

Journal Pre-proof

A Real-time Alert Correlation Method Based on Code-books for
Intrusion Detection Systems

Ehsan Mahdavi , Ali Fanian , Fatima Amini

PII: S0167-4048(19)30203-2
DOI: https://doi.org/10.1016/j.cose.2019.101661
Reference: COSE 101661

To appear in: Computers & Security

Received date: 5 August 2019
Revised date: 29 October 2019
Accepted date: 4 November 2019

Please cite this article as: Ehsan Mahdavi , Ali Fanian , Fatima Amini , A Real-time Alert Correlation
Method Based on Code-books for Intrusion Detection Systems, Computers & Security (2019), doi:
https://doi.org/10.1016/j.cose.2019.101661

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2019.101661
https://doi.org/10.1016/j.cose.2019.101661

1

1

A Real-time Alert Correlation Method Based on Code-

books for Intrusion Detection Systems

Ehsan Mahdavi
1

e.mahdavi@ec.iut.ac.ir

Ali Fanian
1
*

a.fanian@cc.iut.ac.ir

Fatima Amini
2

f_amini2000@sco.iaun.ac.ir

1- Abstract
Alert Correlation is the process of analyzing alerts to reduce their number, eliminate false positives, detect the

scenarios behind them and generate a higher perspective of the incidents. Making this process online will upgrade

the classic role of alert correlation from being a post-process step to a key part of intrusion detection systems. In this

article, we propose a novel two-phase model called a Real-time Alert Correlation method based on Code-books

(RACC) for intrusion detection systems. First, in the offline phase, RACC pre-processes a knowledge base to

propose some matrices as the main data structure of the method that we call them code-books. Instead of keeping

alerts in the memory, those matrices just hold keys to the corresponding meta-alerts. An index that is based upon

red-black trees is used to access matrix elements. Generating the matrices and mentioned index are independent

from the alerts, so utilizing them can facilitate the alert correlation process in an online manner in phase two of the

proposed model. The experiments show that compared to similar methods, RACC can significantly reduce the alert

correlation time and can enable real-time alert correlation.

Keywords: Network Security, Intrusion Detection Systems, Alert, Online alert correlation, Attack Scenario, Causal

relationships, Code-books.

* Corresponding Author
1
 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111,

Iran
2
 Department of Electrical and Computer Engineering, Islamic Azad University, Najafabad branch, Iran

2

2

2- Introduction
As the Internet and computer network usage

grows, security threats become more frequent.

Appearance of modern technologies like mobile or

Internet of Thing (IoT) and their issues which are

studied in literatures like [1] and [2], affects cyber-

threat landscape. As cyber-attacks evolve, it is

important to evolve protection systems as well.

Intrusion Detection System (IDS) is one of the

most important tools to prevent intrusion into

computer networks. In literature, any activity to

undermine the confidentiality, integrity, accessibility,

or attempting to circumvent security mechanisms of a

computer network is called intrusion [3]. In

contrast, intrusion detection is the process of

monitoring the incidents in a computer system or

network and analyzing them to find the signs of an

intrusion. Any software or hardware system or

combination of both of them which is responsible to

detect intrusions, is known as intrusion detection

system.

As a negative side effect, huge volume of raw

alerts generated by intrusion detection systems,

confuses security managers. It is proven that a large

amount of those alerts are commonly incorrect [4].

To overcome this problem, alert correlation

techniques are usually employed. Alert correlation

tries to provide a higher level view of security

incidents by aggregating and combining alerts into a

denser and more valuable form. This view can reveal

attack scenarios and attacker’s intentions. In other

words, by extracting useful information from the

huge volume of generated alerts, the alert correlation

can be a supplement to intrusion detection systems.

In most researches, during the alert correlation, raw

alerts are changed into some other forms of alerts that

are usually called meta-alert or hyper alert. These

alerts are usually a denser form of the original alerts

that might point to a collection of alerts, a simplified

form of alerts or an aggregation of them. The output

of the process might be a set of these intra process

hyper alerts or undergo more changes.

As mentioned, the key purpose of alert correlation

is to create a higher level view of attacker’s

intentions and how they are achieved. As most alert

correlation methods reduce the volume of the alerts,

this can be considered as a main by-product of this

process. In a general taxonomy given in [5], three

important strategies including similarity, sequential

and case based approaches are proposed to correlate

the alerts.

Real-time alert correlation has not been focus for

most of the researches in this field. A brief search in

online scientific index engines would clarify that

real-time alert correlation was discussed in less than

50% of the literature. Therefore, in this article, using

the causal relationships between the alerts, we create

some code-book matrices in order to detect the attack

scenarios. The code-books were inspired from

network management systems (NMS) techniques [6].

In those matrices, the rows represent the possible

problems in the network and the columns represent a

sign of a problem. The use of matrix for alert

correlation and a Red-Black tree to achieve the

indices of those matrices, boosts the method speed.

This enables the proposed method as called RACC to

be used in online applications. Simulations show that

used resources for the method makes it suitable for

online correlation of the alerts.

In the following a review of previous works and a

general taxonomy of existing methods is presented.

Section 4 describes the RACC method.

Implementation results in section 5 shows that the

proposed method can be used for online alert

correlation purposes. Finally, section 6 will conclude

the research.

3- Related work
As discussed in the previous section, IDS alert

correlation methods employ three major strategies. In

this section, we review the relevant researches from

these categories.

 3-1 Similarity based methods
These methods usually try to reduce the total

number of similar alerts through clustering and

aggregation.

Valdes and Skinner [7] have proposed a

probabilistic approach that can combine alerts from

multiple sensors. This method uses a mathematical

framework to estimate the minimum requirement to

specify the similarity between the alerts. The basis of

this approach is to define a particular similarity

measurement function for each characteristic type.

Since the values in an alert may take a range of

values, the similarity measurement function must be

able to determine how the corresponding values of a

characteristic overlap for different alerts. Using such

calculations, alerts with high similarity scores are

considered to be correlated.

To correlate the alerts while identifying steps of

attacks, a two-tier feature selection method has been

presented in [8]. This method tries to select the

appropriate features of the alerts. In the first layer,

features are sorted in descending order with respect

to their information gain. Then a subset of them with

most scores form the early candidates. In the second

3

3

layer, features that have a better separation capability

than the earlier ranked features are added. This

feature selection tries to detect scenario.

Daneshgar et al. [9] have proposed a model that

consists of an online as well as an offline module.

The online module clusters the alerts according to

their similarities to some fuzzy patterns. In the offline

module, a statistical analysis is performed based on

statistical characteristics. The output of the offline

module is considered as input to the online module

and the iterative fuzzy patterns are extracted. The

presence of these two modules contribute to the

accuracy of the proposed method. It can be

considered as an online method which extracts the

scenario of complex attacks.

The method in [10] uses the integration of

Particle Swarm Optimization (PSO) and k-means to

correlate the alerts. In order to balance the dataset,

the nominal features are converted and scaled before

clustering. Also the numerical features are scaled to

the range of [-1, 1]. The method uses PCA to reduce

the features describing the alerts. After all, it

integrates PSO and k-means clustering to aggregate

the alerts.

As can be seen in this section, similarity based

methods for alert correlation are a subset of general

methods including probabilistic solutions, statistical

methods and even machine learning methods which

are vastly used in different areas of computer science.

They are adapted to solve the correlation problems.

Their general nature makes them suitable to be

adjusted for solving different network security

problems like detecting last generation attacks [11]

from raw network traffic.

Despite the low complexity, the methods in this

category have proven their efficiency for reducing the

alerts. Inability to find the causal relationships

between the alerts and the origin of the problems is

the main weakness of these methods. Finding causal

relationship of alerts with shared origin, can play an

important role in identifying the motives and effects

of different attacks.

 3-2 Sequential based methods
Special interest on causal relationships between

the alerts is the most important characteristic of such

methods. The prerequisites of incidents as well as

their possible consequences are presented in these

approaches by different means.

Causal graphs are widely used to model those

relations. In such methods, relations between the

alerts are commonly represented using Directed

Acyclic Graphs (DAG). Each node in a DAG

represents an alert or meta-alert. Each connecting

edge, presents a relationship between those nodes.

Roschke et al. [11] have used Floyd-Warshall

algorithm to find shortest paths in the attack graph.

This made it possible to detect different attack

scenarios. Each node of their graph represents a step

in a scenario and is equivalent to an alert. Every

attack step requires occurrence of one or more

previous steps. Input edges represent those

prerequisites. On the other hand, output edges are

connected to incidents that need this step as their

prerequisite to occur.

In [12], a method is proposed to correlate the

alerts for Early Warning systems (EWS). It consists

of an online as well as an offline phase. In the offline

phase, the alerts are first aggregated together based

on their similarity. This aggregation creates some

hyper alerts. Then, the hyper alerts are categorized

into episodes with a specific maximum length.

Afterwards, the frequent critical and benign episodes

are extracted. Critical episodes are used to create the

attacks tree. This tree is a model of the attacker

behavior. Benign episodes might be used to identify

new attacks. By this means, multi-step attack

scenarios are recognizable. Considering the models

generated in the previous (offline) phase, online

phase generates trees locating current alerts. Another

data structure in this method is a matrix called CCM
1
.

Each element in CCM determines the correlation

strength.

Soleimani et al. [13] have presented a multi-layer

framework. It reduces the search load among large

number of alerts to explore the attack scenarios. The

method first aggregates the alerts based on their

similarity. An episode mining algorithm is then used

to explore possible combinations of alerts. The

episode miner, creates episodes with various lengths

using aggregated alerts. Similar to [12], their work is

based upon critical episode concept. They also utilize

decision-trees to determine multi-step attacks.

 In a study by Zali et al., causal relation graph

(CRG) is proposed. In CRG two types of vertices are

defined. Condition vertices and alert signature

vertices[14]. For each vertex in CRG, Forward Queue

and Backward Queue Trees are extracted. CRG is

likely to be a template and correlation results are

stored by locating alerts in instantiated graphs and

corresponding trees. Thus, in this method for each

typical alert, there are two trees, a signature node and

a condition vertex which stores alert details. All this

information is stored in the main memory.

1
 Causal Correlation Matrix

4

4

Additionally, for each incoming alert, a backward

search is carried out. It might require significant

processing or the search range should be limited.

With the goal of processing a large amount of

alerts, a real-time alert correlation approach is

presented in [15] which adopts [14]. The approach is

based on the Attack Planning Graph (APG). In order

to generate an attack scenario, the APG model is

created based on the prior knowledge of the attacks.

APG is a directed acyclic graph that contains the

causal relationship between attacks. According to the

generated graph, the alerts can be analyzed. APG

includes a set of ST and AT nodes. The ST nodes

indicate the attributes or states and the AT nodes

specify the attack types. To correlate the alerts, BFS

and backward BFS are applied on the APG. These

searches create two trees (Forward Queue and

Backward Queue Trees) for each APG node. In this

approach, the attack maps and planning trees are

constructed by correlating the similar alerts in offline

phase. Duplicate alerts will be reduced significantly

in this phase. Based on the opinion of authors of this

paper, the method presented in [14] cannot correlate

some kinds of similar alerts and the storage overhead

is high. These drawbacks of [14] motivated them to

propose improvements.

In [16], Normalizing and reducing the alerts

volume is the first course of action. This step tries to

keep important alerts features. Afterwards, the alerts

are processed within certain window length. In each

window, the most frequent sequences of alerts are

determined. Then a causal correlated matrix (CCM)

rules the sequences to be correlated together. The

correlated alerts are listed in table called CFSP
1
.

Every time a number of alerts form a window, the

most frequent sequences are obtained. Then, larger

CFSPs are extracted based on the values of current

CFSP table and the existing relationships in the CCM

matrix. The CCM matrix is also updated based on the

frequent sequences of each window and some rules

are established. To be more accurate, after processing

the alerts, the attacks and future behaviors of the

attacker are predictable based on a learned hidden

Markov model.

Kliger et al. [6] have presented a method using

code-books to correlate alerts in network

management systems (NMS). The method’s salience

is to perform well while tolerating high volumes of

false positives particularly for the cases when the

alert loss is high. To do so, the authors have reduced

the code-book size and tried to consider a subset of

1
 Correlated Frequent Sequential Pattern

signs that can distinguish the issues. They have

used two types of measures. The first one is the

Hamming distance which is used for deterministic

alert correlation when the matrix elements are equal

to zero or one. The other measure employs a

probabilistic method in which the code-book matrix

contains weight coefficients in the interval of [0, 1].

Each of weights indicates the probability of a

relationship between a specific sign and the

investigated incident.

Steinder and Sethi [17] have employed Bayesian

methods on network errors. Their system effectively

solves the issues of false positive alerts and corrupted

or lost alerts. They used two Bayesian inference

algorithms to distinguish between different errors.

 Zhu et al. [18] have used the combination of a

multi-layer neural network (MLP), a support vector

machine (SVM) and a knowledge representation

scheme called Alert Correlation Matrix (ACM). It

should be noted that ACM shows the correlation

strength.

In sequential based methods, no matter how much

the scenarios follow, the steps usually link to each

other in a chain. This provides scalability of these

methods. Moreover, comparing the prerequisite of an

incident with the consequence of the preceding

incidents indicates the causal relations appropriately.

At a more abstract level, sequential based methods

can identify new scenarios. For this purpose, it is

enough to ignore the incidents and derive possible

scenarios using the prerequisites and consequences.

Usually, the results of these types of alert correlation

methods are easily understandable and they directly

express the possible scenarios of attack. However,

defining poor logical relations or using IDSs with

low quality alerts may result in wrong correlation

scenarios.

 3-3 Case based methods
These methods commonly rely on the existence of

a knowledge base system to provide them with

appropriate scenarios.

Liu et al. [19] have proposed an alert correlation

system based on finite automata. This method

investigates the scenarios in three types of high-level

views. However, to process critical scenarios, an

NFA is used to reconstruct the scenarios between an

attacker and a target.

 Case based methods are very efficient to

correlate the known scenarios, but the creation of a

database of all feasible scenarios is almost

impossible. So the concern about unknown scenarios

always exists. On the other hand, expanding the set of

5

5

scenarios will increase the search cost and this

challenges these methods for online utilization.

4- Proposed method
Sequential methods particularly try to model

cause/effect relationships between incidents. This

becomes prominent for prerequisite/consequence

based subcategory. An ideal situation for such

methods is to be able to predict next moves of

malicious users by analyzing current incidents. This

brings ability to embed suitable reactions into

systems. The goal is not met unless such analyses can

be done in real time. In this paper, we propose a new

online method to provide such advantage for

prerequisite/consequence based methods. Figure 1

shows the overall schema of the proposed method

RACC. In the next sub-sections, we will describe the

method in more detail.

 4-1 Description of the proposed RACC model
In this section, we describe the proposed method

in detail. Our main concern for the proposed method

is to provide alert correlation online. Considering the

ability of sequential based methods to express attack

scenarios, the proposed method tries to create a real-

time prerequisite/consequence based method. To do

so, we first extract possible scenarios from a

prerequisite/consequence knowledge base. This

process is performed offline and the results will be

placed in a specific data structure. The data structure

should be designed properly to be used quickly. In

RACC, it is composed of a collection of matrices. In

more definite terms, there will be a matrix for every

scenario extracted from the prerequisite/consequence

relationships. A Red-Black tree is also used as a map

to ease and speed up access to those matrices and

specific indices. Additionally, instead of keeping all

the alerts and meta-alerts in the main memory, this

method only keeps the indices for them in the main

memory. This will effectively reduce required

memory. Once the indices were created in the offline

phase, the alert correlation can be performed online

in real time.

As mentioned earlier, the main data structure in

the proposed model consists of a number of code-

book matrices. Section 3-2 cited such matrices which

were used for alert correlation in the network

management systems (NMS). The code-books in

those systems are constructed with possible problems

in a network on the matrix rows and the signs of

different problems appear as the matrix columns. In a

given matrix, an element with the value of 1

represents the occurrence of a sign for a problem and

indicates a cause/effect relationship between them.

Then, to correlate the various alerts, usually a

distance criterion between the matrix rows is used.

This criterion can determine how much a problem is

in relation with other problems for the same network.

0- start

13- end

1- Choosing the desired knowledge

base

2-Extraction of existing scenarios and

creation of Red_Black index

No 3- Is there any alert?

4- Alert entrance

5- Finding the corresponding vector on

the Red-Black index

6- Achieving the desired matrix

7- Has the host already

been seen in this scenario?

8- Adding column to matrix

9- Achieving the desired index

10- Is the element zero?

11- A unique index for new hyper alert is selected

and registered.

12- Current alert correlates

with the corresponding

hyper alert.

Yes

No

Yes

Yes

No

Figure 1: Overview of the proposed RACC

method

To the best of our knowledge, code-books have

not been used for alerts correlation in the intrusion

detection systems. So we declare the code-book as a

type of matrix which we propose to correlate the

alerts in the intrusion detection systems.

4-1-1 Proposed code-book

The Mx matrix as a code-book in the proposed

method, is a matrix that maps occurrence of different

steps from a multi-step scenario (the scenario x
th

) to

different systems protected by the IDS. To do so,

6

6

each matrix row should represent a step of the

intended scenario and the matrix columns represent a

protected system. For instance, matrix (1) shows such

a matrix for an attack scenario that consists of four

steps.

Therefore, the value of 1 on the ith row and jth

column of the matrix, shows the step i from the

scenario x is occurred on the system j ().

Obviously on a column, one or more 0 valued

elements between two elements with a value of 1,

indicates that the corresponding alerts are somehow

lost. This could be due to IDS weaknesses or a clever

attacker has hidden his moves by omitting some of

them. However, in this method, the meta-alerts are

obtained by aggregating the alerts associated with

elements with a value of 1 on same column. Hence

such meta-alerts highlight three key concepts. Which

steps of which scenario occurred on which host so

far. For a progressing scenario, a quick glance on the

entries of a column of the proposed matrix, can

reveal next possible steps. This can be done

simultaneously with the current alert processing. The

output can be presented as feedback to the intrusion

detection system.

To distinguish relationship between the alerts and

corresponding meta-alerts, it suffices to store an

integer instead of a bit as matrix elements. In this

case, the value of each element is either zero (which

mean the corresponding step has not reported on a

host) or a unique index for the corresponding meta-

alert. This index can reveal the index in a relational

database or is considered to be unique file name. So

in the proposed method, each column indicates the

execution of different steps of a scenario on a

particular host. The corresponding alerts will be

correlated as a meta-alert. Thus, each scenario on

each host is specified with a unique index. These

indices are the main information required to correlate

the alerts. Consequently, by having them in the main

memory, RACC doesn’t keep the alerts and meta-

alerts in the main memory. This results in a

significant reduction of required memory. Utilizing

this mechanism, if there is a specific attack in

different matrices, it means that the attack exists in

several scenarios. As with the most alert correlation

methods, there is a meta-alert for each scenario, but

only the corresponding index will be stored in the

proper matrix.

Figure 2: Accessing and modifying of code-books

when an alert occurs

4-1-2 Details of the proposed model

As stated before, there is a matrix for every

scenario and a typical alert might be used in multiple

matrices (scenarios). To be suitable for real-time

applications, RACC must provide quick access to

locations that refer to typical alert. In more definite

terms, all row indices corresponding a typical alert.

For this purpose, a recursive program, pre-processes

the prerequisite/consequence knowledge base. It

explores existing prerequisite/consequence

definitions and each extracted scenario is stored in a

vector. The knowledge base used in this phase,

describes the typical alerts of IDS with XML

structure. Each XML entry contains the prerequisites

and consequences of the intended alert. The

(1)

[

]

a)

b)

7

7

preprocessor, also stores the vector index and the

position of the typical alert in that vector, to another

data structure. The vector index corresponds to each

typical alert. The typical alert is called hyper alert in

the literature.

Another challenge is to find these indices. To do

so, a Red-Black tree is used. The red-black trees are

suitable as search trees. They ensure there is no path

which is larger than any other route by more than two

steps [20]. Therefore, these trees are almost balanced

and their search complexity reveals maximum order

of . The key index in this scenario is a Red-

Black tree. Each node points to a vector of ordered

pairs (vector index, index in the vector). This pair

reveals (the matrix corresponding to a scenario, index

of the matrix corresponding to the scenario step). It is

notable that the hyper alert text is the key to sort the

Red-Black tree.

Following is the explanation of working of

RACC. For each input alert, RACC retrieves vector

of the corresponding element from the mentioned red

black tree. The vector, points to the intended element

in the code-book matrix. Supposing the case that

there are n types of different alerts in data set, the

Red-Black tree search will be carried out in the order

of . In this phase, according to the limited

number of scenarios, the search in the corresponding

vector is done at constant time. Assuming there are r

scenarios in the knowledge base and each one has

maximum m steps, the search will be done in the

order of () . Evaluating or modifying the

intended element is also a constant process and can

be performed in the order of () Therefore, the

entire process can be performed in order of

 () () ().

It should be noted that all these values are

constant; they are not related to the number of

security incidents and corresponding alerts in the

execution time. So, these values appear as a constant

factor to correlate each alert and the general order of

alert correlation is linear with respect to the number

of alerts.

 When an alert in reported on a target host, the red

black tree guides to the codebook and corresponding

row. If there is a column in the matrix corresponding

to that host, this column's elements are checked. If

they are all zero, it means that no step of the

corresponding scenario has been reported on the host.

Therefore, it is necessary to create a meta-alert and a

unique index as the corresponding element in the

code-book. The unique incident number can also be

stored as a link between meta-alert and current alert

in a relational database or corresponding files. If a

non-zero value is found on the column, then the

corresponding meta-alert is already generated and its

index should be used directly for the current element.

For memory optimization purpose, the columns

might be dynamically added to the code-books. In

this case, if there is no column corresponding to the

intended host, then a column should be added to the

matrix when an alert is reported in a particular

scenario.

Figure 2 shows how to use the Red-Black index

and the code-books at the point of an alert entrance of

type FTPPut. In this example, this type of alert exists

in scenarios Sce1 and Sce2. A search in the Red-

Black tree yields these scenarios (code-books). The

corresponding vector and the matrices (via this

vector) are consequently available. For example,

suppose the mentioned alert is reported on host F.

Part a shows that the previous step (Email Almail

Overflow) has occurred for the same host in the first

scenario and the corresponding meta-alert key is 93.

So in part b this key is considered for the

corresponding row. There is no alert in part A for the

Sce2 scenario. Therefor a column for the host F will

be added into the matrix and meta-alert number, for

example, is considered to be 150.

So far, the proposed method has been described in

details. The use of code-book and the Red-Black

index will result in dramatic speed of alert correlation

in the online phase. To verify the validity of our

claim, we will evaluate the proposed method in

Section 5.

5- Evaluation of the proposed method
As mentioned earlier, the main goal of the

proposed method is online enforcement capability.

To increase speed, the main action was to use several

matrices as well as a Red-Black index. The proposed

components are also designed to make the least use

of resources like main memory. To investigate the

feasibility of online application, in this section we

examine implementation results of the method. In the

following, we first examine the required main

memory and then we estimate the execution speed of

this method in terms of CPU time.

 5-1 Required memory
Perhaps the first concern about the proposed

method is the vast memory consumption. With an

analysis based on a pessimistic practical experience,

it will be specified that this concern does not hold.

Suppose that a large network with 1000 protected

hosts has been selected to use the RACC method. For

10000 scenarios where the average length of each

scenario is 20 steps, we will need 10000 matrices of

size (). It is notable that this is a strict

mode. Because each element of the matrix occupies

8

8

only 1 bit of memory space, we need
 bits. So only 25 MB of memory space will be

occupied. Even using the integer numbers as indices

of meta-alerts, the required memory space will not

exceed 800 MB. Typical personal computers these

days are assembled with 8 to 16 GB of main memory.

Thus the required memory space is likely to occupy 5

to 10 percent of the main memory and the proposed

matrix operation can be executed very quickly. In

addition, the columns of the matrices can

dynamically be added to the data structure. That is, if

one of the alerts related to one step from a scenario is

seen on a new host, a column is added to the

corresponding matrix. So in real applications, the

required main memory will stay below 10% for

RACC.

 5-2 Implementation method and datasets
The proposed method has been implemented

using C++(11) in an Ubuntu distribution of Linux

environment. In the pre-processing phase, the method

requires a prerequisite/consequence knowledge base

to extract the attack scenarios. To do so, the two

knowledge bases corresponding to the alerts of two

known intrusion detection systems have been used.

The IDSs are SNORT [21] and RealSecure [22] and

dataset are obtained from [23]. The first knowledge

base provides the prerequisite/consequence

relationships between around 3000 hyper alerts in

SNORT and the second knowledge base contains

prerequisite/consequence relationships between 30

different hyper alerts in RealSecure. As shown by

Table 1, the proposed method is implemented for

three data sets using these two knowledge bases.

Table 1: Used datasets and databases

Dataset Knowledge base IDS

DARPA2000

[24]
[23] RealSecure

DARPA2000

[24] [25] SNORT

TH [26]

DARPA2000 dataset consists of two scenarios of

DDoS
1
 attack. The first scenario has 5 steps and its

final goal is to conduct a DDoS attack. Figure 3

illustrates the steps involved in this scenario. In the

second scenario of DARPA2000, a smarter attack

scenario has been carried out. In this scenario, instead

of sending requests to all the hosts as in the first step

of the previous scenario, requests of type HINFO are

1
 Distributed Denial of Service

sent to a DNS
2
 provider. Another difference in this

scenario is that the attacker, instead of performing all

the attack steps from his/her machine, first penetrates

into another machine and then uses it to perform the

latter steps. Figure 4 indicates the steps of the attack.

IP Sweep

Probe using Sadmind ping options

Breaking into Mill, Lock and pascal

using Sadmind exploit

Installing DDoS software via telnet,

rcp and rsh

Starting a DDoS via a telnet session

and DDoS itself

Mill IP address: 172.16.115.20

Lock IP address: 172.16.112.10

pascal IP address: 172.16.112.50

Figure 3: Steps for implementing LLDOS 1.0 in
DARPA2000

Perform HInfo agains Mill

(which is a DNS server)

Break in Mill via exploiting sadmind

vulnerability

Upload mstream DDoS and attack script to

Mill using FTP

Run Mstream master on Mill and try to break

in two more machines

Lunch Mstream DDoS against final victim via

telnet to DDoS master machine

Figure 4: Steps for implementing LLDOS 2.0 in

DARPA2000

2
 Domain Name Service

9

9

The dataset TH [26] contains alerts generated by

Snort IDS for real traffic of a private corporation

which is provided for this research.

 5-3 Alert correlation results of the proposed

RACC method
The result of applying RACC on the SNORT

alerts for the first scenario of DARPA2000 is the

matrix shown in Figure 5. It depicts that the first step

of the attack has been applied on all the hosts. The

next two steps of the attack have been performed on

three of those hosts. This can be seen that they are

correlated and generated corresponding hyper alerts.

The hyper alert index is stored in related columns of

code-book.

 So far the code-book mechanism only considers the

destination address of the attack as matrix columns.

In some scenarios like the second of DARPA, the

victim computer(s) stay to be attack destination up to

a certain step. From that point onward, when the host

is exposed, the attacker exploits it and performs next

steps with that host. From the alerts point of view,

this means that the abused destination is the source of

next malicious actions. However, these alerts should

be correlated together. For example, in second

DARPA scenario, the final step generates an alert

with destination IP 202.77.162.213. So this address

appears as a column in the matrix with no prior steps

performed. The results are not suitable because

RACC won’t correlate the last step with prior steps.

It is possible to correct this defect by using

information in knowledge base. The existing

knowledge base, outlines the argument type that

relates each prerequisite and consequence. This can

be reflected by considering another bit in the index

for each hyper alert. This bit specifies if the argument

type is destination or the source IP. Considering this

correction, the matrix in Figure 5 can be corrected to

the matrix in Figure 6. This can be generalized so that

type of the columns may vary. This has been

reflected in Figure 6 as triplet vectors. Replacing the

mentioned bit with a byte can extend the method

coverage to 256 types of key arguments. However, as

can be seen in figures, the proposed matrix just keeps

some indices of the information which are necessary

to fast alert correlation. The code-books are compact

enough to maintain memory efficiency while

preserving high speed capabilities. To support these

claims, Figure 7 illustrates the alert correlation graph

of the method proposed in [14] for RealSecure alerts

on the first DARPA2000 scenario and Figure 8

shows the corresponding matrix in the RACC. As

you can see, Figure 7 shows the overall alert

correlation schema with no information such as what

was the target host or in which meta-alert the

correlated alerts were aggregated. Contrarily, RACC

matrix contains such information at the same time, it

provides them more compact and more efficient

manner. Furthermore, accessing the alerts of the

graph presented in Figure 7 and also processing them

requires cumbersome graph traversals. This is while

similar tasks in the corresponding RACC code-books

are simpler and faster. As the typical number of alerts

in knowledge base grows, such as SNORT, graph

dimensions are subject to considerable increase in

size so they cannot be figured in this paper. Thus

such visual comparisons can’t be performed. The

comparison of RACC with numerous and large

graphs proposed in [14] and other graph based

methods illustrates the advantages of the proposed

method.

Figure 8 and Figure 9 show the matrix derived from

correlating RealSecure alerts for both DARPA2000

scenarios. As illustrated, all the steps of attack are

specified in the proposed matrix.

IP
 =

 2
0
2

.7
7

.1
6
2

.2
1

3

IP
 =

 1
7
2

.1
6

.1
1
5

.3
0

IP
 =

 1
7
2

.1
6

.1
1
5

.2
0

IP
 =

 1
7
2

.1
6

.1
1
3

.5
0

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

4

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

5

IP
 =

 1
7
2

.1
6

.1
1
2

.5
0

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

7

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

IP
 =

 1
7
2

.1
6

.1
1
2

.1
9

4

IP
 =

 1
7
2

.1
6

.1
1
2

.1
4

9

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

5

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

IP
 =

 1
7
2

.1
6

.1
1
2

.1
1

0

IP
 =

 1
3
5

.1
5

.2
1
6

.1
9

1

0 1150 946 895 844 640 589 530 487 436 385 334 283 180 73 ICMP PING

0 0 946 0 0 0 589 0 0 0 0 0 283 0 0 RPC Sadmind UDP PING

0 0 946 0 0 0 589 0 0 0 0 0 283 0 0 RPC Sadmind query with root

credentials attempt

10

10

1230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RSERVICES rsh root

Figure 5: Attack matrix on the SNORT alerts for the first scenario of DARPA2000

IP
 =

 1
7
2

.1
6

.1
1
5

.3
0

IP
 =

 1
7
2

.1
6

.1
1
5

.2
0

IP
 =

 1
7
2

.1
6

.1
1
3

.5
0

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

4

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

5

IP
 =

 1
7
2

.1
6

.1
1
2

.5
0

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

7

IP
 =

 1
7
2

.1
6

.1
1
2

.2
0

IP
 =

 1
7
2

.1
6

.1
1
2

.1
9

4

IP
 =

 1
7
2

.1
6

.1
1
2

.1
4

9

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

5

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

IP
 =

 1
7
2

.1
6

.1
1
2

.1
1

0

IP
 =

 1
3
5

.1
5

.2
1
6

.1
9

1

1150 946 895 844 640 589 530 487 436 385 334 283 180 73 ICMP PING

0 946 0 0 0 985 0 0 0 0 0 283 0 0 RPC Sadmind UDP PING

0 946 0 0 0 985 0 0 0 0 0 283 0 0 RPC Sadmind query with root credentials
attempt

0 946 0 0 0 985 0 0 0 0 0 283 0 0 RSERVICES rsh root

Figure 6 : New attack matrix on the SNORT alerts for the first scenario of DARPA2000

11

11

Email_Almail_Overflow67529

Email_Almail_Overflow67304

Rsh67560

Rsh67558

Rsh67559

Rsh67553

FTP_Put7

Rsh8

Rsh3

Rsh5

Rsh9

Rsh10

Rsh67542

Rsh14

Rsh13

Rsh15

Rsh67540

Rsh67543

Rsh67545

Rsh67546

Rsh67547

Rsh67549

Rsh67550

Rsh17

Rsh16

Rsh67562

Rsh67535

Rsh67536

Rsh67538

Rsh67539

Rsh23

FTP_Syst67243

Sadmind_Ping67343

HTTP_Shells1

Sadmind_Amslverify_Overflow2

Sadmind_Amslverify_Overflow11Sadmind_ping6728

Sadmind_ping67341 Sadmind_Amslverify_Overflow19

Mstream_Zombie67554

Mstream_Zombie67776

Mstream_Zombie67767

Mstream_Zombie67537

Mstream_Zombie67777

Mstream_Zombie67563

Stream_DoS67773

Figure 7: Proposed graph in [14] to correlate RealSecure alerts for the first scenario of DARPA2000

12

12

IP
 =

 1
7
2

.1
6

.1
1
5

.2
0

IP
 =

 1
7
2

.1
6

.1
1
4

.3
0

IP
 =

 1
7
2

.1
6

.1
1
4

.2
0

IP
 =

 1
7
2

.1
6

.1
1
4

.1
0

IP
 =

 1
7
2

.1
6

.1
1
2

.5
0

IP
 =

 1
7
2

.1
6

.1
1
2

.1
0

103 100 69 66 64 54 Sadmind Ping

103 100 69 66 64 54 Sadmin Amslverify Overview

103 100 69 66 64 54 Rsh

103 0 0 0 64 54 Mstream Zombie

103 0 0 0 64 54 Stream DoS

Figure 8: Attack matrix on the RealSecure alerts for the first scenario of DARPA2000

IP
 =

 1
7
2

.1
6

.1
1
5

.2
0

IP
 =

 1
7
2

.1
6

.1
1
3

.2
0

7

IP
 =

 1
7
2

.1
6

.1
1
3

.2
0

4

IP
 =

 1
7
2

.1
6

.1
1
3

.1
6

9

IP
 =

 1
7
2

.1
6

.1
1
3
1

6
8

IP
 =

 1
7
2

.1
6

.1
1
3

.1
4

8

IP
 =

 1
7
2

.1
6

.1
1
3

.1
0

5

IP
 =

 1
7
2

.1
6

.1
1
2

.1
9

4

IP
 =

 1
3
1

.8
4

.1
.1

3

0 0 0 0 0 0 0 0 0 Port Scan

311 119 55 59 59 59 51 9 99 Email Almail Overflow

0 119 0 0 0 0 0 0 99 FTP Put

0 119 0 0 0 0 0 0 99 Mstream Zombie

0 119 0 0 0 0 0 0 99 Stream DoS

Figure 9: Attack matrix on the RealSecure alerts for the second scenario of DARPA2000

5-3-1 Evaluating the online performance

After evaluating the validity of the proposed

method, we examine the validity of the high-speed

claim. The most important metric used to examine

the speed of the proposed method is the CPU time to

execute the desired operations. Research conducted

by Zali et al [14], has the most similar goal with

RACC. The method was proposed to make a

prerequisite/consequence base approach online. To

compare with [14], experiments were first performed

on a personal computer similar to [14]. The SNORT

knowledge base, whose prerequisite/consequence

relationships are available, has about 3800 hyper

alerts and 644 possible scenarios. In RealSecure case,

there are 30 hyper alerts and 45 scenarios,

respectively.

Figure 10 and Figure 11 show the mean and

maximum processing times for the proposed RACC

method and the method in [14]. The methods have

been applied on the SNORT alerts and its knowledge

base for the first scenario of DARPA2000. The first

observed difference is a significant reduction of

processing time in the proposed RACC method. It

should be noted that Chrono library in C++(11)

provides the most accurate measure of CPU time in

nano seconds.

Observations show that the processing time in the

method presented in [14] increases continuously.

This is due to the queuing nature of the warnings in

the quoted trees. In this case, for the scenarios with

more steps, the number of alerts are increased in

queues. This delay is cumulatively propagated to

latter alert processing. Additionally, this alert

queuing procedure is intensified because they should

be replaced in graphs with new hyper alerts. Another

factor is to add new nodes to the resulting graph of

the mentioned method. On the other hand, there is no

queue in RACC. The trends are uphill for processing

scenarios with more steps, but the charts are

immediately descending for short scenarios.

Considering maximum CPU time in Figure 11

depicts that the highest processing time for each 25

consecutive alerts is about 50 microseconds, while

[14] is 6 times slower and processes same episode in

about 300 microseconds.

According to Figure 10, between arriving alert

number 700 and 1000, RACC has progressed almost

without any delay, but the time consumed in [14] has

increased continuously. Checking those alerts, shows

that they are those alerts that have not been used in

any scenario. In this case, the RACC simply does

nothing. But [14] performs all queuing, searching,

traversing graphs and locating them in graphs.

In another experiment, the proposed method and

the method in [15] are compared with each other

using similar hardware. Figure 12 and Figure 13

13

13

depict the mean and maximum processing times for

RACC method and the method in [15]. The methods

have been applied on the SNORT alerts using the

knowledge base for the first scenario of

DARPA2000. The method in [15] can be considered

as an extension of [14], so it shows similar behavior

as it uses queuing, backward searches and graph

traversals. Thus the same observation and

explanations will hold. As is clear, RACC has a

significant reduction in alerts processing time.

Figure 10 : Comparison of average CPU time to process every 25

consecutive SNORT alerts for the first scenario of DARPA2000 between
RACC and the method in [14] with similar hardware

Figure 11 :Comparison of maximum CPU time in the processing of

every 25 consecutive SNORT alerts for the first scenario of DARPA2000
between RACC and the method in [14] with similar hardware

Figure 12 :Comparison of average CPU time to process every 25

consecutive SNORT alerts for the first scenario of DARPA2000 between

RACC and the method in [15] with similar hardware

Figure 13 : Comparison of maximum CPU time in the processing of

every 25 consecutive SNORT alerts for the first scenario of DARPA2000

between RACC and the method in [15] with similar hardware

In another evaluation in terms of processing time,

we compared our method with the method proposed

in [10]. Using similar hardware, given that the

average processing time of all alerts in RACC is 1.57

seconds versus 2.56 seconds of [10], it can be said

that our method is about 40 percent faster. It is noted

that both methods have been applied on the alerts for

the first scenario of DARPA2000.

Figure 14 and Figure 15 are the results of

experiments with a newer hardware. The new

hardware had main memory of 8 GB. The processing

speed of each CPU thread is 3.6 GHz. The obvious

thing about these experiments is the reduced CPU

times for the same data. This is obtained from CPU

processing power. Another notable item is the impact

of the number of typical hyper alerts. As mentioned,

0

10000

20000

30000

40000

50000

60000

70000

2
5

1
2

5

2
2

5

3
2

5

4
2

5

5
2

5

6
2

5

7
2

5

8
2

5

9
2

5

1
0

2
5

1
1

2
5

1
2

2
5

C
P

U
 T

im
e

(m
ic

ro
 s

ec
o

n
d

s)

 alerts number

RACC [12]

0

50000

100000

150000

200000

250000

300000

2
5

1
2

5

2
2

5

3
2

5

4
2

5

5
2

5

6
2

5

7
2

5

8
2

5

9
2

5

1
0

2
5

1
1

2
5

1
2

2
5

C
P

U
 T

im
e

(m
ic

ro
 s

ec
o

n
d

s)

mumber of alerts

RACC [12]

0

10000

20000

30000

40000

50000

60000

70000

2
5

1
2

5

2
2

5

3
2

5

4
2

5

5
2

5

6
2

5

7
2

5

8
2

5

9
2

5

1
0

2
5

1
1

2
5

1
2

2
5

C
P

U
 t

im
e

(n
an

o
 s

ec
o

n
d

s)

number of alerts

RACC [13]

0

50000

100000

150000

200000

250000

300000

2
5

1
2

5

2
2

5

3
2

5

4
2

5

5
2

5

6
2

5

7
2

5

8
2

5

9
2

5

1
0

2
5

1
1

2
5

1
2

2
5C

P
U

 t
im

e
(n

an
o

 s
ec

o
n

d
s)

number of alerts

Max

RACC [13]

14

14

there are 30 typical alerts in RealSecure, with

respective 45 possible scenarios. Considerable

difference in CPU time for processing first scenario

of DARPA2000 using RealSecure versus SNORT

can be seen. This is affected by the fact that there are

3000 typical alerts and more than 600 possible attack

scenarios in the second knowledge base of SNORT.

 In addition, for the first scenario of

DARPA2000, there is a significant difference

between the processing time for (eth2) alerts from

TH dataset, as compared to SNORT alerts. This is

depicted in Figure 14 and Figure 15. Considering that

the knowledge base is the same for both experiments,

the only affecting difference is the order in which the

alerts appear.

Figure 14 :Evaluating the average processing time of the

proposed method on three alert sets using an up to date hardware

Figure 15 : Evaluating the maximum processing time of the

proposed method on three alert sets using an up to date hardware

To further investigate the on-line performance of

the proposed method, we also compared the required

CPU time for the RACC with [12], [13] and [16].

Aforementioned methods were discussed in 3.2.

These methods have reported CPU time to process

the alerts in episodes of length 30, 60, 90 and 120

minutes. To compare with RACC, we followed the

experiments performed by Ramki et al. [12].

Episodes of mentioned lengths were created on

RealSecure alerts for the first scenario of

DARPA2000. In these episodes, the processing time

of alerts was calculated on the similar hardware. The

result of the experiments are shown in Figure 16. As

it is clear, the proposed method can process the alerts

and correlate scenarios, in significantly less time than

the methods presented in [12], [13] and [16]. The

results in Figure 16 are calculated using similar

hardware under same evaluation conditions.

Figure 16: Comparison of CPU time with similar hardware
in processing Realsecure alerts for the first scenario of

DARPA2000 between RACC and [12], [13] and [16], acquired

from [12]

In this section, validity, memory efficiency and

execution performance of RACC was examined in

terms of CPU time. These measures were examined

on the alerts generated by 2 famous IDSs on 3

different set of data to prove online functionality of

the method. Moreover, the speed of RACC was

0

5000

10000

15000

0 150 300 450 600 750 900 10501200C
p

u
 t

im
e

(n
an

o
 s

ec
o

n
d

s)

number of input alerts

SNORT alerts for traffic on eth2 of TH dataset

SNORT alerts for 1st scenario of DARPA 2000

RealSecure alerts for 1st scenario of DARPA 2000

0

10000

20000

30000

40000

50000

0 150 300 450 600 750 900 10501200
C

p
u

 t
im

e
(n

an
o

 s
ec

o
n

d
s)

number of input alerts

SNORT alerts for traffic on eth2 of TH dataset

SNORT alerts for 1st scenario of DARPA 2000

RealSecure alerts for 1st scenario of DARPA 2000

100

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

30 60 90 120C
P

U
 T

im
e(

n
an

o
 s

ec
n

o
d

s)

Episode window length (minutes)

[10] [11] [14] RACC

15

15

compared with 6 online methods. In the following,

we will discuss supplementary notes about the

proposed method.

 5-4 Supplementary topics
Similar to other prerequisite/consequence based

methods, RACC obtains its scenarios from an

external knowledge base of causal relationships.

Therefore, as with other prerequisite/consequence

based methods, the accuracy of the proposed method

is heavily dependent on the accuracy of the

knowledge base in hand. Moreover, redundant

communications between the alerts, might result in

increasing both number of scenarios and their

average length. This will cause direct impact on the

runtime speed and the resources required.

Another issue for alert correlation is to predict the

next steps in the scenario. Obviously, using the

proposed matrix, with a quick review on a column,

the next step of a scenario in progress is obtained.

The prediction can be done simultaneously with the

current alert processing. The output is a desired

feedback to the intrusion detection system.

On the other hand, in the most

prerequisite/consequent based correlation methods,

such as correlation graphs, missing alerts prevent

inducting the chain of causal relationships. This

totally results in graph traversal abortion. This is

equal to stopping of alert correlation process in

certain graph paths. A quick review of the

corresponding column of a scenario remedies the

problem in RACC.

This study neglects alert correlation effect in false

positive reduction. Each column of a code-book with

just one non-zero value, generates a meta-alert.

Considering the fact that the scenarios with bigger

portion of carried out steps, are more likely to

represent a dishonest purpose, by imposing

thresholds on the number of steps, it is possible to

reduce final meta-alerts. This can be done by

disregarding sparse columns.

After reviewing these notes, the next section will

summarize and conclude the research.

6- Conclusion

In this article, a new alert correlation model was

proposed. The model is based on some matrices

which we called them code-books. Each code-book

in RACC corresponds to an attack scenario. The

columns of this matrix represent scenario progress on

a particular host. Quick access to the matrix elements

was accomplished by creating an index based on

Red-Black trees. The algorithm has two phases. In

the offline phase, it extracts the scenarios from a

knowledge base and creates the mentioned

codebooks and the corresponding Red-Black indexes.

In the online phase, when an alert comes, it accesses

the codebooks via a search in the Red-Black tree and

does the correlation via matrix operations. We stated

how this search and the matrix operations are not

related to the number of security incidents and will

appear as constant values in the online phase. So the

correlation can be done in linear order of ()
concerning the number of alerts. Common IDSs like

snort perform at the same computational order for the

number of packets. So in theory, for the IDSs that

perform online at the computational order of (),
RACC can be integrated with it to perform an online

alert correlation. Experiments have shown

considerable performance increases and less resource

consumption against other real-time alert correlation

methods.

As discussed in 5-4, the effectiveness of RACC

is highly dependent on the identification and building

of appropriate models and scenarios. In this article,

scenarios were extracted from existing knowledge

bases and the method tries in reducing the lag time

for alert correlation and resources required to do so.

Utilizing machine learning techniques to extract

scenarios can extend the method and decrease the

costs while improving the accuracy.

7- References

[

1]
P. Farina, E. Cambiaso, G. Papaleo and M.

Aiello, "Mobile Botnets Development: Issues and

Solutions," International Journal of Future

Computer and Communication, vol. 3, no. 6, pp.

385-390, 2014.

[

2]

I. Vaccari, E. Cambiaso and M. Aiello,

"Remotely Exploiting AT Command Attacks on

ZigBee Networks," Security and Communication

Networks, 2017.

[

3]

R. Bace and P. Mell, "Intrusion detections

systems," National Institute of Standards and

Technology, 2001.

[

4]

K. Julisch and M. Dacier, "Mining intrusion

detection alarms for actionable knowledge," in

Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery

and data mining, New York, NY, USA, 2002.

[

5]

e. a. Saeed Salah, "A model-based survey of

alert correlation techniques," Computer Networks,

vol. 57, no. 5, pp. 1289-1317, 2013.

16

16

[

6]

S. Kliger, S. Yemini, D. Ohsie and S. Stolfo,

"A Coding Approach to Event Correlation," in

FIP — The International Federation for

Information Processing, 1996.

[

7]

K. S. A. Valdes, "Probabilistic Alert

Correlation," in Proceedings of the 4th

International Symposium on Recent Advances in

Intrusion Detection, London, 2001.

[

8]

T. A. Alhaj, M. M. Siraj, A. Zainal, H. T.

Elshoush and F. Elhaj, "Feature selection using

information gain for improved structural-based

alert correlation," PloS one, vol. 11, no. 11, p.

e0166017, 2016.

[

9]

F. Faraji Daneshgar and M. Abbaspour,

"Extracting fuzzy attack patterns using an online

fuzzy adaptive alert correlation framework,"

Security and Communication Networks, vol. 9, no.

14, pp. 2245-2260, 2016.

[

10

]

H. H. W. Hua, M. M. Siraj and M. M. Din,

"Integration of PSO and K-Means Clustering

Algorithm for Structural-Based Alert Correlation

Model," International Journal of Innovative

Computing, vol. 7, no. 2, 2017.

[

11

]

S. Roschke, F. Cheng and C. Meinel, "A new

alert correlation algorithm based on attack graph,"

in Proceedings of the 4th international conference

on Computational intelligence in security for

information systems, Berlin, Heidelberg, 2011.

[

12

]

A. A. Ramaki, M. Amini and R. E. Atani,

"RTECA: Real time episode correlation algorithm

for multi-step attack scenarios detection,"

computers & security, vol. 49, pp. 206-219, 2015.

[

13

]

M. Soleimani and A. A. Ghorbani, "Multi-

layer episode filtering for the multi-step attack

detection," Computer Communications, vol. 35,

no. 11, pp. 1368-1379, 2012.

[

14

]

Z. Zali, H. Saeedi and M. Hashemin, "Real-

Time Attack Scenario Detection via Intrusion

Detection Alert Correlation," in 2012 9th

International ISC Conference on Information

Security and Cryptology, Tabriz, 2012.

[

15

]

Z. Jing, L. Xiaopeng and W. Hengjun, "Real-

time alert correlation approach based on attack

planning graph," Journal of Computer

Applications, vol. 36, no. 6, pp. 1538-1543, 2016.

[

16

H. Farhadi, M. AmirHaeri and M. Khansari,

"Alert Correlation and Prediction Using Data

Mining and HMM," The ISC International

] Journal of Information Security, vol. 3, no. 2, pp.

77-101, 2011.

[

17

]

M. Steinder and A. Sethi, "Probabilistic fault

localization in communication systems using

belief networks," IEEE/ACM Transactions on

Networking, vol. 12, no. 5, pp. 809-822, 2004.

[

18

]

B. Zhu and A. Ghorbani, "Alert correlation for

extracting attack strategies," International Journal

of Network Security, vol. 3, p. 244–258., 2006.

[

19

]

L. Liu, K. Zheng and Y. Yang, "An Intrusion

Alert Correlation Approach Based on Finite

Automata," in 2010 International Conference on

Communications and Intelligence Information

Security (ICCIIS), 2010.

[

20

]

T. . H. Cormen, C. . E. Leiserson, R. Rivest

and C. Stein, Introduction to Algorithms.

[

21

]

[Online]. Available: https://www.snort.org/.

[

22

]

[Online]. Available:

https://www.ibm.com/services/us/iss/pdf/realsecur

e_server_sensor_datasheet.pdf.

[

23

]

[Online]. Available:

http://discovery.csc.ncsu.edu/Projects/AlertCorrel

ation/index.html.

[

24

]

[Online]. Available:

https://www.ll.mit.edu/ideval/data/2000data.html.

[

25

]

D. Xu and P. Ning, "Alert Correlation

Through Triggering Events and Common

Resources," in 20th Annual Computer Security

Applications Conference, 2004.

[

26

]

A. Co, "ASPA Co dataset for IDS alert

correlation," ASPA Co, 2019. [Online].

Available:

https://aspaco.org/resource/research/ids/alarm-

correlation/Datasets.zip.

17

17

Ehsan Mahdavi is
a Ph.D. candidate
with Isfahan
University of
technology. He
received his B.S. and
M.S. degrees in
computer science
from Shahid
Beheshti University,
Tehran, Iran. He
then returned back
to his hometown
Isfahan and pursuit
Ph.D. study in the
field of network
security with
Isfahan University
of Technology
which is ongoing
now.

Ali Fanian
received the B.S.,
M.S. and Ph.D.
degrees in computer
engineering in 1999,
2001 and 2011,
respectively from
Isfahan University of
Technology, Isfahan,
Iran. He started his
work in the same
department as an
assistant professor
from that time.
Different aspects of
computer
architecture and
net- work security
are his research
interests; specially,
ad-hoc networks,
wireless network
security and
hardware design.

Fatima Amini

received her B.S. in
computer
engineering from
the department of
electrical and
computer
Engineering,
Islamic Azad
University,
Mobarakeh branch.
She continued her
study in intrusion
detection system
alert correlation and
received her M.S.
degrees at
Department of
Electrical and
Computer
Engineering,
Islamic Azad
University,
Najafabad branch,
Iran.

18

18

Declaration of interests

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

