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ABSTRACT The high noise and local deformation of multi-modal images reduce the accuracy of scale
invariant feature transform (SIFT) image matching. To solve this problem, a new method based on the
SIFT framework, which fuses the phase consistency optimization strategy and the gradient direction of
principal component analysis (PCA) with the 8 direction of latitude reduction, is proposed in this paper.
This method fuses the histogram of the orientated phase congruency (HOPC) method to extract the direction
of the image, and adopts PCA to extract the main direction, which effectively solves the problem that the
matching accuracy decreases due to the inversion of the direction of the image. Using the image phase
instead of gradient intensity, the difficult problem of direction extraction is effectively solved when image
edge characteristics are not obvious. Finally, the random sample consistency (RANSAC) algorithm is used to
eliminate false match points. Simulation and experiments show that compared with the SIFT algorithm and
PCA-SIFT algorithm, the proposed method improved the number of match points and matching accuracy,
significantly reduced the mismatching rate. The statistical results show that the number of match points
raised in this paper increases by 20.1% and 200% respectively compared with the former two algorithms.

INDEX TERMS Phase consistency, SIFT, HOPC, image matching.

I. INTRODUCTION
Multi-modal imagematching has awide range of applications
in the fields of medicine, remote sensing, and navigation
[1]–[3]. Due to the significant difference in image con-
trast, image brightness and image texture of multi-modal
images [4]. Multi-modal image matching has always been a
major problem and has not been completely solved [5], [6].

Multi-modal image matching can be classified into two
types according to methods: template matching and feature
matching [7], [8]. Based on template matching, gray or edge
information of the entire template area is matched, which
mainly includes gray similarity matching, gradient sim-
ilarity matching and the mutual information correlation
method [9], [10]. Due to the different generation mechanisms
of different image matching, methods based on template
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matching have high computational complexity, low robust-
ness and unstable performance [11]–[13].

Multi-modal image matching based on feature matching
uses feature similarity of images to match images, including
points, lines and edges [8], [14], [15]. The literature [16]
used shape context descriptions of feature points to match
infrared and visible images, which improves the matching
stability. The literature [17] proposed a matching algorithm
based on linear features and virtual intersection points to
match airport images. The literature [18] used edge features
and improved Hausdorff distance to achieve infrared and
visible image matching. However, due to the distortion of
different images, it is difficult to extract the above features
to correspond with each other [19]. Higher requirements are
proposed for the adaptability and stability of the features
when they are selected [20].

Point features are widely used for image matching.
According to different methods of selecting points, there is
an approach based on machine learning. Some recent works

165356 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-7818-5242
https://orcid.org/0000-0001-7105-635X
https://orcid.org/0000-0003-2391-7906
https://orcid.org/0000-0001-9626-1704
https://orcid.org/0000-0003-1630-6058


H. Liu et al.: Method for Fused Phase and PCA Direction Based on a SIFT Framework for Multi-Modal Image Matching

try to solve the image matching problems with machine
learning methods [21]–[25]. However, all the methods are
developed for homologous images, none of them can han-
dle the complicate nonlinear gray difference between multi-
modal images. Besides, there is another approach based on
traditional method. David Lowe proposed a SIFT method to
conduct imagematching [26]. The SIFT feature has invariants
of scale, rotation, brightness, and affine, and is widely used
in multi-modal image matching. In 2006, Bay et al. improved
the site selection process on the basis of SIFT and proposed
the speeded up robust features (SURF) algorithm, which
improved the computational speed of the algorithm [27]. The
literature [28] achieved the matching of infrared and visible
images by Canny and SURF algorithms. The following year,
the literature [29] matched the SURF algorithm with the
improved thrice-b spline edge detection algorithm. Although
their method had some effect, it did not fully consider the
similarities and differences in imaging properties of different
images.

In addition, although the SURF algorithm has advantages
over the SIFT algorithm in speed, the SIFT algorithm is not
as good as the SIFT algorithm in image processing when
light and angle of view change. Proposed by Yan the paper
uses PCA to SIFT feature descriptor from 128 dimensions to
20 dimensions, which optimized the descriptor memory and
simultaneously improved the precision of matching [30]. The
algorithm greatly improved the performance, but the prob-
lem of direction reversal and noise-induced image direction
extraction errors still was not considered [31], [32].

In this paper, the SIFT algorithm fusing phase consistency
and PCA direction is proposed to solve the problem of the
traditional SIFT algorithm not being accurate in extracting
gradient direction due to high noise and local deformation,
resulting in low matching accuracy. In this paper, the algo-
rithm is applied to multi-modal image matching using the
image phase instead of the image gradient intensity. The
HOPC [33] method is used to extract the image direction,
and the dimension is reduced by PCA. Finally, the RANSAC
algorithm [34] is used to eliminate false match points.

Under the current conditions, there is no universal method
to solve the Multi-modal image matching problem. For the
problem of noisy multi-modal images and the reversed image
direction, the gradient intensity and gradient direction in the
traditional SIFT algorithm are replaced with the gradient
direction extracted by the phase and HOPCmethod, resulting
in higher accuracy and faster speed than the traditional SIFT
algorithm and PCA-SIFT image matching results. The main
innovation points of this paper include the following points:

1) Image angle is used instead of image gradient, which
effectively solves the problem of image direction extraction
under noise.

2) The HOPCmethod is adopted to extract the image direc-
tion, and PCA is combined to replace the gradient direction
in the traditional SIFT algorithm to describe the image main
direction, effectively solving the image direction reversal
problem. This method is hereinafter referred to as HP-SIFT.

The chapter structure of this paper is arranged as follows.
Chapter I studies the SIFT algorithm of the fusion phase
and the PCA direction step by step. In chapter II, the SIFT
algorithm with phase fusion and PCA direction is tested and
discussed. Finally, chapter III is the conclusion.

FIGURE 1. Flow chart of the SIFT algorithm combining phase and PCA
direction.

II. SIFT ALGORITHM COMBINING PHASE AND PCA
DIRECTION
The overall flow chart of the HP-SIFT algorithm is shown
in Fig 1 below. The method mainly includes the following
steps:

1) Image extremum point extraction is performed accord-
ing to the method of SIFT extreme point extraction;

2) According to the Gaussian image of the SIFT algorithm
and the HOPC method, the phase and direction of the differ-
ent images are extracted;

3) The main direction of the new constructed feature direc-
tion is extracted with PCA, and the gradient direction is
projected to 0-180 degrees;

4) The feature descriptor of the image is generated;
5) The similarity of the feature description is calculated,

and the matching pairs of a reference image and a real-time
image is obtained;

6) The matching pairs are combined with RANSAC,
the false matching pairs are eliminated, and the results are
compared to obtain the experimental results of the algorithm.

The first step of the algorithm is to extract the extreme
points according to the extreme point extraction method of
the SIFT algorithm. The second step of the algorithm corre-
sponds to II.A in the paper, the third and fourth step of the
algorithm corresponds to II.B in the paper, the fifth step of
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the algorithm corresponds to II.C in the paper, and the sixth
step of the algorithm corresponds to II.D in the paper.

A. PHASE AND GRADIENT DIRECTION CALCULATION
WITH THE HP-SIFT ALGORITHM
The HP-SIFT algorithm first needs to calculate the phase and
direction of the template image and the real-time image. The
phase calculation method is as shown in Equation 1:

PC(x, y) =

∑
0
∑

nWo(x, y) bAno(x, y)18no(x, y)− T c∑
o
∑

n Ano(x, y)+ ε
(1)

PC(x, y) is the size of phase congruence, (x, y) represents
the coordinates of the point in the image, Wo(x, y) is the
weighting factor of the frequency propagation, Ano(x, y) is
the amplitude at the wavelet scale n and direction o at (x, y),
18no(x, y) is a sensitive phase deviation, and T is a noise
threshold and a small constant to avoid being divided by
zero. bc indicates that when the value is positive, the amount
contained is equal to itself, otherwise, it is zero.

FIGURE 2. (a) SAR image phase and gradient (b) Infrared image phase
and gradient (c) Infrared image with noise phase and gradient.

A weighted average of noise based on image phase consis-
tency can effectively adapt to noise and brightness. Compared
with the gradient intensity, as shown in Fig 2, the left side of
Fig 2 shows the original image, which is generally a template
image and a real-time image. The intermediate image is a
phase-consistent extraction result, and the right image is a
gradient image of the original image. The results show that
the image phase can effectively adapt to illumination changes.
According to the contour information of the extracted image,

it can be clearly seen that the phase can better solve the gray
distortion and geometric distortion.

The HP-SIFT algorithm requires image gradient direction
calculation. The direction calculation formula is shown in the
following 2-4, where a and b represent the gradient directions
in the x and y directions, respectively:

a =
∑
θ

(Ono(θ )cos(θ )) (2)

b =
∑
θ

(Ono(θ )sin(θ )) (3)

8 = arctan(b, a) (4)

where 8 is the direction of phase consistency and ono(θ ) is
the result of wavelet transform convolution calculation.

B. HP-SIFT ALGORITHM GRADIENT DIRECTION PCA
MAIN DIRECTION EXTRACTION ALGORITHM AND
FEATURE DESCRIPTOR GENERATION
The PCA algorithm is the most commonly used main direc-
tion extractionmethod for reducing data complexity and iden-
tifying the most important features. It maps high-dimensional
data to low-dimensional space, which uses fewer data dimen-
sions and has the largest variance in smaller dimensions. This
is the least loss method of raw data information.

The PCA-SIFT compresses the SIFT descriptor data. First,
we collect all the characteristics of the data, transform the
data, observe the important components of the data and clas-
sify them to reduce the data. To express an object, the object
has many attributes, we can observe the importance of each
attribute by transforming the data, and then select several
important attributes to describe the object, which plays a role
in compressing the data. Specific steps are as follows:

(1) The construction description subregion is selected as a
41∗41 rectangle centered on the feature point (which has been
aligned with the main direction of the feature point).

(2) Since the outermost pixel does not calculate the partial
derivative, the partial derivative of the horizontal and vertical
directions of each pixel of the 39∗39 matrix is calculated,
and a vector of 39∗39∗2 = 3042 dimensions is obtained and
normalized.

(3) Assuming that there are N feature points, vectors that
describe all feature points form a matrix, and then calculate
the covariance matrix of N vectors.

(4) Calculate the eigenvector corresponding to the first m
maximum eigenvalue of the N∗N covariance matrix, and m
vectors constitute a 3024∗m projection matrix.
(5) Multiply the N∗3024 descriptor submatrix with the

3024∗mprojection matrix to obtain an N∗mmatrix composed
of descriptor vectors. At this time, the descriptor vectors of
the N feature points are all m dimensions, and the data are
converted into the new space constructed by the above m
feature vectors.

The main direction of phase is extracted by the PCA
method. The extraction result is shown in Fig 3 below.
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FIGURE 3. Image phase and image gradient extraction image direction
comparison chart.

The left side shows the original picture, the middle is the
phase direction extraction result, and the right side is the
extraction result of the phase direction combined with
the PCA image. It can be seen from the figure that there is no
large difference between the three methods in the absence of
noise. When there is noise in the image, the method proposed
in this passage is more accurate.

The calculated phase and phase directions are combined
with the SIFT algorithm step to generate the feature descrip-
tor, which includes the following.

Description of key points. Considering that each key point
has three pieces of information: position, scale and direction,
then a descriptor is created for each key point, and a set of
vectors is used to describe the key points so that they do
not change with the environment, such as lighting changes
and viewing angle changes. The descriptor includes not only
the key points, but also the pixels that contribute to the key
points. The description is unique to improving the probability
of correct matching of the feature vectors.

The pixels in the neighborhood are divided into
16 × 16 subdomains and further divided into 4 × 4 blocks
(each block is composed of 4 × 4 small fields). For details,

see 8 directions in each block. Gradient direction histogram.
Finally, a descriptor vector of 4 × 4 × 8 = 128 is obtained.
The process is shown in Fig 4 below.

FIGURE 4. 4∗4 Direction map.

According to the above diagram, the direction of each
extreme point is calculated to obtain the direction of 8 direc-
tions. Forms a 128-dimensional feature descriptor. Then,
histogram statistics are performed on the 128-dimensional
feature vector.

Finally, the feature descriptors are normalized according to
the following formula.

W = (w1,w2, . . . ,w128) (5)

L = (l1, l2, . . . l128) (6)

lj = wj/

√√√√ 128∑
i=1

wi j = 1, 2, . . . 128 (7)

whereW represents a 128-dimensional feature descriptor and
L represents a normalized feature descriptor.

C. HP-SIFT ALGORITHM SIMILARITY MEASUREMENT
METHOD
In this paper, the similarity calculationmethod of the L2 norm
is adopted. The specific calculation method is as shown in
formula 8:

HP-SIFT =

n∑
k=1

(VA(k)− V̄A)(VB(k)− V̄B)√
n∑

k=1
(VA(k)− V̄A)2

n∑
k=1

(VB(k)− V̄B)2
(8)

The similarity calculation of HP-SIFT, VA and VB repre-
sent the feature descriptors of the two images HP-SIFT, V̄A
and V̄B represent the means of VA and VB.
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D. RANSAC-BASED HP-SIFT MISMATCH ELIMINATING
The parameter estimation of the RANSAC algorithm model
is completed by iterative calculation and repeated testing
through the inner and outer points. The initial model param-
eters are calculated by randomly extracting the sample data,
so there is great uncertainty. The quality of initial parameters
directly determines the number of iterations and the cost of
calculation. The distance ratio threshold is a bond that estab-
lishes a matching relationship between feature points. Lowe’s
experiment gives the relationship between the distance ratio
and matching rate. That is, the smaller the threshold, the
larger the correct probability of matching points, but the
fewer the number of matching points; the larger the thresh-
old, the more matching points, but the smaller the matching
accuracy.

In this paper, the method of simplifying RANSAC is to
select a few optimal matching points as representative of the
observation data set, so that the range of observation data
is greatly reduced and the overall quality is improved. The
initial model parameters obtained by randomly extracting
from the initial sample data are closer to the true value,
and the most realistic homography matrix parameters can be
obtained by minimizing the number of iterations.

The entire RANSAC geometry verification process is to
fit the image transformation matrix through the sample
dataset. The relationship between the original image and the
image to be matched is as follows:ωx2ωy2

ω

 =
 h1 h2 h3
h4 h5 h6
h7 h8 1

  x1
y1
1

 (9)

This is a projection transformation matrix of 8 parameters.
At least four matching pairs are needed to obtain the matrix
parameters. The least squares method is used to solve these
8 parameters, so that:

H = [h1 h2 h3 h4 h5 h6 h7 h8] (10)

L = −
1
ω
[x1y2]

T (11)

C=
1
ω
[
−x1 y1 1 0 0 0 −x2x1 −x2y1
0 0 0 x1 y1 1 −y2x1 −y2y1

]

(12)

Thus, the formula changes as follows:

H = −[CTC]−1CTL (13)

Let a have an initial value of 1 first, and a set of H values is
obtained. Then, the ω value is obtained from this value. After
many iterations, a stable H is obtained. The initial sample data
number N can be determined as follows:

N = min{N0,max{Ns,Nslog2µN0}} (14)

Here N0 is the number of matching points determined
according to the nearest neighbor ratio method, and N0 ≥ 4.
Ns is the number of sample steps. µ is a scaling factor.

III. COMPUTATIONAL COMPLEXITY ANALYSIS
The SIFT algorithm and the improved algorithm based on
SIFT, the complexity of the algorithm is time-consuming:
extreme point extraction, feature descriptor and similarity
calculation.

The extraction of the extreme points of the algorithm is
consistent with the SIFT and PCA-SIFTmethods, and it takes
the same time. The establishment of feature descriptions is
different. The specific analysis is as follows: N extreme points
are extracted for each image; similar to the traditional SIFT
algorithm, the HP-SIFT algorithm simply replaces the gradi-
ent strength calculation with the phase calculation, and the
gradient direction calculation is equivalent. It only increases
the time consumption of the PCA calculation; the implemen-
tation of the PCA algorithm does not have a large number
of calculated sliding window operations, and the complexity
of the algorithm is limited. The complexity of the HP-SIFT
algorithm is equivalent to the SIFT algorithm.

IV. EXPERIMENT RESULTS AND ANALYSIS
To verify the performance of the algorithm, this simulation
experiment was designed. The image data used in the exper-
iment were based on network collection and partial self-
photographing. The experiment verifies the algorithm from
two types of data:

1) Heterogenous image matching without significant
noise;

2) Multi-modal image matching with artificially added
non-mean, Gaussian noise with a variance of 0.1.

In the comparison process, the gradient directions of the
three algorithms are compared. The correct matching pairs of
the three algorithms are compared and the correct matching
pairs are compared. The proportion of the increase is calcu-
lated according to the following formula:

η =
N1 − N2

N2
(15)

where N1 and N2 represent the correct matching pair of
the comparison algorithm and the correct matching pair of
the improved algorithm, respectively, and η indicates the
improvement ratio of the improved algorithm.

A. EXPERIMENTAL PREPARATION
1) INTRODUCTION OF EXPERIMENTAL DATA
Part of the multi-modal image used in the experiment came
from the experimental map of the reference and partly from
the image downloaded from a Google map. Four pairs of
representative images were selected, as shown in Fig 5 below:

2) INTRODUCTION OF THE COMPARISON METHOD
The method of this paper was compared with the SIFT
and PCA-SIFT algorithms. The running code of the
SIFT algorithm is provided in [26]. The PCA-SIFT
method in [30] is used to perform experiments for
comparison.
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FIGURE 5. Experimental data.

B. EXPERIMENT 1 - EXPERIMENTAL VERIFICATION
UNDER NORMAL CONDITIONS
The 20 pairs of image libraries prepared for the experiment
were plotted tomake the image an idealmatching pair without
affine transformation. Experiments were performed using
SIFT, PCA-SIFT, and HP-SIFT. The matching results of the
SIFT, PCA-SIFT and HP-SIFT algorithms are shown in Fig
6 below. A representative set of image matching pairs was
selected for display, as shown in Fig 6 below:

It can be seen from Fig 6 that using the SIFT algorithm
to match in the infrared and SAR images only obtained two
correct pairs, the same image using the PCA-SIFT algorithm

FIGURE 6. Comparison of SIFT(a), PCA-SIFT(b) and HP-SIFT(c) effects
under normal conditions.

to match had three correct results, and the correct rate was
increased by 50% compared with the SIFT algorithm. The
HP-SIFT algorithm had six correct matching pairs, whichwas
200% better than the traditional SIFT algorithm and 100%
higher than the HP-SIFT algorithm.

In Fig 7, the blue line indicates the matching results
of 20 sets of data using the SIFT algorithm; the orange line
indicates the matching results of 20 sets of data using the
PCA-SIFT algorithm; the gray line indicates the matching
results of 20 sets of data using the HP-SIFT algorithm; it
can be seen from the figure that the results of the HP-SIFT
algorithm were always higher than those of the SIFT and
PCA-SIFT algorithms, and the improved matching accuracy
was basically maintained above 60%.
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FIGURE 7. Comparison of statistical results between SIFT, PCA-SIFT and
HP-SIFT in normal conditions.

C. EXPERIMENT 2 - EXPERIMENTAL VERIFICATION
UNDER NOISE CONDITIONS
The 20 pairs of image libraries prepared for the experiment
were plotted, adding Gaussian noise with a variance of 0.1.
Experiments were performed using SIFT, PCA-SIFT, and
HP-SIFT. The matching results of the SIFT, PCA-SIFT and
HP-SIFT algorithms are shown in Fig 9 below. A representa-
tive set of image matching pairs was selected for display, as
shown in Fig 8 below:

It can be seen from Fig 8 that using the SIFT algorithm
to match the infrared and SAR images obtained no correct
results. The same image using the PCA-SIFT algorithm had
two correct matching pairs; the HP-SIFT algorithm had five
correct matching pairs. Compared with the traditional SIFT
algorithm, it had a significant improvement, which was 150%
higher than that of the HP-SIFT algorithm.

In Fig 9, the blue line indicates the results of 20 sets of data
using the SIFT algorithm in the case of noise; the orange line
indicates the results of 20 sets of data using the PCA-SIFT
algorithm in the case of noise; the gray line indicates the
results of 20 sets of data using the HP-SIFT algorithm in
the case of noise. The results of the HP-SIFT algorithm were
always higher than those of the SIFT and PCA-SIFT algo-
rithms, and the improved matching accuracy was maintained
above 80%, indicating that the HP-SIFT algorithm has better
antinoise characteristics.

D. EXPERIMENT 2 - EXPERIMENTAL VERIFICATION
UNDER NOISE CONDITIONS
Three algorithms use the same device for calculation, experi-
mental image size is 640∗512. This paper compares the time
consumption of different algorithms. The results are shown
in the following table:

TABLE 1. Time consumption comparison of the three algorithms.

FIGURE 8. Comparison of SIFT(a), PCA-SIFT(b) and HP-SIFT(c) effects in
the case of noise.

As seen in the Table, to improve the accuracy of the
algorithm, the method adds some time consumption to the
algorithm.

E. DISCUSSION
This paper is aimed at the problem of low precision and poor
robustness in heterogeneous imagematching in the traditional
SIFT algorithm. The phase-replacement gradient strength
was used to calculate the gradient direction based on the phase
intensity, and the HP-SIFT was obtained by combining the
SIFT framework. Compared with the traditional SIFT and
PCA-SIFT algorithms, the results showed that the HP-SIFT
algorithm extracts 10% more points than the SIFT algorithm,
5%more points than the PCA-SIFT algorithm, and the correct

165362 VOLUME 7, 2019



H. Liu et al.: Method for Fused Phase and PCA Direction Based on a SIFT Framework for Multi-Modal Image Matching

FIGURE 9. Comparison of SIFT, PCA-SIFT and HP-SIFT correct matching
statistics in the case of noise.

FIGURE 10. Comparison of statistical results between SIFT, PCA-SIFT and
HP-SIFT in normal conditions.

matching point pairs increased by 12% and 11% respectively.
The computational complexity increased, but there was no
increase in magnitude.

In the absence of affine transformation and noise, the SIFT
algorithm had certain effects in infrared and visible image
matching due to its invariance to scale and rotation, but the
performance was poor in SAR images. The PCA-SIFT algo-
rithmwas obtained from the SIFT algorithm, but the principal
components of the feature vector were extracted, which had
a certain improvement compared with the SIFT algorithm.
The HP-SIFT algorithm better solved the illumination vari-
ation and geometry distortion and other issues by replacing
the gradient features with phase consistency. The matching
results of the 20 sets of data are shown in Fig 10 below:

In Fig 10, the blue histogram shows the matching results of
the SIFT algorithm of 20 sets of data; the orange histogram
shows the matching results of the PCA-SIFT algorithm
of 20 sets of data; the gray histogram shows the matching
results of the HP-SIFT algorithm of 20 sets of data; it can
be seen from the figure that the results of the HP-SIFT
algorithm are always higher than that of the SIFT algorithm,
and the improved matching accuracy is basically maintained
above 30%, indicating that the HP-SIFT algorithm has better
antinoise characteristics.

In the noisy case, the SIFT algorithm is inaccurate due to
the inaccurate extraction gradient direction; the PCA-SIFT

FIGURE 11. Comparison of SIFT, PCA-SIFT and HP-SIFT correct matching
statistics in the case of noise.

algorithm improved on the basis of the SIFT algorithm,
and the principal component of the gradient direction was
extracted, which had a certain improvement compared with
the SIFT algorithm; the HP-SIFT algorithm had a better effect
by replacing the gradient features with phase consistency
and performing PCA principal component extraction. The
matching result statistics of the 20 sets of data are shown
in Fig 11 below:

In Fig 11, the blue histogram shows the matching results
of the SIFT algorithm of 20 sets of data in the case of noise;
the orange histogram shows the matching results of the PCA-
SIFT algorithm of 20 sets of data in the case of noise; the line
indicates thematching results of the SIFT algorithm of 20 sets
of data in the case of noise; as seen from the figure, the results
of the HP-SIFT algorithm are basically higher than those of
the SIFT and PCA-SIFT algorithms. The improved matching
accuracy can be increased by 30% at the lowest and 500% at
the highest, indicating that the HP-SIFT algorithm has better
adaptability to noise.

V. CONCLUSION
In this paper, we propose an HP-SIFT heterogeneous image
matchingmethod based on SIFT. First, the phase and gradient
direction of the image are extracted from the heterogeneous
image to replace the gradient intensity and gradient direction
in the traditional SIFT algorithm. Then, combined with the
PCA to extract the gradient directionmain direction, the accu-
racy of the gradient direction improves, and the feature
descriptor is constructed. Finally, the RANSAC algorithm
is used to eliminate the mismatch. The experimental results
show that the matching performance of this method proposed
in this paper is better than the traditional SIFT and PCA-SIFT
algorithms.
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