a new method of
few-shot semantic segmentation, more work should be done
to improve the semantic segmentation network architecture
and solve the problem of high graphic memory requirement.
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