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1-  Abstract 
Alert Correlation is the process of analyzing alerts to reduce their number, eliminate false positives, detect the 

scenarios behind them and generate a higher perspective of the incidents. Making this process online will upgrade 

the classic role of alert correlation from being a post-process step to a key part of intrusion detection systems. In this 

article, we propose a novel two-phase model called a Real-time Alert Correlation method based on Code-books 

(RACC) for intrusion detection systems. First, in the offline phase, RACC pre-processes a knowledge base to 

propose some matrices as the main data structure of the method that we call them code-books. Instead of keeping 

alerts in the memory, those matrices just hold keys to the corresponding meta-alerts. An index that is based upon 

red-black trees is used to access matrix elements. Generating the matrices and mentioned index are independent 

from the alerts, so utilizing them can facilitate the alert correlation process in an online manner in phase two of the 

proposed model. The experiments show that compared to similar methods, RACC can significantly reduce the alert 

correlation time and can enable real-time alert correlation. 

Keywords: Network Security, Intrusion Detection Systems, Alert, Online alert correlation, Attack Scenario, Causal 

relationships, Code-books.  
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2-  Introduction 
As the Internet and computer network usage 

grows, security threats become more frequent. 

Appearance of modern technologies like mobile or 

Internet of Thing (IoT) and their issues which are 

studied in literatures like [1] and [2], affects cyber-

threat landscape. As cyber-attacks evolve, it is 

important to evolve protection systems as well. 

Intrusion Detection System (IDS) is one of the 

most important tools to prevent intrusion into 

computer networks. In literature, any activity to 

undermine the confidentiality, integrity, accessibility, 

or attempting to circumvent security mechanisms of a 

computer network is called intrusion [3]. In 

contrast, intrusion detection is the process of 

monitoring the incidents in a computer system or 

network and analyzing them to find the signs of an 

intrusion. Any software or hardware system or 

combination of both of them which is responsible to 

detect intrusions, is known as intrusion detection 

system. 

As a negative side effect, huge volume of raw 

alerts generated by intrusion detection systems, 

confuses security managers. It is proven that a large 

amount of those alerts are commonly incorrect [4]. 

To overcome this problem, alert correlation 

techniques are usually employed. Alert correlation 

tries to provide a higher level view of security 

incidents by aggregating and combining alerts into a 

denser and more valuable form. This view can reveal 

attack scenarios and attacker’s intentions. In other 

words, by extracting useful information from the 

huge volume of generated alerts, the alert correlation 

can be a supplement to intrusion detection systems. 

In most researches, during the alert correlation, raw 

alerts are changed into some other forms of alerts that 

are usually called meta-alert or hyper alert. These 

alerts are usually a denser form of the original alerts 

that might point to a collection of alerts, a simplified 

form of alerts or an aggregation of them. The output 

of the process might be a set of these intra process 

hyper alerts or undergo more changes. 

As mentioned, the key purpose of alert correlation 

is to create a higher level view of attacker’s 

intentions and how they are achieved. As most alert 

correlation methods reduce the volume of the alerts, 

this can be considered as a main by-product of this 

process. In a general taxonomy given in [5], three 

important strategies including similarity, sequential 

and case based approaches are proposed to correlate 

the alerts. 

Real-time alert correlation has not been focus for 

most of the researches in this field. A brief search in 

online scientific index engines would clarify that 

real-time alert correlation was discussed in less than 

50% of the literature. Therefore, in this article, using 

the causal relationships between the alerts, we create 

some code-book matrices in order to detect the attack 

scenarios. The code-books were inspired from 

network management systems (NMS) techniques [6]. 

In those matrices, the rows represent the possible 

problems in the network and the columns represent a 

sign of a problem. The use of matrix for alert 

correlation and a Red-Black tree to achieve the 

indices of those matrices, boosts the method speed. 

This enables the proposed method as called RACC to 

be used in online applications. Simulations show that 

used resources for the method makes it suitable for 

online correlation of the alerts. 

In the following a review of previous works and a 

general taxonomy of existing methods is presented. 

Section 4 describes the RACC method. 

Implementation results in section 5 shows that the 

proposed method can be used for online alert 

correlation purposes. Finally, section 6 will conclude 

the research.   

3-  Related work  
As discussed in the previous section, IDS alert 

correlation methods employ three major strategies. In 

this section, we review the relevant researches from 

these categories.  

 3-1  Similarity based methods 
These methods usually try to reduce the total 

number of similar alerts through clustering and 

aggregation.  

Valdes and Skinner [7] have proposed a 

probabilistic approach that can combine alerts from 

multiple sensors. This method uses a mathematical 

framework to estimate the minimum requirement to 

specify the similarity between the alerts. The basis of 

this approach is to define a particular similarity 

measurement function for each characteristic type. 

Since the values in an alert may take a range of 

values, the similarity measurement function must be 

able to determine how the corresponding values of a 

characteristic overlap for different alerts. Using such 

calculations, alerts with high similarity scores are 

considered to be correlated.     

To correlate the alerts while identifying steps of 

attacks, a two-tier feature selection method has been 

presented in [8]. This method tries to select the 

appropriate features of the alerts. In the first layer, 

features are sorted in descending order with respect 

to their information gain. Then a subset of them with 

most scores form the early candidates. In the second 
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layer, features that have a better separation capability 

than the earlier ranked features are added. This 

feature selection tries to detect scenario. 

Daneshgar et al. [9] have proposed a model that 

consists of an online as well as an offline module. 

The online module clusters the alerts according to 

their similarities to some fuzzy patterns. In the offline 

module, a statistical analysis is performed based on 

statistical characteristics. The output of the offline 

module is considered as input to the online module 

and the iterative fuzzy patterns are extracted. The 

presence of these two modules contribute to the 

accuracy of the proposed method. It can be 

considered as an online method which extracts the 

scenario of complex attacks. 

The method in [10] uses the integration of 

Particle Swarm Optimization (PSO) and k-means to 

correlate the alerts. In order to balance the dataset, 

the nominal features are converted and scaled before 

clustering. Also the numerical features are scaled to 

the range of [-1, 1]. The method uses PCA to reduce 

the features describing the alerts. After all, it 

integrates PSO and k-means clustering to aggregate 

the alerts. 

As can be seen in this section, similarity based 

methods for alert correlation are a subset of general 

methods including probabilistic solutions, statistical 

methods and even machine learning methods which 

are vastly used in different areas of computer science. 

They are adapted to solve the correlation problems. 

Their general nature makes them suitable to be 

adjusted for solving different network security 

problems like detecting last generation attacks [11] 

from raw network traffic. 

Despite the low complexity, the methods in this 

category have proven their efficiency for reducing the 

alerts. Inability to find the causal relationships 

between the alerts and the origin of the problems is 

the main weakness of these methods. Finding causal 

relationship of alerts with shared origin, can play an 

important role in identifying the motives and effects 

of different attacks.   

 3-2  Sequential based methods 
Special interest on causal relationships between 

the alerts is the most important characteristic of such 

methods. The prerequisites of incidents as well as 

their possible consequences are presented in these 

approaches by different means. 

Causal graphs are widely used to model those 

relations. In such methods, relations between the 

alerts are commonly represented using Directed 

Acyclic Graphs (DAG). Each node in a DAG 

represents an alert or meta-alert. Each connecting 

edge, presents a relationship between those nodes. 

Roschke et al. [11] have used Floyd-Warshall 

algorithm to find shortest paths in the attack graph. 

This made it possible to detect different attack 

scenarios. Each node of their graph represents a step 

in a scenario and is equivalent to an alert. Every 

attack step requires occurrence of one or more 

previous steps. Input edges represent those 

prerequisites. On the other hand, output edges are 

connected to incidents that need this step as their 

prerequisite to occur. 

In [12], a method is proposed to correlate the 

alerts for Early Warning systems (EWS). It consists 

of an online as well as an offline phase. In the offline 

phase, the alerts are first aggregated together based 

on their similarity. This aggregation creates some 

hyper alerts. Then, the hyper alerts are categorized 

into episodes with a specific maximum length. 

Afterwards, the frequent critical and benign episodes 

are extracted. Critical episodes are used to create the 

attacks tree. This tree is a model of the attacker 

behavior. Benign episodes might be used to identify 

new attacks. By this means, multi-step attack 

scenarios are recognizable. Considering the models 

generated in the previous (offline) phase, online 

phase generates trees locating current alerts. Another 

data structure in this method is a matrix called CCM
1
. 

Each element in CCM determines the correlation 

strength. 

Soleimani et al. [13]  have presented a multi-layer 

framework. It reduces the search load among large 

number of alerts to explore the attack scenarios. The 

method first aggregates the alerts based on their 

similarity. An episode mining algorithm is then used 

to explore possible combinations of alerts. The 

episode miner, creates episodes with various lengths 

using aggregated alerts. Similar to [12], their work is 

based upon critical episode concept. They also utilize 

decision-trees to determine multi-step attacks. 

 In a study by Zali et al., causal relation graph 

(CRG) is proposed. In CRG two types of vertices are 

defined. Condition vertices and alert signature 

vertices[14]. For each vertex in CRG, Forward Queue 

and Backward Queue Trees are extracted. CRG is 

likely to be a template and correlation results are 

stored by locating alerts in instantiated graphs and 

corresponding trees. Thus, in this method for each 

typical alert, there are two trees, a signature node and 

a condition vertex which stores alert details. All this 

information is stored in the main memory. 

                                                           
1
 Causal Correlation Matrix 
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Additionally, for each incoming alert, a backward 

search is carried out. It might require significant 

processing or the search range should be limited. 

With the goal of processing a large amount of 

alerts, a real-time alert correlation approach is 

presented in [15] which adopts [14]. The approach is 

based on the Attack Planning Graph (APG). In order 

to generate an attack scenario, the APG model is 

created based on the prior knowledge of the attacks. 

APG is a directed acyclic graph that contains the 

causal relationship between attacks. According to the 

generated graph, the alerts can be analyzed. APG 

includes a set of ST and AT nodes. The ST nodes 

indicate the attributes or states and the AT nodes 

specify the attack types. To correlate the alerts, BFS 

and backward BFS are applied on the APG. These 

searches create two trees (Forward Queue and 

Backward Queue Trees) for each APG node. In this 

approach, the attack maps and planning trees are 

constructed by correlating the similar alerts in offline 

phase. Duplicate alerts will be reduced significantly 

in this phase. Based on the opinion of authors of this 

paper, the method presented in [14] cannot correlate 

some kinds of similar alerts and the storage overhead 

is high. These drawbacks of [14] motivated them to 

propose improvements.  

In [16], Normalizing and reducing the alerts 

volume is the first course of action. This step tries to 

keep important alerts features. Afterwards, the alerts 

are processed within certain window length. In each 

window, the most frequent sequences of alerts are 

determined. Then a causal correlated matrix (CCM) 

rules the sequences to be correlated together. The 

correlated alerts are listed in table called CFSP
1
. 

Every time a number of alerts form a window, the 

most frequent sequences are obtained. Then, larger 

CFSPs are extracted based on the values of current 

CFSP table and the existing relationships in the CCM 

matrix. The CCM matrix is also updated based on the 

frequent sequences of each window and some rules 

are established. To be more accurate, after processing 

the alerts, the attacks and future behaviors of the 

attacker are predictable based on a learned hidden 

Markov model.    

Kliger et al. [6] have presented a method using 

code-books to correlate alerts in network 

management systems (NMS). The method’s salience 

is to perform well while tolerating high volumes of 

false positives particularly for the cases when the 

alert loss is high. To do so, the authors have reduced 

the code-book size and tried to consider a subset of 

                                                           
1
 Correlated Frequent Sequential Pattern 

signs that can distinguish the issues. They have 

used two types of measures. The first one is the 

Hamming distance which is used for deterministic 

alert correlation when the matrix elements are equal 

to zero or one. The other measure employs a 

probabilistic method in which the code-book matrix 

contains weight coefficients in the interval of [0, 1]. 

Each of weights indicates the probability of a 

relationship between a specific sign and the 

investigated incident. 

Steinder and Sethi [17] have employed Bayesian 

methods on network errors. Their system effectively 

solves the issues of false positive alerts and corrupted 

or lost alerts. They used two Bayesian inference 

algorithms to distinguish between different errors. 

  Zhu et al. [18]  have used the combination of a 

multi-layer neural network (MLP), a support vector 

machine (SVM) and a knowledge representation 

scheme called Alert Correlation Matrix (ACM). It 

should be noted that ACM shows the correlation 

strength. 

In sequential based methods, no matter how much 

the scenarios follow, the steps usually link to each 

other in a chain. This provides scalability of these 

methods. Moreover, comparing the prerequisite of an 

incident with the consequence of the preceding 

incidents indicates the causal relations appropriately. 

At a more abstract level, sequential based methods 

can identify new scenarios. For this purpose, it is 

enough to ignore the incidents and derive possible 

scenarios using the prerequisites and consequences. 

Usually, the results of these types of alert correlation 

methods are easily understandable and they directly 

express the possible scenarios of attack. However, 

defining poor logical relations or using IDSs with 

low quality alerts may result in wrong correlation 

scenarios.  

 3-3  Case based methods 
These methods commonly rely on the existence of 

a knowledge base system to provide them with 

appropriate scenarios. 

Liu et al. [19]  have proposed an alert correlation 

system based on finite automata. This method 

investigates the scenarios in three types of high-level 

views. However, to process critical scenarios, an 

NFA is used to reconstruct the scenarios between an 

attacker and a target. 

  Case based methods are very efficient to 

correlate the known scenarios, but the creation of a 

database of all feasible scenarios is almost 

impossible. So the concern about unknown scenarios 

always exists. On the other hand, expanding the set of 
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scenarios will increase the search cost and this 

challenges these methods for online utilization.  

4-  Proposed method 
Sequential methods particularly try to model 

cause/effect relationships between incidents. This 

becomes prominent for prerequisite/consequence 

based subcategory. An ideal situation for such 

methods is to be able to predict next moves of 

malicious users by analyzing current incidents. This 

brings ability to embed suitable reactions into 

systems. The goal is not met unless such analyses can 

be done in real time. In this paper, we propose a new 

online method to provide such advantage for 

prerequisite/consequence based methods. Figure 1 

shows the overall schema of the proposed method 

RACC. In the next sub-sections, we will describe the 

method in more detail. 

 4-1   Description of the proposed RACC model  
In this section, we describe the proposed method 

in detail. Our main concern for the proposed method 

is to provide alert correlation online. Considering the 

ability of sequential based methods to express attack 

scenarios, the proposed method tries to create a real-

time prerequisite/consequence based method. To do 

so, we first extract possible scenarios from a 

prerequisite/consequence knowledge base. This 

process is performed offline and the results will be 

placed in a specific data structure. The data structure 

should be designed properly to be used quickly. In 

RACC, it is composed of a collection of matrices. In 

more definite terms, there will be a matrix for every 

scenario extracted from the prerequisite/consequence 

relationships. A Red-Black tree is also used as a map 

to ease and speed up access to those matrices and 

specific indices. Additionally, instead of keeping all 

the alerts and meta-alerts in the main memory, this 

method only keeps the indices for them in the main 

memory. This will effectively reduce required 

memory. Once the indices were created in the offline 

phase, the alert correlation can be performed online 

in real time. 

As mentioned earlier, the main data structure in 

the proposed model consists of a number of code-

book matrices. Section 3-2 cited such matrices which 

were used for alert correlation in the network 

management systems (NMS). The code-books in 

those systems are constructed with possible problems 

in a network on the matrix rows and the signs of 

different problems appear as the matrix columns. In a 

given matrix, an element with the value of 1 

represents the occurrence of a sign for a problem and 

indicates a cause/effect relationship between them. 

Then, to correlate the various alerts, usually a 

distance criterion between the matrix rows is used. 

This criterion can determine how much a problem is 

in relation with other problems for the same network. 

0- start

13- end

1- Choosing the desired knowledge 

base

2-Extraction of existing scenarios and 

creation of Red_Black index

No 3- Is there any alert?

4- Alert entrance

5- Finding the corresponding vector on 

the Red-Black index

6- Achieving the desired matrix

7- Has the host already 

been seen in this scenario?

8- Adding column to matrix

9- Achieving the desired index

10- Is the element zero?

11- A unique index for new hyper alert is selected 

and registered.

12- Current alert correlates 

with the corresponding 

hyper alert.

Yes

No

Yes

Yes

No

 

Figure 1: Overview of the proposed RACC 

method 

To the best of our knowledge, code-books have 

not been used for alerts correlation in the intrusion 

detection systems. So we declare the code-book as a 

type of matrix which we propose to correlate the 

alerts in the intrusion detection systems.  

4-1-1  Proposed code-book  

The Mx matrix as a code-book in the proposed 

method, is a matrix that maps occurrence of different 

steps from a multi-step scenario (the scenario x
th

) to 

different systems protected by the IDS. To do so, 
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each matrix row should represent a step of the 

intended scenario and the matrix columns represent a 

protected system. For instance, matrix (1) shows such 

a matrix for an attack scenario that consists of four 

steps.   

Therefore, the value of 1 on the ith row and jth 

column of the matrix, shows the step i from the 

scenario x is occurred on the system j (   ). 

Obviously on a column, one or more 0 valued 

elements between two elements with a value of 1, 

indicates that the corresponding alerts are somehow 

lost. This could be due to IDS weaknesses or a clever 

attacker has hidden his moves by omitting some of 

them. However, in this method, the meta-alerts are 

obtained by aggregating the alerts associated with 

elements with a value of 1 on same column. Hence 

such meta-alerts highlight three key concepts. Which 

steps of which scenario occurred on which host so 

far. For a progressing scenario, a quick glance on the 

entries of a column of the proposed matrix, can 

reveal next possible steps. This can be done 

simultaneously with the current alert processing. The 

output can be presented as feedback to the intrusion 

detection system. 

To distinguish relationship between the alerts and 

corresponding meta-alerts, it suffices to store an 

integer instead of a bit as matrix elements. In this 

case, the value of each element is either zero (which 

mean the corresponding step has not reported on a 

host) or a unique index for the corresponding meta-

alert. This index can reveal the index in a relational 

database or is considered to be unique file name. So 

in the proposed method, each column indicates the 

execution of different steps of a scenario on a 

particular host. The corresponding alerts will be 

correlated as a meta-alert. Thus, each scenario on 

each host is specified with a unique index. These 

indices are the main information required to correlate 

the alerts. Consequently, by having them in the main 

memory, RACC doesn’t keep the alerts and meta-

alerts in the main memory. This results in a 

significant reduction of required memory. Utilizing 

this mechanism, if there is a specific attack in 

different matrices, it means that the attack exists in 

several scenarios. As with the most alert correlation 

methods, there is a meta-alert for each scenario, but 

only the corresponding index will be stored in the 

proper matrix.  

 

Figure 2: Accessing and modifying of code-books 

when an alert occurs 

4-1-2  Details of the proposed model 

As stated before, there is a matrix for every 

scenario and a typical alert might be used in multiple 

matrices (scenarios). To be suitable for real-time 

applications, RACC must provide quick access to 

locations that refer to typical alert. In more definite 

terms, all row indices corresponding a typical alert. 

For this purpose, a recursive program, pre-processes 

the prerequisite/consequence knowledge base. It 

explores existing prerequisite/consequence 

definitions and each extracted scenario is stored in a 

vector. The knowledge base used in this phase, 

describes the typical alerts of IDS with XML 

structure. Each XML entry contains the prerequisites 

and consequences of the intended alert. The 

(1) 
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preprocessor, also stores the vector index and the 

position of the typical alert in that vector, to another 

data structure. The vector index corresponds to each 

typical alert. The typical alert is called hyper alert in 

the literature. 

Another challenge is to find these indices. To do 

so, a Red-Black tree is used. The red-black trees are 

suitable as search trees. They ensure there is no path 

which is larger than any other route by more than two 

steps [20]. Therefore, these trees are almost balanced 

and their search complexity reveals maximum order 

of      . The key index in this scenario is a Red-

Black tree. Each node points to a vector of ordered 

pairs (vector index, index in the vector). This pair 

reveals (the matrix corresponding to a scenario, index 

of the matrix corresponding to the scenario step). It is 

notable that the hyper alert text is the key to sort the 

Red-Black tree.   

Following is the explanation of working of 

RACC. For each input alert, RACC retrieves vector 

of the corresponding element from the mentioned red 

black tree. The vector, points to the intended element 

in the code-book matrix. Supposing the case that 

there are n types of different alerts in data set, the 

Red-Black tree search will be carried out in the order 

of       . In this phase, according to the limited 

number of scenarios, the search in the corresponding 

vector is done at constant time. Assuming there are r 

scenarios in the knowledge base and each one has 

maximum m steps, the search will be done in the 

order of (   ) . Evaluating or modifying the 

intended element is also a constant process and can 

be performed in the order of  ( )  Therefore, the 

entire process can be performed in order of 

 (     )   (   )   ( ). 

It should be noted that all these values are 

constant; they are not related to the number of 

security incidents and corresponding alerts in the 

execution time. So, these values appear as a constant 

factor to correlate each alert and the general order of 

alert correlation is linear with respect to the number 

of alerts. 

 When an alert in reported on a target host, the red 

black tree guides to the codebook and corresponding 

row. If there is a column in the matrix corresponding 

to that host, this column's elements are checked. If 

they are all zero, it means that no step of the 

corresponding scenario has been reported on the host. 

Therefore, it is necessary to create a meta-alert and a 

unique index as the corresponding element in the 

code-book. The unique incident number can also be 

stored as a link between meta-alert and current alert 

in a relational database or corresponding files. If a 

non-zero value is found on the column, then the 

corresponding meta-alert is already generated and its 

index should be used directly for the current element. 

For memory optimization purpose, the columns 

might be dynamically added to the code-books. In 

this case, if there is no column corresponding to the 

intended host, then a column should be added to the 

matrix when an alert is reported in a particular 

scenario. 

Figure 2 shows how to use the Red-Black index 

and the code-books at the point of an alert entrance of 

type FTPPut. In this example, this type of alert exists 

in scenarios Sce1 and Sce2. A search in the Red-

Black tree yields these scenarios (code-books). The 

corresponding vector and the matrices (via this 

vector) are consequently available. For example, 

suppose the mentioned alert is reported on host F. 

Part a shows that the previous step (Email Almail 

Overflow) has occurred for the same host in the first 

scenario and the corresponding meta-alert key is 93. 

So in part b this key is considered for the 

corresponding row. There is no alert in part A for the 

Sce2 scenario. Therefor a column for the host F will 

be added into the matrix and meta-alert number, for 

example, is considered to be 150.  

So far, the proposed method has been described in 

details. The use of code-book and the Red-Black 

index will result in dramatic speed of alert correlation 

in the online phase. To verify the validity of our 

claim, we will evaluate the proposed method in 

Section 5.   

5-   Evaluation of the proposed method 
As mentioned earlier, the main goal of the 

proposed method is online enforcement capability. 

To increase speed, the main action was to use several 

matrices as well as a Red-Black index. The proposed 

components are also designed to make the least use 

of resources like main memory. To investigate the 

feasibility of online application, in this section we 

examine implementation results of the method. In the 

following, we first examine the required main 

memory and then we estimate the execution speed of 

this method in terms of CPU time.  

 5-1  Required memory 
Perhaps the first concern about the proposed 

method is the vast memory consumption. With an 

analysis based on a pessimistic practical experience, 

it will be specified that this concern does not hold. 

Suppose that a large network with 1000 protected 

hosts has been selected to use the RACC method. For 

10000 scenarios where the average length of each 

scenario is 20 steps, we will need 10000 matrices of 

size (       ). It is notable that this is a strict 

mode. Because each element of the matrix occupies 
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only 1 bit of memory space, we need           
   bits. So only 25 MB of memory space will be 

occupied. Even using the integer numbers as indices 

of meta-alerts, the required memory space will not 

exceed 800 MB. Typical personal computers these 

days are assembled with 8 to 16 GB of main memory. 

Thus the required memory space is likely to occupy 5 

to 10 percent of the main memory and the proposed 

matrix operation can be executed very quickly. In 

addition, the columns of the matrices can 

dynamically be added to the data structure. That is, if 

one of the alerts related to one step from a scenario is 

seen on a new host, a column is added to the 

corresponding matrix. So in real applications, the 

required main memory will stay below 10% for 

RACC. 

 5-2  Implementation method and datasets 
The proposed method has been implemented 

using C++(11) in an Ubuntu distribution of Linux 

environment. In the pre-processing phase, the method 

requires a prerequisite/consequence knowledge base 

to extract the attack scenarios. To do so, the two 

knowledge bases corresponding to the alerts of two 

known intrusion detection systems have been used.  

The IDSs are SNORT [21] and RealSecure [22]  and 

dataset are obtained from [23]. The first knowledge 

base provides the prerequisite/consequence 

relationships between around 3000 hyper alerts in 

SNORT and the second knowledge base contains 

prerequisite/consequence relationships between 30 

different hyper alerts in RealSecure. As shown by 

Table 1, the proposed method is implemented for 

three data sets using these two knowledge bases. 

Table 1: Used datasets and databases   

Dataset Knowledge base IDS 

DARPA2000 

[24] 
[23] RealSecure 

DARPA2000 

[24] [25] SNORT 

TH [26] 

DARPA2000 dataset consists of two scenarios of 

DDoS
1
 attack. The first scenario has 5 steps and its 

final goal is to conduct a DDoS attack. Figure 3 

illustrates the steps involved in this scenario. In the 

second scenario of DARPA2000, a smarter attack 

scenario has been carried out. In this scenario, instead 

of sending requests to all the hosts as in the first step 

of the previous scenario, requests of type HINFO are 

                                                           
1
 Distributed Denial of Service 

sent to a DNS
2
 provider. Another difference in this 

scenario is that the attacker, instead of performing all 

the attack steps from his/her machine, first penetrates 

into another machine and then uses it to perform the 

latter steps. Figure 4 indicates the steps of the attack. 

IP Sweep

Probe using Sadmind  ping  options

Breaking into Mill, Lock and pascal 

using Sadmind exploit

Installing DDoS software via telnet, 

rcp and rsh

Starting a DDoS via a telnet session 

and DDoS itself

Mill IP address: 172.16.115.20

Lock IP address: 172.16.112.10

pascal IP address: 172.16.112.50

 

Figure 3: Steps for implementing LLDOS 1.0 in 
DARPA2000 

Perform HInfo agains Mill

(which is a DNS server)

Break in Mill via exploiting sadmind 

vulnerability

Upload mstream DDoS and attack script to 

Mill using FTP

Run Mstream master on Mill and try to break 

in two more machines

Lunch Mstream DDoS against final victim via 

telnet to DDoS master machine

 

Figure 4: Steps for implementing LLDOS 2.0 in 

DARPA2000 

                                                           
2
 Domain Name Service 
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The dataset TH [26] contains alerts generated by 

Snort IDS for real traffic of a private corporation 

which is provided for this research. 

 5-3  Alert correlation results of the proposed 

RACC method  
The result of applying RACC on the SNORT 

alerts for the first scenario of DARPA2000 is the 

matrix shown in Figure 5. It depicts that the first step 

of the attack has been applied on all the hosts. The 

next two steps of the attack have been performed on 

three of those hosts. This can be seen that they are 

correlated and generated corresponding hyper alerts. 

The hyper alert index is stored in related columns of 

code-book. 

 So far the code-book mechanism only considers the 

destination address of the attack as matrix columns. 

In some scenarios like the second of DARPA, the 

victim computer(s) stay to be attack destination up to 

a certain step. From that point onward, when the host 

is exposed, the attacker exploits it and performs next 

steps with that host. From the alerts point of view, 

this means that the abused destination is the source of 

next malicious actions. However, these alerts should 

be correlated together. For example, in second 

DARPA scenario, the final step generates an alert 

with destination IP 202.77.162.213. So this address 

appears as a column in the matrix with no prior steps 

performed. The results are not suitable because 

RACC won’t correlate the last step with prior steps. 

It is possible to correct this defect by using 

information in knowledge base.  The existing 

knowledge base, outlines the argument type that 

relates each prerequisite and consequence. This can 

be reflected by considering another bit in the index 

for each hyper alert. This bit specifies if the argument 

type is destination or the source IP. Considering this 

correction, the matrix in Figure 5 can be corrected to 

the matrix in Figure 6. This can be generalized so that 

type of the columns may vary. This has been 

reflected in Figure 6 as triplet vectors. Replacing the 

mentioned bit with a byte can extend the method 

coverage to 256 types of key arguments. However, as 

can be seen in figures, the proposed matrix just keeps 

some indices of the information which are necessary 

to fast alert correlation. The code-books are compact 

enough to maintain memory efficiency while 

preserving high speed capabilities. To support these 

claims, Figure 7 illustrates the alert correlation graph 

of the method proposed in [14] for RealSecure alerts 

on the first DARPA2000 scenario and Figure 8 

shows the corresponding matrix in the RACC. As 

you can see, Figure 7 shows the overall alert 

correlation schema with no information such as what 

was the target host or in which meta-alert the 

correlated alerts were aggregated. Contrarily, RACC 

matrix contains such information at the same time, it 

provides them more compact and more efficient 

manner. Furthermore, accessing the alerts of the 

graph presented in Figure 7 and also processing them 

requires cumbersome graph traversals. This is while 

similar tasks in the corresponding RACC code-books 

are simpler and faster. As the typical number of alerts 

in knowledge base grows, such as SNORT, graph 

dimensions are subject to considerable increase in 

size so they cannot be figured in this paper. Thus 

such visual comparisons can’t be performed. The 

comparison of RACC with numerous and large 

graphs proposed in [14] and other graph based 

methods illustrates the advantages of the proposed 

method.  

Figure 8 and Figure 9 show the matrix derived from 

correlating RealSecure alerts for both DARPA2000 

scenarios. As illustrated, all the steps of attack are 

specified in the proposed matrix. 
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1230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RSERVICES rsh root 

Figure 5: Attack matrix on the SNORT alerts for the first scenario of DARPA2000 
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Figure 6 : New attack matrix on the SNORT alerts for the first scenario of DARPA2000 
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Figure 7: Proposed graph in [14] to correlate RealSecure alerts for the first scenario of DARPA2000 
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Figure 8: Attack matrix on the RealSecure alerts for the first scenario of DARPA2000 
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Figure 9: Attack matrix on the RealSecure alerts for the second scenario of DARPA2000

5-3-1  Evaluating the online performance 

After evaluating the validity of the proposed 

method, we examine the validity of the high-speed 

claim. The most important metric used to examine 

the speed of the proposed method is the CPU time to 

execute the desired operations. Research conducted 

by Zali et al [14], has the most similar goal with 

RACC. The method was proposed to make a 

prerequisite/consequence base approach online. To 

compare with [14], experiments were first performed 

on a personal computer similar to [14]. The SNORT 

knowledge base, whose prerequisite/consequence 

relationships are available, has about 3800 hyper 

alerts and 644 possible scenarios. In RealSecure case, 

there are 30 hyper alerts and 45 scenarios, 

respectively.  

Figure 10 and Figure 11 show the mean and 

maximum processing times for the proposed RACC 

method and the method in [14]. The methods have 

been applied on the SNORT alerts and its knowledge 

base for the first scenario of DARPA2000. The first 

observed difference is a significant reduction of 

processing time in the proposed RACC method. It 

should be noted that Chrono library in C++(11) 

provides the most accurate measure of CPU time in 

nano seconds. 

Observations show that the processing time in the 

method presented in [14] increases continuously. 

This is due to the queuing nature of the warnings in 

the quoted trees. In this case, for the scenarios with 

more steps, the number of alerts are increased in 

queues. This delay is cumulatively propagated to 

latter alert processing. Additionally, this alert 

queuing procedure is intensified because they should 

be replaced in graphs with new hyper alerts. Another 

factor is to add new nodes to the resulting graph of 

the mentioned method. On the other hand, there is no 

queue in RACC. The trends are uphill for processing 

scenarios with more steps, but the charts are 

immediately descending for short scenarios. 

Considering maximum CPU time in Figure 11 

depicts that the highest processing time for each 25 

consecutive alerts is about 50 microseconds, while  

[14]  is 6 times slower and processes same episode in 

about 300 microseconds.  

According to Figure 10, between arriving alert 

number 700 and 1000, RACC has progressed almost 

without any delay, but the time consumed in [14] has 

increased continuously. Checking those alerts, shows 

that they are those alerts that have not been used in 

any scenario. In this case, the RACC simply does 

nothing. But [14] performs all queuing, searching, 

traversing graphs and locating them in graphs.  

In another experiment, the proposed method and 

the method in [15] are compared with each other 

using similar hardware. Figure 12 and Figure 13 
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depict the mean and maximum processing times for 

RACC method and the method in [15]. The methods 

have been applied on the SNORT alerts using the 

knowledge base for the first scenario of 

DARPA2000. The method in [15]  can be considered 

as an extension of [14], so it shows similar behavior 

as it uses queuing, backward searches and graph 

traversals. Thus the same observation and 

explanations will hold. As is clear, RACC has a 

significant reduction in alerts processing time.   

 

 

Figure 10 : Comparison of average CPU time to process every 25 

consecutive SNORT alerts for the first scenario of DARPA2000 between 
RACC and the method in [14] with similar hardware 

 

Figure 11 :Comparison of maximum CPU time in the processing of 

every 25 consecutive SNORT alerts for the first scenario of DARPA2000 
between RACC and the method in [14] with similar hardware 

 

Figure 12 :Comparison of average CPU time to process every 25 

consecutive SNORT alerts for the first scenario of DARPA2000 between 

RACC and the method in [15] with similar hardware 

 

Figure 13 : Comparison of maximum CPU time in the processing of 

every 25 consecutive SNORT alerts for the first scenario of DARPA2000 

between RACC and the method in [15] with similar hardware 

In another evaluation in terms of processing time, 

we compared our method with the method proposed 

in  [10]. Using similar hardware, given that the 

average processing time of all alerts in RACC is 1.57 

seconds versus 2.56 seconds of  [10], it can be said 

that our method is about 40 percent faster. It is noted 

that both methods have been applied on the alerts for 

the first scenario of DARPA2000. 

Figure 14 and Figure 15 are the results of 

experiments with a newer hardware. The new 

hardware had main memory of 8 GB. The processing 

speed of each CPU thread is 3.6 GHz. The obvious 

thing about these experiments is the reduced CPU 

times for the same data. This is obtained from CPU 

processing power. Another notable item is the impact 

of the number of typical hyper alerts. As mentioned, 
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there are 30 typical alerts in RealSecure, with 

respective 45 possible scenarios. Considerable 

difference in CPU time for processing first scenario 

of DARPA2000 using RealSecure versus SNORT 

can be seen. This is affected by the fact that there are 

3000 typical alerts and more than 600 possible attack 

scenarios in the second knowledge base of SNORT. 

 In addition, for the first scenario of 

DARPA2000, there is a significant difference 

between the processing time for (eth2) alerts from 

TH dataset, as compared to SNORT alerts. This is 

depicted in Figure 14 and Figure 15. Considering that 

the knowledge base is the same for both experiments, 

the only affecting difference is the order in which the 

alerts appear.

 

Figure 14 :Evaluating the average processing time of the 

proposed method on three alert sets using an up to date hardware 

 

Figure 15 : Evaluating the maximum processing time of the 

proposed method on three alert sets using an up to date hardware 

 

To further investigate the on-line performance of 

the proposed method, we also compared the required 

CPU time for the RACC with [12], [13] and [16]. 

Aforementioned methods were discussed in 3.2. 

These methods have reported CPU time to process 

the alerts in episodes of length 30, 60, 90 and 120 

minutes. To compare with RACC, we followed the 

experiments performed by Ramki et al. [12]. 

Episodes of mentioned lengths were created on 

RealSecure alerts for the first scenario of 

DARPA2000. In these episodes, the processing time 

of alerts was calculated on the similar hardware. The 

result of the experiments are shown in Figure 16. As 

it is clear, the proposed method can process the alerts 

and correlate scenarios, in significantly less time than 

the methods presented in [12], [13] and [16]. The 

results in Figure 16 are calculated using similar 

hardware under same evaluation conditions.   

 

Figure 16: Comparison of CPU time with similar hardware 
in processing Realsecure alerts for the first scenario of 

DARPA2000 between RACC and [12], [13] and [16], acquired 

from [12] 

In this section, validity, memory efficiency and 

execution performance of RACC was examined in 

terms of CPU time. These measures were examined 

on the alerts generated by 2 famous IDSs on 3 

different set of data to prove online functionality of 

the method. Moreover, the speed of RACC was 
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compared with 6 online methods. In the following, 

we will discuss supplementary notes about the 

proposed method.  

 5-4  Supplementary topics 
Similar to other prerequisite/consequence based 

methods, RACC obtains its scenarios from an 

external knowledge base of causal relationships. 

Therefore, as with other prerequisite/consequence 

based methods, the accuracy of the proposed method 

is heavily dependent on the accuracy of the 

knowledge base in hand. Moreover, redundant 

communications between the alerts, might result in 

increasing both number of scenarios and their 

average length. This will cause direct impact on the 

runtime speed and the resources required. 

Another issue for alert correlation is to predict the 

next steps in the scenario. Obviously, using the 

proposed matrix, with a quick review on a column, 

the next step of a scenario in progress is obtained. 

The prediction can be done simultaneously with the 

current alert processing. The output is a desired 

feedback to the intrusion detection system.  

On the other hand, in the most 

prerequisite/consequent based correlation methods, 

such as correlation graphs, missing alerts prevent 

inducting the chain of causal relationships. This 

totally results in graph traversal abortion. This is 

equal to stopping of alert correlation process in 

certain graph paths. A quick review of the 

corresponding column of a scenario remedies the 

problem in RACC. 

This study neglects alert correlation effect in false 

positive reduction. Each column of a code-book with 

just one non-zero value, generates a meta-alert. 

Considering the fact that the scenarios with bigger 

portion of carried out steps, are more likely to 

represent a dishonest purpose, by imposing 

thresholds on the number of steps, it is possible to 

reduce final meta-alerts. This can be done by 

disregarding sparse columns.  

After reviewing these notes, the next section will 

summarize and conclude the research. 

6-  Conclusion  

In this article, a new alert correlation model was 

proposed. The model is based on some matrices 

which we called them code-books. Each code-book 

in RACC corresponds to an attack scenario. The 

columns of this matrix represent scenario progress on 

a particular host. Quick access to the matrix elements 

was accomplished by creating an index based on 

Red-Black trees. The algorithm has two phases. In 

the offline phase, it extracts the scenarios from a 

knowledge base and creates the mentioned 

codebooks and the corresponding Red-Black indexes. 

In the online phase, when an alert comes, it accesses 

the codebooks via a search in the Red-Black tree and 

does the correlation via matrix operations. We stated 

how this search and the matrix operations are not 

related to the number of security incidents and will 

appear as constant values in the online phase. So the 

correlation can be done in linear order of  ( ) 
concerning the number of alerts. Common IDSs like 

snort perform at the same computational order for the 

number of packets. So in theory, for the IDSs that 

perform online at the computational order of  ( ), 
RACC can be integrated with it to perform an online 

alert correlation. Experiments have shown 

considerable performance increases and less resource 

consumption against other real-time alert correlation 

methods. 

As discussed in  5-4, the effectiveness of RACC 

is highly dependent on the identification and building 

of appropriate models and scenarios. In this article, 

scenarios were extracted from existing knowledge 

bases and the method tries in reducing the lag time 

for alert correlation and resources required to do so. 

Utilizing machine learning techniques to extract 

scenarios can extend the method and decrease the 

costs while improving the accuracy. 
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