

Journal Pre-proof

Design and Implementation of Automated IoT Security Testbed

Omnia Abu Waraga , Meriem Bettayeb , Qassim Nasir ,
Manar Abu Talib

PII: S0167-4048(19)30192-0
DOI: https://doi.org/10.1016/j.cose.2019.101648
Reference: COSE 101648

To appear in: Computers & Security

Received date: 28 April 2019
Revised date: 22 September 2019
Accepted date: 12 October 2019

Please cite this article as: Omnia Abu Waraga , Meriem Bettayeb , Qassim Nasir , Manar Abu Talib ,
Design and Implementation of Automated IoT Security Testbed, Computers & Security (2019), doi:
https://doi.org/10.1016/j.cose.2019.101648

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2019.101648
https://doi.org/10.1016/j.cose.2019.101648

Article

Design and Implementation of Automated IoT

Security Testbed

Omnia Abu Waraga1, *, Meriem Bettayeb2, Qassim Nasir3 and Manar Abu Talib4

1 Department of Computer Science, University of Sharjah; u17105683@sharjah.ac.ae
2 Department of Electrical and Computer Engineering, University of Sharjah; u17105766@sharjah.ac.ae
3 Department of Electrical and Computer Engineering, University of Sharjah; nasir@sharjah.ac.ae
4 Department of Computer Science, University of Sharjah; mtalib@sharjah.ac.ae

* Correspondence: u17105683@sharjah.ac.ae

Abstract: The emergence of technology associated with the Internet of Things (IoT) is reshaping

our lives, while simultaneously raising many issues due to their low level of security, which

attackers can exploit for malicious purposes. This research paper conducts a comprehensive

analysis of previous studies on IoT device security with a focus on the various tools used to test IoT

devices and the vulnerabilities that were found. Additionally, the paper contains a survey of

IoT-based security testbeds in the research literature. In this research study, we introduce an open

source platform for identifying weaknesses in IoT networks and communications. The platform is

easily modifiable and extendible to enable the addition of new security assessment tests and

functionalities. It automates security evaluation, allowing for testing without human intervention.

The testbed reports the security problems of the tested devices and can detect all attacks made

against the devices. It is also designed to monitor communications within the testbed and with

connected devices, enabling the system to abort if malicious activity is detected. To demonstrate

the capabilities of the proposed IoT security testbed, it is used to examine the vulnerabilities of two

IoT devices: a wireless camera and a smart bulb.

Keywords: Internet of Things; IoT Testbed; Vulnerability Assessment; Automated Testbed

Architecture

1. Introduction

The Internet of Things (IoT) is a recent evolution in communication technology that is rapidly

reshaping our future. This technology enables communication and interaction between small

embedded devices, improving the ability of such devices to better serve our needs [1]. In the future,

IoT will be a key technological solution for many sectors including health care, agriculture and

manufacturing [2], [3]. For example, in the field of health care, IoT can monitor and control human

health indicators and rapidly deliver reports and alarms to medical personnel. The application of

these devices is saving many lives. According to [4], the total worth of all existing IoT devices is

valued at around $6.2 trillion, most of which is deployed in healthcare applications.

Moreover, IoT technology is considered to be one of the main components in the

up-and-coming trend of smart cities. Many studies have discussed the various uses of IoT in shaping

healthier building structures, managing waste, monitoring noise, controlling smart lighting and

even relieving traffic [5]. The concept of smart cities is emerging as a result of the perceived benefits

to citizens, government and the environment.

However, due to the limited capabilities of IoT devices, many of them have vulnerabilities that

make them prone to various attacks. A vulnerable IoT device can be a dangerous hole in any

network, regardless of its security level [6]. Many attacks have involved leveraging the

 2 of 28

vulnerabilities of IoT devices, including actions such as replay attacks, zero-day attacks,

impersonation attacks and spoofing attacks. An increase in botnet attacks has also been observed.

The Mirai botnet is a well-known example; it attacks devices by exploiting default credentials [7], [8].

According to Proofpoint, more than 25% of the botnet’s targets were smart TVs, baby monitors and

other smart home devices [9]. Hundreds of IoT devices have been corrupted and forced to launch

Denial of Service (DoS) attacks on critical servers. These attacks use Domain Name Service (DNS)

and Network Time Protocol (NTP) as a form of distributed DoS (DDoS) attack. One study reported

that the main reason the Mirai botnet is so effective is the use of low-cost, easy-to-install IoT devices,

developed with little or no concern for security [10].

Testing the security of IoT devices before introducing them to the market is an important step in

product development, and this is a field in which testbeds can be extremely useful. A security

testbed is a predefined testing environment in which all triggers, tests, attacks and devices are

controlled [11]. Testbeds are isolated to prevent interference from surrounding noise. They perform

comprehensive vulnerability assessments on devices using penetration testing tools within certain

environmental conditions. Generally, testbeds consist of an array of software and hardware tools

working with simulators to change environmental settings such as light, time, GPS location, etc.

They assess the device’s vulnerabilities under real-world conditions and analyze its behavior to

detect any malicious applications. Testbeds can specify various parameters to assess different

security aspects. They examine the IoT device’s response to each test in order to draw conclusions

about the device’s weaknesses and vulnerabilities.

According to Murad et al. [12], testing IoT devices can be challenging due to the characteristics

and limitations of these devices. The next section of this paper is a comprehensive literature review

presenting studies that attempt to analyze IoT device vulnerabilities and discussing the tests

developed for each product. Some researchers have introduced structures for IoT security testbeds,

but few of these designs were implemented. To the best of our knowledge, one of the most

comprehensive IoT security testbeds was implemented and developed by Siboni et al. [13]. They

introduced a testbed structure and implementation plan for testing IoT devices, using a

closed-source tool as a testbed orchestra. However, their testbed lacks scalability, making it difficult

to add more tests. The aim of this paper is to design an automated IoT security testbed that is

comprehensive, easy to use and repeatable, using only open-source tools. The testbed has a modular

structure so that tests can be added without affecting the testbed’s structure and behavior. This

testbed will assess the security of IoT products that are fully functional and ready to be used. The

main goal of this testbed is to identify the minimum security level of IoT products.

The practical implications of our product are that it can be used by IoT pen-testers and product

manufacturers to assess the security of IoT devices before they are distributed. It can also be used by

market regulators to set a minimum level of security for IoT devices sold on the market. The

modular nature of our software also allows researchers to extend the system and add their own test

cases to the IoT testbed, making it a powerful tool for research and experimentation. We are

providing the IoT security testbed as a service for individuals from academia and industry, and for

smart home IoT end users. The implementation results in Section 5 show the testbed’s effectiveness

at detecting the vulnerabilities of IoT devices.

The main contributions of this paper are to:

 Conduct a comprehensive analysis of previous studies on IoT device security stating what tools

were used on which devices and what vulnerabilities were found.

 Introduce a survey of IoT-based security testbeds introduced in the research literature.

 Define a structure for building an IoT security testbed to assess the vulnerabilities of IoT devices

using open source tools.

 Introduce an automated testbed that reduces user interaction. This will guarantee that all

connected devices are authenticated in order to meet security requirements. It will report attacks

against devices as well as against the testbed itself. In addition, it is designed to monitor

communication within the testbed and with outboard connections. It aborts upon detecting

malicious activity.

 3 of 28

 Demonstrate the functionality of the fully implemented automated testbed by testing two IoT

devices: a wireless camera and a smart bulb.

Our automated testbed is used on two IoT devices: a wireless camera and a smart bulb. The

wireless camera is an example of an IoT device that hosts a web server to provide its services. The

device is configured via a web page hosted in the web server. In contrast, the smart bulb is an

example of an IoT device that publishes its updated status in the network (advertisements). Such

devices can usually be configured by using a mobile application that connects directly to the IoT

device through a Wireless Local Network (WLAN) or by connecting to the vendor server. Due to the

different structures of the two IoT devices, the tests conducted by the proposed testbed are different

as well. It is the role of the automated testbed to identify the device type and the services hosted in

every port in order to launch the appropriate test attack. In our experiment, we reported that the

wireless camera is vulnerable due to the fact that it sends user credentials in plain text with no

encryption, and due to the fact that it does not use certificates. As for the smart bulb, it is vulnerable

to replay attacks, as it accepted repeated packets from nodes in the network other than the

authenticated user.

The structure of this research paper is as follows: Section 2 is a comprehensive review of the

literature on IoT security and mitigation attempts including testbeds. Section 3 presents the

requirements and structure of our proposed IoT security testbed. The setup for the proposed testbed

is shown in Section 4. Section 5 demonstrates a full implementation of our testbed and shows its

capabilities by testing two IoT devices and analyzing the results. Finally, some recommendations

and future plans are suggested in Section 6.

2. Comprehensive Study on IoT Security Analysis

Markets nowadays promote various types of IoT devices and products—smart cameras, smart

plugs, etc.—some of which have severe security issues. Many security researchers have conducted

vulnerability assessments for IoT products, which we discuss in this section.

2.1 IoT Vulnerabilities

Several researchers have investigated security breaches in IoT devices in order to assess their

security mechanisms and identify all potential vulnerabilities [14]–[23]. Section 2.1 concentrates on

the weaknesses found in IoT products in the academic literature.

A case study on the security of the August Smart Lock was done by Ye et al. [24]. The study

analyzed the device’s vulnerabilities, which include exposure of the device’s handshake key and the

owner’s account data and personal information, as well as susceptibility to Denial of Service (DoS)

attacks. Methods to defend the devices against these attacks were conducted in the study in an effort

to improve the device’s security. In another study, Ly & Jin [14] analyzed the problem of user

information leakage. They examined the firmware of tech wristbands including the Nike+ Fuelband,

the Huawei band, the Xiaomi Mi band and the Codoon band and found insufficient security causing

leakage of user information.

Another IoT device that has been the focus of security testing is the smart meter. Two research

teams, Wurm et al. [15] and Tabrizi et al. [16], both published studies in which they simulated smart

meter functionalities and launched controlled attacks to discover the device’s weak points. Wurm et

al. [16] proposed solutions to improve the device’s security, while Tabrizi et al. [16] added an

analysis tool to enable users to detect malicious activity.

Smart lock security has also grabbed the attention of researchers [17]–[20], many of whom have

analyzed the various risks associated with these IoT devices. Some of the smart locks under scrutiny

exposed sensitive user information, while others could be controlled by unauthorized devices. To

solve the access control issue, Kim et al. [17] suggested that modern smart locks should have the

following control levels: full, restricted, partial and minimal. Chistiakov et al. [20] developed a new

security design for smart locks using an Electrically Erasable Programmable Read-Only Memory

(EEPROM) chip. The improved design included user authentication over the Hypertext Transfer

Protocol Secure (HTTPS) channel.

 4 of 28

The Smart Nest Learning Thermostat is another smart home device that has been analyzed by

researchers. In their study, Hernandez et al. [21] tested the device by booting a malicious image

through a USB port. In another paper, Oren et al. [22] discovered attacks on smart TVs that targeted

the devices’ communication protocols.

With the emergence of IoT technology, another concept entering the market is smart home

technology, which enables wireless control of doors, lights and other appliances. According to

Denning et al. [23], these types of home devices are vulnerable to attacks due to the lack of a

professional administrator. Studies by Denning et al. [25] and Ur et al. [26] have analyzed access

control policies and threats associated with these types of devices. They also discussed possible

attacks on smart home devices such as data destruction, illegal physical entry and attacks of privacy

violation. They showed how such attacks could reduce the security level of home devices.

As the number of IoT devices deployed in homes increases, controlling these devices becomes

progressively more complicated because each device uses a separate mobile application. This issue

can be resolved with a smart home system, such as Samsung’s SmartThings or Apple’s HomeKit,

which controls all devices efficiently using a single app.

The analysis of Samsung SmartThings by Fernandes [27] identified four possible attacks that

could be launched against IoT device control applications. These included creating backdoors in

mobile apps, snooping door-lock pin codes, disabling protection setups and generating fake alarms.

In addition, Gyory and Chuah [28] found security bugs in SmartThings that gave a third party

privileged access to the system. The researchers solved this issue by proposing IoT ONE, an

open-source automation platform developed by openHab that supports a number of IoT devices

along with Z-wave, Zigbee and Wi-Fi protocols. However, openHab is not compatible with all

SmartThings devices. Ammar et al. [29] also conducted a comprehensive analysis on Samsung

SmartThings and Apple HomeKit, as well as IoT frameworks such as AWS IoT Amazon and Azure

IoT Microsoft.

Studies by Fernandez et al. [30] and Alghamdi et al. [31] examined the security drawbacks of

network protocols, which have been the target of attacks in recent years. Fernandez et al. [30]

studied DoS attack patterns on VoIP networks and improved the security structure of the protocol,

but their improvement requires effort to be applied. Alghamdi et al. [31] examined the security

drawbacks of the Constrained Application Protocol (CoAP), which is an application layer for

constrained IoT devices.

Other researchers have launched attacks on IoT devices in order to investigate potential

security weaknesses [15], [32]–[34]. Cyr et al. [32] conducted network analyses and firmware

analyses on smart watches, while also checking for mobile app vulnerabilities. The authors traced

the user’s private address from the IoT device, captured the key exchange, reverse-engineered the

mobile app, monitored traffic between the app and the Fitbit server and used proxy Transport Layer

Security (TLS) traffic to intercept and extract data. The authors used various tools including

Ubertooth, Wireshark, crackle, APK Extractor and dex2jar. Moreover, they used the Joint Testing

Action Group (JTAG) for hardware analysis. Willingham et al. [57] focused on assessing the security

of BLE devices. They tested the security of smart watches manually using Wireshark, Kismet and

Crackle.

Table 1 shows a summary of the research conducted to assess the vulnerabilities of IoT products

though attacks. The table lists the topic of each paper and the IoT products that were analyzed. The

table also lists the tools used and the attacks conducted in the research papers, as well as the results

and findings of each attack.

 5 of 28

Table 1. Conducted IoT Attacks and Results

R
ef

.

Y
E

A
R

SUMMARY
PRODUCTS

TESTED
TOOLS ATTACKS RESULTS

C
Y

R
 e

t
a

l.
 [

3
2

]

2
0

1
4

 Analyzed smart

watches by network

analysis, firmware

analysis.

 Assessment of mobile

app vulnerabilities.

 Fitbit smart watch.

 JTAG

 Ubertooth

 Wireshark

 Crackle

 APK

Extractor

 Backsmali

 dex2jar

 Trace private addresses.

 Capture key exchange.

 Reverse engineer mobile

app.

 Monitor traffic between

app and Fitbit server and

intercept TLS traffic with

proxy.

 MAC address is

traceable.

 Key exchange is not

exposed.

 TLS was replaced

through a proxy to

extract clear text

credentials.

A
R

IA
S

 e
t

a
l.

 [
3

5
]

2
0

1
5

 Created a Trojan

Horse that exposed

devices to an external

IP address to be

attacked by a server.

 Accessed devices

physically to change

firmware.

 Nest Thermostat

 Nike+ Fuelband
 -

 Hardware

access on

Nike+ FuelBand.

 Physical tamper for Nest

to get backdoor.

 Firmware and

checksum modifiable.

B
A

C
H

Y
 e

t
a

l.

[3
6

]

2
0

1
5

 Multiple attacks

on smart TV by

intercepting channel

or attacking apps

running on the TV.

 Smart TV – 4

types.
 Binwalk

 Compromise devices in

public network ADSL to

extract firmware.

 Apply XSS attacks on web

browser.

 Firmware is updated in

an unsecured channel,

making it prone to

firmware modification

attack.

M
O

O
D

Y
 a

n
d

 H
U

N
T

E
R

[3
3

]

2
0

1
6

 Used Kiddie Scripts

(tool for non-IT

practitioners) to

exploit devices.

 Nest thermostat.

 Kiddie

scripts

 Wireshark

 Ettercap

 Forensic

 Toolkit

(FTK)

 Autopsy

 Physical access to gain

credentials.

 Packet analysis.

 Failure to gain root

access.

 Communication was

encrypted with AES128

encryption.

W
U

R
M

 e
t

a
l.

 [
1

5
]

2
0

1
6

 Analyzed security of

Haier home systems

through different

attacks.

 Haier Smart Care

home automation

system.

 Wireshark,

UART.

 Obtain password with

brute force attack.

 Gain root shell by

accessing UART.

 Analyze network analysis

and reverse engineer

firmware on air.

 Telnet credentials were

exposed by root shell

access.

 Firmware updates

were sent in clear text.

 Reversed firmware

exposed details about

device’s MQTT

information.

R
O

N
E

N
 a

n
d

S
H

A
M

IR
 [

3
3

]

2
0

1
6

 Analyzed smart bulb

security issues and

attempted to gain

control from 100

meters away.

 Limitless LED

 Philips Lux

 Introduced

their own

receiver.

 Eavesdrop control

packets.

 Extract secret information

using API.

 Private data were

exposed during MITM

attack.

S
IV

A
R

A
M

A
N

 e
t

a
l.

[3
7

]

2
0

1
6

 Injected malware in

an iOS mobile app to

discover BLE and

wireless IoT devices

with a server.

 Devices exposed to

external IP using

 Dlink

DCS-5500G

camera.

 WeMO plug

 Netgear

Nighthawk R7000

AP [Emulated]

 iOS App

 a cloud-

hosted

server to

receive scan

results from

the app.

 Search nearby LANs to

find devices.

 Expose those devices to a

public IP address.

 Use SSDP to collect

device responses in

LAN and analyze them

to check for IoT

devices.

 Exposed devices

enabled server to attack

 6 of 28

UPnP were attacked

by server.

devices.

M
O

R
G

N
E

R
 e

t
a

l.
 [

3
8

]

2
0

1
6

 Leverage insecurity of

Zigbee light link

(ZLL) to attack smart

bulbs.

 Philips Hue

 Osram Lightify

 GE Link

 Ubertooth

spectrum

analyzer

 DoS attack.

 Reset device attack.

 Network hijacking.

 Command injection

attacks.

 ZLL devices vulnerable

to command injection,

DoS and device reset

attacks.

 New passwords

injected by attackers as

master keys.

L
IN

G
 e

t
a

l.
 [

3
9

]

2
0

1
7

 Reversed

communication of

smart socket.

 Socket Edimax

plug.

 Special

attacking

scripts

written in

python

 Device scanning.

 Brute force.

 Spoofing.

 Firmware modification

attack

 Insecure

communication

protocols.

 Lack of device

authentication.

 Weak password policy.

L
IN

G
 e

t
a

l.
 [

4
0

]

2
0

1
7

 Analyzed

communication

protocols and

architecture of

Edimax IP camera

and extracted

vulnerabilities.

 Edimax IP camera

system.
 -

 Scan online devices by

enumerating all possible

MAC combinations.

 Brute force device

credentials.

 Emulate victim camera to

fool authentication server.

 The camera exposed its

connection status

(online/offline).

 Vulnerable to brute

force.

 Spoof attack can

impersonate real

cameras to get

authentication

information.

S
E

R
A

L
A

T
H

A
N

 e
t

a
l.

 [
4

1
]

2
0

1
8 Analyzed IP camera

traffic.
 IP Cameras

 Nmap

 Wireshark

 Perform network analysis

and MITM.

 Brute force port RTSP to

get video streams.

 Reverse engineer mobile

app.

 RTSP port found to

expose real-time

streams that can send

commands.

 Commands/

credentials sent in clear

text.

 Failed to get video

streams.

 Credentials in mobile

app are in clear text.

H
U

R
A

J
et

 a
l.

 [
4

2
]

2
0

1
8

 Created a reflected

UDP-based DoS

attack using IoT

devices.

 IP camera

 Philips Hue

Bridge

 AirLive Wireless

Printer

 Raspberry Pi

 Hping3

tool.

 Flood UDP DoS attack

using victim’s IP.

 Victim device services

were not affected.

S
IB

O
N

I
et

 a
l.

 [
4

3
]

2
0

1
8

 Compromised smart

watch to impersonate

a WiFi printer.

 WiFi Printer.

 Wireshark

 Printer

Command

Language

(PCL)

 Airoplay

 De-authenticate

legitimate printer and

host fake AP.

 Successfully received

printing orders from

devices in network.

X
U

, X
U

,
a

n
d

C
H

E
N

 [
4

4
]

2
0

1
8

 Used Insecam website

to retrieve open

cameras with live

streams.

 Different IP

cameras taken

from Insecam

website.

 Angry IP

(for

scanning

domains).

 Checked open-access

devices.

 Many IP cameras did

not have passwords

set.

 7 of 28

C
L

A
S

S
E

N
 e

t
a

l.
 [

4
5

]

2
0

1
8

 Analyzed many

security

vulnerabilities and

attacks on Fitbit

smartwatch.

 Fitbit smartwatch

 APKtool

 Gatttool

 Many

others

 Leak information.

 Analyze firmware and

modify protocols.

 Modify Fitbit mobile app

to access cloud.

 Information leakage.

 Injecting compromised

firmware.

 Modifying app to

access developer mode

and gain access to

cloud.

W
IL

L
IN

G
H

A
M

E
T

 A
L

. [
4

6
]

2
0

1
8

 Find exploits in the

BLE protocol through

testing smartwatches

using Kali Linux and

Ubertooth

 FitBit Charge

 Logitech

Keyboard

 LG watch

 Wireshark

 Kismet

 Crackle

 Packet sniffing

 Ubertooth was not able

to read personal data.

 Due to unawareness

packet, format packets

were not

understandable.

2.2 Vulnerability Mitigation Techniques and Security Testbeds

To mitigate security holes, researchers have developed defense methodologies. Some

researchers, such as Prokofiev, Smirnova & Surov [47], proposed tools that can detect attacks in

advance. They introduced a logistic regression method that analyzes IoT devices and their network

characteristics to assess the probability of botnet attacks on IoT devices. Gegick & Williams [48]

compiled attack patterns that highlight security issues in software design and found that matching

these patterns to security threats in the design phase helps to prevent threats early. Miettinen et al.

[49] introduced a framework to secure vulnerable devices by identifying devices connected to a

network using network traffic fingerprinting and machine learning techniques. This is useful in

increasing or decreasing the security restriction level on connected devices.

As discussed earlier, smart home security is essential. Demetriou et al. [50] increased security in

the home environment by creating a software-defined network (SDN) that categorizes IoT devices as

nodes and smartphones as monitors to check node behavior. Gelenbe et al. [51] proposed SerIoT, an

IoT platform based on SDN and secure routers.

Another important focus of recent research was testbed assessments. Generally, IoT testbeds

analyze various aspects of IoT, but they do not specifically address device security. According to

Chernyshev et al. [52] and Adjih et al. [2], sometimes testbeds are used experimentally as a substitute

for IoT simulators. For example, FIT IoT-LAB is a testbed for low-power wireless devices used in

conjunction with mobile robots for large-scale environment experiments. The resulting

heterogeneous testing system covers many IoT case studies and applications.

Nevertheless, to gain a more general understanding of IoT device exploits and vulnerabilities,

many researchers used security testbeds. Berhanu & Abie [53] illustrated a testbed for securing IoT

devices in eHealth applications. For example, many low-power devices communicate by receiving

and forwarding patient indicators using low-rate communication media. The researchers developed

a scenario for the assessment and validation of context-aware adaptive security solutions for

eHealth.

Moreover, Sachidananda et al. [54] introduced a security testbed to analyze the security issues

of IoT devices. This testbed specified architecture and design requirements to support the

development of penetration testing for security analysis. The penetration testing included port

scanning, fingerprinting, process enumeration and vulnerability scanning. They conducted testing

based on the security holes in the IoT device market (i.e. Amazon Echo, Nest Cam, Philips Hue,

SENSE Mother, Samsung SmartThings, Withings HOME, WeMo Smart Crock-Pot and Netatmo

Security Camera). The testbed included various IoT devices such as smart home devices, smart

wearables and Wireless Sensor Networks (WSNs), which were tested according to security

requirements. In terms of testbed control and management, their testbed uses NI TestStand software

to manage testbed events and processes. NI TestStand is a closed source software that runs

exclusively on Windows OS which is heavily restrictive and proprietary. This prevents tests from

managing wireless cards, passive capture of packets and other network or low-level functionalities,

which is considered a huge drawback as it limits network penetration testing capabilities.

 8 of 28

Hale et al. [55] proposes an open source platform called SecuWear which identifies the

vulnerabilities of commercial hardware. The SecuWear testbed captures the information necessary

for identifying different attacks, thereby assessing the security of wearable devices. Moreover, it

provides to the security community a process for performing attacks and mitigating information.

The disadvantage of SecuWear is that identified vulnerabilities on Metawear must still be

investigated in commercial IoT devices to determine if they apply. Furthermore, vulnerabilities may

be specific to certain open source components, causing false positives when identifying security

issues as common problems.

Table 2 summarizes the findings of our research on IoT security testbeds and compares it with

our IoT security testbed. This comparison is based on the testbed’s approach, the hardware setup

required to build the testbed, the devices tested, the attacks performed by the testbed and the

software tools used. Information is also included about whether or not the testbeds are automated,

the availability of a Management System (MS) that controls the testbed, and whether or not the MS is

open source (OS), as well as the existence of Wi-Fi and BLE options.

Table 2. Literature review of IoT security testbeds

R
ef

.

Y
ea

r

Testbed approach Hardware Setup Devices tested
Attacks and experiments

covered
SOFTWARE

A
u

to
-m

a
te

d

M
S

O
S

W
i-

F
i

B
L

E

T
e

k
e

o
g

lu
 a

n
d

 T
o

su
n

 [
5

6
]

2
0

16
 Analyze captured

packets from network

layers 2 and 3.

 A hub that connects

2 access points

 Kali Linux machine

 Ubertooth with

Wireshark in

another machine

 Smartphones to

control the IoTs

from a different

WLAN

 HDMI sticks

 Wireless

cameras

 Drones

 Activity

trackers

 Smart watches

 Nmap

 Cipher suit checks

 Firmware updates in

clear text

 Weak password checks

 Brute force detection

checks

 Extracts video streams

from cameras

 Iptables

 Ebtables

 Wireshark

 Kismet

 OpenWrt

 OpenVAS

 Binwalk

 -

S
a

ch
id

a
n

a
n

d
a

 e
t

a
l.

 [
54

]

2
0

17

 Penetration testing for

security analysis.

 Uses the

closed source

NI TestStand tool.

 Nest Cam

 Philips Hue

 Amazon Echo

 SENSE Mother

 Samsung

SmartThings

 Others

 Port scanning

 Fingerprinting

 Process enumeration

 NMAP

 Wireshark

 Aircrack

 Nessus

 OpenVAS

 Cain &

Abel

 OSSEC

 Tenable

H
a

le
 e

t
a

l.
 [

5
5

]

2
0

18
 Identify security risks in

wearable IoT devices by

using Metawear.

 SecuWear with

Metawear chip

 Kali Linux

 Ubertooth

 Metawear only

(development

chip simulating

BLE devices)

 Eavesdropping attack

 DoS attack

 Wireshark -

O
u

r
P

ro
p

o
se

d
 I

o
T

 T
e

st
b

e
d

2
0

19

 Develop an IoT

penetration testing

platform to assess risks

and vulnerabilities of IoT

devices

 Multiple modules:

o GUI

o Testing

o Network

monitoring

o Reporting

o Storage

 Smart Bulb

 IP camera

 Port scanning

 Vulnerability scans

 Downgrading attack

 Search exploits

 Brute force directories,

passwords and port

services

 Testing SSL

configuration.

 Nmap

 Tshark

 Metasploit

 WAFW00F

 SQLmap

 SSLStrip

 Dirb

 SSL Scan

 Nikto

 TLS proper

 9 of 28

2.3 Our Testbed Contribution

In this paper, we propose an automated IoT security testbed that can evaluate the security of

IoT devices. We also define its main components and structure. As the testbed leverages open source

tools, it is easily modifiable and extendible. The model will be tested on two off-the-shelf IoT

devices. Later in this paper, we analyze the results and discuss vulnerability reports. Our IoT

security testbed has the following features:

1. The implemented IoT security testbed is based on open source tools controlled by an open

source MS.

2. The IoT security testbed consists of an interface module, a testing module, a network module,

a report module and a storage module. All modules interact to perform as a complete security

testing software. They are controlled by the MS and their updates are displayed to the user via

an easy-to-use GUI.

3. The modular structure and architecture of the testbed allows other researchers to use it to

build their own testing tools. It is a flexible and extendible system, meaning that researchers

can adopt the initial structure and add to the modular design.

4. The IoT testbed lists all exploits and CVEs found for the device tested, as well as for the

services the device hosts in each port. For example: OpenSSH 7.6 service on port 22 (SSH).

5. The IoT testbed automatically generates formal word reports containing the results of all

devices.

3. Testbed Requirements, Structure and Components

Building a security testbed for IoT devices requires defining the main area of interest and

developing a roadmap for the analysis process. In this section, we propose an automated IoT testbed

structure to assess the vulnerabilities of IoT devices. This structure automates the penetration testing

task, thereby reducing user intervention. Our objective is to build a secure IoT testbed that tests

devices from various security aspects. The testbed should:

 Establish secure communication between testbed components

 Authenticate all nodes in the network

 Control test modules and test sequencing

 Record events and test results

 Establish reusable tests and testbed components

 Ensure scalability of the testbed, enabling more tests to be added

3.1 Testbed Structure

Our testbed uses a modular architecture, whereby every part of the testbed is made of modules

that can be extended or even replaced completely. The structure also allows for the easy addition of

more security tests.

The initial testbed structure consists of five modules, as shown in Figure 1.

 Interface Module: This module acts as an I/O interface. It consists of two units: a Graphical User

Interface (GUI) unit and an Output unit. The GUI takes input feeds from users (when required)

and delivers them to the Testing Module for analysis. This method reduces user intervention

during the testing process. When the analysis is complete, a summarized report is generated by

the Report Module and sent to the user.

 Testing Module: This module manages the test cases and launches them in order. All test cases

and scripts are saved in the Storage Module. Once the testbed is in operation, it calls up general

scripts from the database to examine the general network characteristics of the IoT devices.

Based on the device’s response, the testing module launches more advanced test cases to tackle

security issues. For example, after recognizing any open ports in the IoT device, dedicated test

cases will be launched to test the vulnerability of those ports. Such vulnerabilities can include

outdated services or low-security configuration or authentication. Moreover, IoT device

responses will be checked to determine whether each test case passed or failed.

 10 of 28

Figure 1. Structure of the proposed IoT Testbed

 Network Module: This module controls network activities and communication with IoT

devices. It creates and monitors the Network Access Point (AP) and will be further discussed in

Section 3.2.

 Report Module: This module generates a final report of the security assessment results for the

device. It is compiled from test results and logs.

 Storage Module: This unit stores all events initiated by the different modules for later retrieval

and for final report generation once the assessment is complete. It saves all information about

the tested devices and stores the test case scripts.

3.2. Testbed Main Components

In terms of function, our proposed automated testbed relies on five components that use the

testbed structure modules. Figure 2 summarizes the testbed components and their roles.

Figure 2. IoT testbed components

 11 of 28

The testbed has the following five main functional components:

 IoT Device Under Investigation (DUI). This is the IoT device to be tested, such as a smart

socket, smart wireless camera, etc. It will be connected to the wireless network of the testbed.

 Admin Machine. This is the main component of the security testbed that runs the Kali Linux

operating system. Using the Network Module, it audits all network traffic and examines packets

in the network. It also sends an alert if any type of attack is detected using python scripts and

Tshark. Any IP address requested by the DUI will be checked against IP blacklists to determine

whether or not it is malicious. Malicious calls will be blocked and reported. Moreover, the admin

machine acts as an orchestra, using the Testing Module to launch and coordinate test scenarios.

Once a test is launched, its results are analyzed to determine which test should be run next. The

storage module stores information about all registered devices in the testbed, blocking

unregistered devices from the network.

 Private Wireless Network. Usually, testbeds use wireless routers to simulate network

environments. Sniffing software is then deployed to collect data broadcast over the local

network. To acquire more information or packets between two nodes in the network,

interception tools such as Address Resolution Protocol (ARP) spoofing are used to launch an

attack. Based on our experiments, new IoT devices detect ARP spoofing attacks and disconnect

automatically from the network once they are discovered. Using the admin machine, a Wireless

hotspot is created using a virtual AP tool to create a Wireless Local Access Network (WLAN).

This method is preferred over using a physical router, as it gives the testbed automation system

privileged access to Dynamic Host Configuration Protocol (DHCP) server services and other

functionalities in the AP. It therefore allows the testbed to audit network traffic with

administrative privilege to circumvent the need for ARP Spoofing. The virtual AP tool provides

communication encryption and security using the WPA2-PSK Wi-Fi key managed by the

network module. In addition, it monitors the outboard connection of the DUI. In other words,

the module checks all external IP addresses requested by the DUI against a collection of

blacklisted IPs to prevent malware from attempting to connect to Command and Control (CNC)

servers. If the device is already infected by malware, it will be detected and the device will be

excluded from the network. This countermeasure fulfills the security requirements of the

testbed.

 Controlling Applications. Some IoT devices can only be controlled through their associated

mobile application. The testbed therefore includes a smartphone device that is equipped with

authorized mobile applications to control IoT devices under testing. It generates traffic and

packets with controlling commands on the network, and can be used to check whether or not the

controlling commands and messages are sent in clear text, i.e. readable by attackers. In addition,

it replicates packets to form replay attacks, thereby revealing weaknesses in IoT devices.

 Attacking Machine. The attacking machine (Kali Linux) is used to launch attacks against the

DUI to uncover weaknesses. For instance, it can launch replay attacks or brute force password

attacks. In addition, it runs DoS attacks against the testbed and the DUI to test their resistance

and ability to block such attacks.

To give a better idea of how the testbed modules cooperate, Figure 3 summarizes the scenario

for a DUI connected to the testing network. As shown in Figure 3, once a new device tries to connect

to the network, the testbed will check its identity by looking it up in the testbed local database

records. The testbed operator registers the devices to be tested in the database of the program before

starting the test. If the network module does not find the device in the database, the testbed will

reject the device from the network.

 12 of 28

Figure 3. Communication between testbed modules

After the authorization step, the testing module launches a list of test cases on the DUI, analyzes

the DUI test results and stores the results in the storage module. An example of a test case is the scan

test script, in which the testbed software scans DUI directories, seeking open directories with no

authentication. This vulnerability could lead to system intrusion and data leakage. After all tests

have been run, test results will be listed in a formal report.

The formal report is a word file generated by a python script listing the test results in a format

that is easy for a human operator to understand. A sample report is shown in Figure 4. The report

lists device information in a table, including its detected Operating System and port services. It also

lists all CVEs and exploits found using the device model number or device name. Additionally, as all

ports are scanned during the testing process, any services found in the device’s open ports will be

checked on the CVE and exploits databases. The test results are then listed in the results section of

the report. The Test Case column lists all tests launched against the IoT device, while the Test Result

column informs the reader of the results of each test. The test result is listed as Not Vulnerable if the

device was not found to be vulnerable to the test and Vulnerable if the device was vulnerable. The

Assessment column includes short comments generated by each test. Furthermore, some of the

complex tests generate extra logs and save them in a separate text file to be reviewed later by the

operator. Some tests don’t generate any logs; these simply enter a dash (-) in the Additional

Information column. If necessary, tests can be modified in the future to include more comments.

In Section 4, we will focus on the testing mechanisms and tools that check the security aspects of

IoT devices.

 13 of 28

Figure 4. Sample of report generated by the IoT testbed

4. Experimental Setup

In this section, we demonstrate how the testbed architecture and components are used to test

the security of IoT devices. Our experiments are conducted in two phases: a semi-manual Extensive

Analysis Phase and an Automated Testing Phase. Analyzing the threads of IoT devices is a very

complicated task, as pen-testing the devices involves testing the security of communications

between IoT devices and smartphones, as well as between IoT devices and the cloud. It also requires

testing the vulnerabilities of the IoT device itself, and testing the effect of physical tampering. The

process by which communications are sent and received by IoT devices—a potential source of

vulnerability—is shown in Figure 5. The devil image represents hackers and their possible points of

attack.

The first phase is conducted to understand the nature of the IoT device, its communication

characteristics, its possible vulnerabilities and the used tools to detect them. This information is then

used to shape the second phase: an extensive automatized security analysis of the IoT device. Table 3

sets a comparison between these two phases. The comparison is based on testing setup, expected

results in each phase and the method used to obtain the results.

Figure 5. Points of weakness in IoT device communications

 14 of 28

Table 3. Comparison between extensive analysis phase and automated testing phase

Research

phases

Set up Expected result Methodology

Phase 1:

Extensive

Analysis

Each device is tested

individually using a list of

tools conducting different

hacking attempts to find the

IoT device’s vulnerabilities.

Each test will generate

different

results/outcomes.

Tests are done manually.

Results are obtained

manually through analysis.

Phase 2:

Automated

Testing

The testbed system’s software

is based on a modular

structure. Each testing module

will automatically run a list of

tests to check the IoT device’s

vulnerabilities.

The test results will be

expressed as Vulnerable

or Not Vulnerable. If the

device passes a given test,

it is not vulnerable in that

area; if it fails, the device is

vulnerable to attack.

The module’s test cases are

in Python code. The

module analyzes the IoT

device’s responses to each

test script to determine if it

passed or failed the security

test.

4.1 Phase 1- Extensive Analysis Phase

The first testing phase investigates the security of IoT devices using the following steps,

summarized below in Table 4:

 Gather information and scan for vulnerabilities. Before testing the IoT device, it is necessary to

search for device vulnerabilities and any related exploit attempts. This can be done using

Shodan, vulnerabilities databases such as the Common Vulnerabilities and Exposures database

(CVE), the National Vulnerabilities Database (NVD) and the Rapid7 Exploits Database, and

tools such as Snitch, OWASP ZAP, Wascan, Skipfish or other similar tools. If any exploits are

found for similar devices, whether of the same type or from the same vendor, these are tested on

the DUI to assess its vulnerability.

 Perform Nmap scanning. The DUI and all its ports are checked using the Nmap scanner to

analyze the vulnerability of any open ports. Nmap responses should be checked to ensure that

the DUI doesn’t expose critical information during the Nmap test.

 Check Secure Sockets Layer (SSL) certificate. The SSL certificate is tested to see if a DUI that

hosts a web server has a reliable certificate. This can be checked using TLS-proper, SSLScan and

Nikto tools.

 Check asynchronous connection with a time server. This test checks if the IoT device is

synchronized with a time server. If this test fails, the resulting vulnerability could make it hard

to track its system logs and events, and also to perform operations that require timestamps and

synchronization.

 Perform downgrading attack. This attack focuses on reducing the level of cryptography used in

the communication channels between two nodes [57]. Reducing the level of encryption used in

the secure channel can result in the device sending information without any encryption at all, as

is the case with HTTP. This test forces communications to downgrade from HTTPS to HTTP

using SSLStrip, Ettercap, Better-cap, etc. If a conversation is successfully downgraded, critical

information such as credentials and control packets may be collected by a third party. If the

device refuses the downgrade and rejects any non-HTTPS connections, it is considered a secure

device.

 Perform credentials check and brute force attacks. Another potential vulnerability that must be

tested is the use of default credentials. As mentioned earlier, Mirai botnets have been known to

gain control over devices with default credentials. If users are not forced to change the default

password during configuration, the resulting vulnerability is a severe issue. Another potential

issue is when IoT devices allow an unlimited number of false access trials. Limiting access trials

prevents brute force attacks. These are all aspects that we can test using a simple python script.

 Conduct brute force attack on directories. If the DUI is hosting a web server, this server could

have multiple directories. Even if it has credentials, it’s possible that not all directories will be

 15 of 28

protected. To check if any directories are left without credentials, the testbed uses a dictionary to

conduct a brute force attack using Dirb and DirBuster tools.

 Bypass basic HTTP authentication. Some web servers use HTTP basic authentication to obtain

user credentials. HTTP requests can use POST and GET methods. If servers are weakly

configured, they may bypass HTTP authentication requests that have HTTP methods other than

GET/POST. As a result, private data may be exposed or non-authenticated users may gain

access.

 Inject XSS and SQL commands. If the DUI hosts a web server with an HTML interface, it could

be vulnerable to XSS and SQL injection attacks. This can be checked using tools such as SQLmap

that examine the parameters of an HTTP GET request to inject SQL commands. If the web server

is not protected against this type of attack, the server’s SQL service may expose critical

information.

 Check firewalls. Some web servers have firewalls that protect them from network attacks. The

firewall of the DUI web server can be tested using a WAFWoof tool.

 Check exploits. As shown in the literature review, researchers are interested in revealing the

vulnerabilities of different types of IoT products, and many CVEs are reported every day. Some

CVEs are also publicized with a python or a bash script that takes advantage of the vulnerability

to perform an attack. Existing exploits on devices similar to the DUI can be checked using

Metasploit and Armitage tools.

 Analyze communication between the IoT device and the user machine. In this task, we

intercept the communication between the IoT device and the user’s machine. First, traffic will be

generated by using a mobile application (or the browser, if the device contains a web server) to

control the IoT device. This allows us to check if communication occurs in clear text, and

whether the device is vulnerable to replay, impersonation or modification attacks. In addition,

this task detects if any credentials are sent in clear text.

 Check requested external IP addresses. In this test, the testbed will report any attempt by the

DUI to connect to malicious IP addresses.

 Disassemble mobile application. Breaking down the mobile application can give hints about

control packet creation and expose secret information. Applications can slow down reverse

engineering by using obfuscation techniques, which raises the security level in smartphone

applications.

 Check firmware. Outdated firmware is usually vulnerable. If vendors do not enforce updates on

an IoT device’s firmware, the device may be compromised. Analyzing firmware can highlight

the existence of backdoors, hardcoded admin credentials or command injection vulnerabilities.

Analyzing firmware requires experience in reverse engineering.

 Analyze hardware. Some IoT device vendors don’t give public access to device firmware. An

alternative method is extracting the firmware from the IoT device. By disassembling the device,

the printed circuit board (PCB) can be checked to find universal asynchronous

receiver-transmitter (UART) ports or other serial ports. If ports are found, a PC/laptop can be

connected to the IoT device to analyze its binary image and extract its credentials, i.e. a physical

tampering attack.

Table 4. Summary of the test cases and their expected results.

Tests Used tools Expected results

Gather information

and scan for

vulnerabilities

Snitch, OWASP

ZAP, Wascan,

Skipfish

Gathers information about the DUI’s vulnerabilities or about

previous attack attempts recorded in the CVE database.

Wascam and Skipfish are security penetration testing tools that

recursively crawl web pages hosted in webservers. They assess

security and look for vulnerabilities such as flaws, links, email

addresses and any other information that could lead to social

engineering, malware injections, etc.

Nmap scanning Nmap Lists all open ports along with their services and DUI

 16 of 28

information. DUI information could include the operating

system running on the device, its version number, etc.

Check Secure

Sockets Layer

certificate

TLS-proper,

SSLScan and

Nikto tools

Compares the HTTPS certificate signature to the database. This

reveals information about the certificate such as the encryption

used, the generation date, etc.

Check asynchronous

connection with a

time server

Wireshark If the device fails to synchronize with the NTP server during

multiple connection requests, it is considered vulnerable.

Downgrade Attack SSLStrip, Ettercap,

Better-cap

If the device refuses the HTTP connection/request, then it is not

vulnerable. If the device accepts an HTTP request (instead of

HTTPS), it is vulnerable to this kind of attack.

Credentials check

and brute force

attacks

Python Script Attempts to authenticate user by sending many usernames and

passwords. If the device doesn’t detect the attack or if the

password is found, the device is vulnerable to this kind of

attack.

Brute force attack on

directories

Dirb and

DirBuster

Lists directories that are accessible without authentication,

indicating that the device is vulnerable.

Bypass basic HTTP

authentication

Web browser

plugin (HTTP

headers

Sends misconfigured http header to check for possible

configurations that may give access.

Inject XSS and SQL

commands

SQLmap, Manual If XSS or SQL injection attempts successfully reveal hidden

information, the device is vulnerable.

Check firewalls WAFWoof Checks whether or not firewall is used

Check exploits Metasploit and

Armitage

Reports any attacks and vulnerabilities in the IoT device found

by Metasploit.

Analyze

communication

between IoT device

and user machine

Wireshark,

Manually

If control packets are sent between the user machine and the

DUI in clear text without encryption, the device is vulnerable.

Check requested

external IP addresses

Wireshark,

manually

If the device attempts to connect to malicious servers, it is

considered vulnerable.

Disassemble mobile

application

Dex2jar If the dissembled mobile application contains hard-coded

credentials, it is considered vulnerable.

Firmware check Binwalk Outdated firmware is usually vulnerable. The firmware is

therefore checked to ensure that the device is using the latest

version.

Hardware analysis UART This test attempts to dump firmware from the hardware using

UART in order to obtain root shell and access sensitive

information

In this phase, the security of several IoT devices was assessed manually by using the above test

cases. For an example, we will detail the assessment of two devices: a medical gateway and a

wireless camera. Both devices host a webserver, but the medical gateway leverages HTTPs for

communication while the wireless camera uses HTTP. The detailed test report for the two devices is

shown in Appendix 1.

During the manual security assessment, the tested devices are grouped into two sets: devices

that contain a web server and devices that act as hosts, connecting to a cloud or a server. The devices

that host web servers can be recognized by examining the services available in port 80, 8080 or 443.

The Nmap tool is capable of recognizing the services on the ports, as it has an extensive database of

service signatures. The devices can therefore be categorized as webserver or host-based according to

the Nmap results for the services hosted in port 80, 8080 or 443. The devices that host a web server

can be attacked using the same mechanisms as those used against email servers and web servers.

 17 of 28

However, IoT devices are much weaker than the regular web servers due to their limited power and

computing capabilities, which affects their security capabilities.

An automated IoT testbed is required for this step, as it can detect the vulnerabilities of a group

of different IoT devices automatically without the need of human intervention.

4.2. Phase 2- Automated Testing Phase

Automating IoT vulnerabilities assessments can be a challenging task due to the limitations of

IoT devices, as explained earlier. Based on the experiments conducted in Section 4.1, we propose

methods with different security testing scenarios for different IoT devices. These scenarios will run

automatically using the system in Figure 1. The tests are to be conducted with minimal user

intervention. As shown in Figure 1, all modules work simultaneously at the back end, while the GUI

shows the testbed status and related results. The various steps of the automated testing process are

as follows:

As shown in Algorithm 1, once the operator chooses one or more devices to be tested, the

testbed assesses each one individually in turn. To test each IoT device, the testbed first excludes all

IoT devices from the network other than the DUI. The testing module then launches some initial test

cases, including an extensive Nmap test to check network activity and report open ports. Based on

the results of these preliminary tests, the testing module will determine whether or not there is a web

server hosted in the IoT device. Based on this data, the testing module will launch the corresponding

tests as shown in Figure 6.

Algorithm 1 Automated Testbed Process

Require: DUI; Testing device;
Ensure: DUI is configured with wireless network of the testbed

1: DUI connect to the wireless network
2: Testbed check device information in Database
3: if not found then
4: Reject the device connection request
5: return 0
6: Accept connection, allow device to be in the network
7: Testbed launch Nmap on ports 80, 443, 8080
8: for Nmap results in port (80, 443, 8080) do
9: Check services on the port
10: if port has webservices then
11: DUI = webserver
12: else
13: DUI = host
14: end if
15: end for
16: if DUI = webserver then
17: results = webserver_tests()
18: else
19: results = host _tests()
20: end if
21: report= Generate_Report(results)
22: return report

In non-web server cases, a replay attack is used to replay control packets after a period of time.

The control packets contain the commands that affect the status of the IoT device.

 18 of 28

Figure 6: Tests launched for web server DUI vs non-web server DUI

Figure 7 shows the updated testbed GUI and its functionalities. Users can choose to test

multiple devices, which will be listed in the left panel. The test updates will be shown in the middle

panel: the upper part shows the test logs, while the lower table lists test summaries and results. In

the right panel, the user can see network traffic inside the WLAN, as well as traffic to and from the

DUI. In addition, the testbed lists the last connections attempted by the DUI. Using the proposed

automated testbed architecture, vulnerability assessments are conducted on multiple IoT devices. In

Section 5, we discuss the use of the testbed on a wireless camera and a smart bulb.

Figure 7. Graphical user interface of the testbed

To demonstrate the wireless camera security testing scenario, the steps in Figure 8 are followed.

The wireless camera is contacted to be connected to the local network. If the testbed system software

detects the camera, it tries to authorize and identify the device and retrieves saved information from

its database. Once accepted, all traffic generated in the testbed—especially traffic originating from

the device—is monitored and analyzed, as are the device’s external connections. The fingerprints of

all ports are checked with the Nmap tool to determine whether or not the device hosts a webserver.

As the camera hosts a webserver on port 80, it is categorized as a “device with embedded

webserver”. The testbed runs a predefined list of tests to check open ports and discover any web

server vulnerabilities. Each test assesses a specific security aspect. For example, the SQL injection test

uses the SQLmap tool, which injects an SQL statement into the HTML page of the web server. If the

webserver executes the statement, the device is considered to be vulnerable. Similarly, the device’s

 19 of 28

SSL, firewall and certificates are checked. Some scripts use different approaches to determine if the

device is vulnerable or not. For example, the “device sync with NTP server” test entails scanning all

NTP packets in the device’s communications to determine whether or not it is synchronized with the

NTP server. Each test case checks a specific characteristic of the device and reports if the device

passed or failed this security check. Finally, once all the tests are done, all results will be reported in

a word document as shown in Figure 4.

Figure 8. Testing for wireless camera assessment by the testbed software

Table 5 lists the test results generated by the proposed testbed from the wireless camera

security assessment. Each test checks one vulnerability. If the vulnerability is found, the report

indicates “Vulnerable” for that particular test. If the test found no vulnerability in a given domain, it

is listed as a “Not Vulnerable”. If a device receives “Not Vulnerable” for all tests, it means that no

weak point was found, and the device is not vulnerable to the tests specified. Some tests generate

detailed reports in the reporting module that must be reviewed by an operator, as shown in the

“Additional information” column in Table 5. A column was added to the table to discuss the results.

From the test results, one can conclude that the wireless camera is vulnerable to attack, as it

sends authentication credentials in clear text with no encryption. However, its use of an HTTP

authentication mechanism means that it is not prone to SQL injection and XSS, as long as HTTPS

protocol is used in communications instead of HTTP.

Table 5. Testbed report for wireless camera

Test case Status Additional

information

Results discussion

Check

Requested IPs

Not

Vulnerable

Details of

each IP are

saved

During the test, the device did not connect to any

malicious IP addresses; therefore, the device passed the

test. The results of each IP address request have been

exported in a separate file.

Device Sync

with NTP

Not

Vulnerable

- The device was found to be in sync with NTP server;

therefore, the DUI passed the test.

Scan

Directories

Not

Vulnerable

Details are

saved

As no web server directory was found to be open without

authentication, the device passed the test.

Check Firewall Vulnerable No WAF

detected

The testbed did not find any firewalls in the web server;

therefore, the DUI failed this security test.

Authentication

in plain text

Vulnerable User: Pass

found

Authentication in plain text: When the DUI used an HTTP

authentication mechanism, the authentication information

(Username: Password) was sent in clear text without

encryption. This is a very severe vulnerability, as an

attacker could control the device as an admin using those

credentials.

Extensive Port Vulnerable - In this test, port 80 (HTTP and HTTPS) was found to be

 20 of 28

Scan open on the device, as well as port 23 (telnet) and 21 (FTP

server). The fact that ports 21 and 23 were open means that

the device was more prone to attacks. The testbed

therefore reported that the device failed this particular

test.

Nitko Test Vulnerable Vulnerable to

cross-site

request

forgery and

downgrade

attack

The Nikto web assessment tool was used to assess the

DUI. It reported some severe vulnerabilities. Therefore,

the device failed the test.

Check

Certificate

Vulnerable No HTTPS The DUI did not use a proper certificate in its

communications, and port 443 was found to be open and

not secured. Therefore, the device failed the test.

Check SSL Vulnerable No HTTPS The DUI did not use SSL.

SQL Injection Not

Vulnerable

Details are

saved

In this test, tools such as SQLmap are used to check if the

device is vulnerable to SQL injection. However, the DUI

used HTTP authentication rather than an HTML page and

no SQL server were found. Consequently, device was not

vulnerable to SQL injection, and it passed the test.

5.2. Smart Bulb Assessment

A smart bulb is an IoT device controlled by UDP packets. It receives controlling commands

directly from users via a dedicated application or through a server or cloud. Information is sent

using UDP or TCP packets, which are usually encrypted or ciphered. However, if the messages are

not secure, the bulb may be vulnerable to replay attacks. For this reason, we test such devices against

replay attacks and packet fabrication.

We tested a smart bulb controlled by a mobile application with our IoT security testbed. Only

five tests were applicable, as the bulb did not have many open ports. The testbed started by checking

IP addresses requested by the DUI, scanning for smart bulb exploits, replaying UDP packets,

performing an Nmap scan and checking asynchronous connections with the time server. Conversely

to the multiple tests run specifically for server host devices such as the smart camera, the only test

uniquely dedicated to non-web server devices is the replay UDP packets test. This is because the

smart bulb receives control commands through UDP packets.

The report generated from the smart bulb tests can be found in Table 6. The report lists a test as

“Vulnerable” if an attack is successful; if the attack is unsuccessful, the test is listed as a “Not

Vulnerable”. The results show that the device is vulnerable to replay attacks, as it applied the

commands received without checking the sender’s MAC address.

Table 6. Testbed report for the smart bulb

Test case Status Additional information

Check Requested IPs Not Vulnerable Details of each IP are saved

Exploit Scan Not Vulnerable Details are saved

Replay attack – UDP Vulnerable ..

Extensive Nmap scan Not Vulnerable ..

Verification of asynchronous

connection with time server

Vulnerable ..

6. Conclusion and Future Research

With the recent exponential increase in the use of IoT devices, security breaches associated with

these devices are also on the rise. IoT device security testing is needed before the devices can be used

 21 of 28

by the public. Assessing the security of IoT devices is difficult due to the wide variety and

functionality of IoT devices. Although many research studies have explored IoT security assessment,

there is an urgent need for extensive analysis and testing for vulnerabilities, and it is clear that these

tasks should be automated. The goal of this research is to propose a new IoT security testbed

architecture, and to present an automated IoT testbed to analyze IoT device security gaps.

Various penetration and security testing tools are leveraged to assess vulnerabilities in IoT

devices. The proposed framework also secures the testbed, authenticates all devices used by the

testbed and encrypts all communication between them. Furthermore, it records and logs all events

that occur during the tests and generates reports informing the user if each test was passed or failed.

The results provide data to inform the feasibility of practical experiments to assess common threats

against these IoT devices. Two devices were successfully tested by our IoT testbed.

One of the biggest challenges in this domain is the exploding number of IoT devices being used,

the great variety of IoT devices and protocols, and the lack of standardization in the field. This

coupled with IoT devices interacting with each other greatly increases available attack vectors and

the possibility of zero-day attacks, making it very hard for security experts and security testing tools

to accurately assess the security level of different IoT devices.

We believe that an adequate testing architectureone that is comprehensive enough to manage

the abovementioned challenges and able to handle the evolving complexity of the IoT ecosystemis

yet to be developed. It will be interesting to see what developments take place in that direction.

However, in designing our testbed, we think that we have taken a step in the right direction in

helping to solve this difficult problem. The modular nature of our testbed and the ability to easily

add new tests and change existing ones gives it the flexibility it needs to stay relevant as a security

solution and to keep up with the demands of the growing IoT ecosystem.

Future work will include additional automated test cases and scenarios that tackle different

aspects of IoT device security. More IoT devices need to be analyzed in order to increase the scope of

our IoT testbed test case database. We are also looking forward to employing artificial intelligence to

improve our methods for analyzing IoT devices and their vulnerabilities.

Funding: This research was funded by Dubai Electronic Security Center (DESC) and the University of Sharjah.

Acknowledgments: We are grateful to the Dubai Electronic Security Center (DESC) for funding this research

project. We also express gratitude to the OpenUAE Research and Development Group for their support.

 22 of 28

Appendix A

Table A1. Extensive Analysis Phase: First Device - Medical Gateway

 Test case Description Test result Notes

Check SSL

certificate weakness

Tools test the existence of SSL

certificate and gain more

information.

Not

vulnerable

SSL certificate uses OpenSSL and get

TLS 1.2.

Downgrade attack Force use of HTTP over HTTPs. Not

vulnerable

Downgrading the communication from

HTTPs to HTTP doesn’t work. The

device refuses the connection request.

Break the password Attempt to brute force the

password.

Not

vulnerable

The process takes a very long time.

Multiple logins at

the same time

Attempt to login as admin using

different devices at the same time.

Vulnerable The device doesn’t reject the second

access, nor does it notify admin of the

existence of another admin.

Directory access List directories that are accessible

without authentication.

Not

vulnerable

No directories are open.

HTML analysis Check vulnerabilities in html code. Not

vulnerable

No HTML

Inject JavaScript in

the URL

Injecting JavaScript commands in

the URL can give indirect access to

information.

Not

vulnerable

The test is not applicable for this device.

SQL injection in

HTTP request

Use SQL injection in HTTP requests

to gain unauthorized access to

saved data in the server’s database.

Not

vulnerable

The test is not applicable for this device.

Bypass base

authentication

Send misconfigured HTTP header

to check if misconfigurations exist,

which might give access to

authorized information.

Not

vulnerable

The device doesn’t respond to

misconfigured HTTP requests.

Firewall

information

Tool to check the firewall used. Not

applicable

The web server rejects all connections.

Check Metasploit /

Armtage for

possible exploits

Metasploit / Armtage checks if an

attack is possible against the

device.

Not

vulnerable

No exploits

Key installation

attack (KRACK)–

Proof of concept

The KRACK breaks the WPA2

protocol by forcing devices to reuse

nonce during WPA2 handshake.

Vulnerable The device uses another layer of

encryption, as it uses TLS.

Optional encryption

effects

The attack tests if confidential

information (i.e. admin password)

is exposed.

Vulnerable The admin has the option of using

HTTP or HTTPS in the configuration

page. Once it is chosen, credentials are

sent in clear text.

Table A2. Extensive Analysis Phase: Second Device – Wireless Camera

 Test case Description Test result Notes

Multiple logins at

the same time

Attempt to log in as admin using

different devices at the same time.

Vulnerable The device doesn’t reject the second

access, nor does it notify the admin with

the existence of another admin.

Multiple access

attempts

Try multiple passwords, which

results in multiple failed attempts.

Vulnerable DUI doesn’t block attempts, which can

lead to brute force or dictionary attack.

Breaking the

password

Attempt to get the password using

dictionary attack.

Vulnerable As the size of the password increases,

the time it takes to break the password

increases.

 23 of 28

Directory access Check for directories that are

accessible without authorization.

Not

vulnerable

No directories found to be accessible

without authentication.

HTML analysis Check vulnerabilities in HTML

code.

Not

vulnerable

No HTML

Inject JavaScript in

URL

Injecting JavaScript commands in

the URL can give indirect access to

information.

Not

vulnerable

The test is not applicable for this device.

SQL injection in

HTTP request

Injecting SQL requests in HTTP to

gain unauthorized access to data

saved in the server database.

Not

vulnerable

The test is not applicable for this device.

Bypass the base

authentication

Send misconfigured HTTP header

to check if misconfigurations exist,

which might give access to

authorized information.

Not

vulnerable

The device doesn’t respond to

misconfigured HTTP requests.

Firewall

information

Tool to check Firewall used. Not

available

The web server rejects all connections.

Check Metasploit /

Armitage for

possible exploits

Metasploit / Armitage will check if

attacks are possible against the

device.

Not

vulnerable

No exploits are found.

Key installation

attack (KRACK)–

Proof of concept

The KRACK breaks WPA2 protocol

by forcing devices to reuse nonce

during the WPA2 handshake.

Not

vulnerable

The device doesn’t reuse nonce.

Man in the Middle

(MITM) attack

The attack tests if confidential

information (i.e. admin password)

is exposed.

Vulnerable The device doesn’t use HTTPs. Device

credentials are sent in clear text with no

encryption during MITM attack.

Deauthentication

attack

This attack tests if the camera can

be disabled from the wireless.

Vulnerable The device is disassociated from the

network successfully.

Obtaining firmware This tests if the firmware of the IP

camera is found in online

resources.

Applicable The firmware of the wireless camera is

found in online resources.

Reverse engineering This test attempts to dump

firmware from the hardware using

UART in order to obtain root shell

to access sensitive information.

Vulnerable The camera is accessed through the

UART. All files have been sent to

another PC by using FTP server for later

revision. Attackers are also able to write

in the memory of the camera and change

the password.

Cross domain attack The attack tests if the camera has a

file containing weak or improper

configurations.

Vulnerable Both firmware versions (1.02 and 1.16)

are vulnerable to this attack.

No conflict of interest exists.

We wish to confirm that there are no known conflicts of interest associated with this

publication and there has been no significant financial support for this work that could have

influenced its outcome.

 24 of 28

References

[1] V. A. Memos, K. E. Psannis, Y. Ishibashi, B. G. Kim, and B. B. Gupta, “An Efficient Algorithm for

Media-based Surveillance System (EAMSuS) in IoT Smart City Framework,” Futur. Gener. Comput. Syst.,

vol. 83, pp. 619–628, 2018.

[2] C. Adjih et al., “FIT IoT-LAB: A large scale open experimental IoT testbed,” in Proceedings of IEEE World

Forum on Internet of Things, WF-IoT 2015, 2015, pp. 459–464.

[3] A. Tewari and B. B. Gupta, “Security, privacy and trust of different layers in Internet-of-Things (IoTs)

framework,” Futur. Gener. Comput. Syst., 2018.

[4] A. Tewari and B. B. Gupta, “A lightweight mutual authentication protocol based on elliptic curve

cryptography for IoT devices,” Int. J. Adv. Intell. Paradig. Inderscience Publ., vol. 9, no. 2–3, pp. 111–121,

2017.

[5] M. Zanella, Andrea and Bui, Nicola and Castellani, Angelo and Vangelista, Lorenzo and Zorzi,

“Internet of Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014.

[6] O. Badve, B. B. Gupta, and S. Gupta, “Reviewing the Security Features in Contemporary Security

Policies and Models for Multiple Platforms,” in Handbook of Research on Modern Cryptographic Solutions

for Computer and Cyber Security, no. May, 2017, pp. 479–504.

[7] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and Other Botnets,”

Computer (Long. Beach. Calif)., vol. 50, no. 7, p. 79, 2017.

[8] B. B. Gupta, Computer and cyber security: principles, algorithm, applications, and perspectives. CRC Press,

2018.

[9] C. Stergiou, K. E. Psannis, B. G. Kim, and B. Gupta, “Secure integration of IoT and Cloud Computing,”

Futur. Gener. Comput. Syst., vol. 78, pp. 964–975, 2018.

[10] J. A. Jerkins, “Motivating a market or regulatory solution to IoT insecurity with the Mirai botnet code,”

in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017, 2017, pp. 1–

5.

[11] P. Cao, E. C. Badger, Z. T. Kalbarczyk, R. K. Iyer, A. Withers, and A. J. Slagell, “Towards an unified

security testbed and security analytics framework,” in Proceedings of the 2015 Symposium and Bootcamp on

the Science of Security, 2015, pp. 1–2.

[12] G. Murad, A. Badarneh, A. Quscf, and F. Almasalha, “Software Testing Techniques in IoT,” in 2018 8th

International Conference on Computer Science and Information Technology, CSIT 2018, 2018, pp. 17–21.

[13] S. Siboni et al., “Security Testbed for Internet-of-Things Devices,” IEEE Trans. Reliab., vol. 68, no. 1, pp.

23–44, 2018.

[14] K. Ly and Y. Jin, “Security Studies on Wearable Fitness Trackers,” in 38th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society., 2016, p. 32816.

[15] J. Wurm, K. Hoang, O. Arias, A. R. Sadeghi, and Y. Jin, “Security analysis on consumer and industrial

IoT devices,” in Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 2016,

vol. 25–28–Janu, pp. 519–524.

[16] F. M. Tabrizi and K. Pattabiraman, “Formal Security Analysis of Smart Embedded System,” Proc. 32nd

Annu. Conf. Comput. Secur. Appl., pp. 1--15, 2016.

[17] T. H.-J. Kim, L. Bauer, J. Newsome, A. Perrig, and J. Walker, “Challenges in Access Right Assignment

for Secure Home Networks.,” in HotSec, 2010.

[18] B. Ur, J. Jung, and S. Schechter, “The current state of access control for smart devices in homes,” in

 25 of 28

Workshop on Home Usable Privacy and Security (HUPS), 2013.

[19] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner, “Smart Locks: Lessons for Securing

Commodity Internet of Things Devices,” Proc. 11th ACM Asia Conf. Comput. Commun. Secur. - ASIA CCS

’16, pp. 461–472, 2016.

[20] S. Chistiakov, “Secure storage and transfer of data in a smart lock system,” 2017.

[21] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart Nest Thermostat  : A Smart Spy in Your

Home,” Black Hat USA, pp. 1–8, 2014.

[22] Y. Oren and A. D. Keromytis, “From the Aether to the Ethernet-Attacking the Internet using Broadcast

Digital Television.,” in USENIX Security Symposium, 2014, pp. 353–368.

[23] T. Denning and T. Kohno, “Empowering consumer electronic security and privacy choices: Navigating

the modern home,” in Symposium on Usable Privacy and Security (SOUPS), 2013.

[24] M. Ye, N. Jiang, H. Yang, and Q. Yan, “Security analysis of Internet-of-Things: A case study of august

smart lock,” in Computer Communications Workshops (INFOCOM WKSHPS), 2017 IEEE Conference on,

2017, pp. 499–504.

[25] T. Denning, T. Kohno, and H. M. Levy, “Computer security and the modern home,” Commun. ACM,

vol. 56, no. 1, p. 94, 2013.

[26] B. Ur, J. Jung, and S. Schechter, “Intruders versus intrusiveness: teens’ and parents’ perspectives on

home-entryway surveillance,” in Proceedings of the 2014 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, 2014, pp. 129–139.

[27] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart Home Applications,” in

Proceedings of 2016 IEEE Symposium on Security and Privacy, SP 2016, 2016, pp. 636–654.

[28] N. Gyory and M. Chuah, “IoTOne: Integrated platform for heterogeneous IoT devices,” in 2017

International Conference on Computing, Networking and Communications, ICNC 2017, 2017, pp. 783–787.

[29] M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey on the security of IoT

frameworks,” J. Inf. Secur. Appl., vol. 38, pp. 8–27, 2018.

[30] E. Fernandez, J. Pelaez, and M. Larrondo-Petrie, “Attack patterns: A new forensic and design tool,” in

IFIP International Conference on Digital Forensics, 2007, pp. 345–357.

[31] T. A. Alghamdi, A. Lasebae, and M. Aiash, “Security analysis of the constrained application protocol in

the Internet of Things,” in Future Generation Communication Technology (FGCT), 2013 second international

conference on, 2013, pp. 163–168.

[32] B. Cyr, W. Horn, D. Miao, and M. Specter, “Security analysis of wearable fitness devices (fitbit),”

Massachusets Inst. Technol., p. 1, 2014.

[33] M. Moody and A. Hunter, “Exploiting known vulnerabilities of a smart thermostat,” in Privacy, Security

and Trust (PST), 2016 14th Annual Conference on, 2016, pp. 50–53.

[34] E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices: The case of smart lights,” in

Security and Privacy (EuroS&P), 2016 IEEE European Symposium on, 2016, pp. 3–12.

[35] O. Arias, S. Member, J. Wurm, K. Hoang, and Y. Jin, “Privacy and security in internet of things and

wearable devices,” IEEE Trans. Multi-Scale Comput. Syst., vol. 7766, no. 2, pp. 99–109, 2015.

[36] Y. Bachy et al., “Smart-TV security analysis: practical experiments,” in Dependable Systems and Networks

(DSN), 2015 45th Annual IEEE/IFIP International Conference on, 2015, pp. 497–504.

[37] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-phones attacking smart-homes,” in Proceedings of

the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, 2016, pp. 195–200.

[38] P. Morgner, S. Mattejat, and Z. Benenson, “All your bulbs are belong to us: Investigating the current

 26 of 28

state of security in connected lighting systems,” arXiv Prepr. arXiv1608.03732, 2016.

[39] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu, “Security Vulnerabilities of Internet of Things: A Case

Study of the Smart Plug System,” IEEE Internet Things J., 2017.

[40] Z. Ling, K. Liu, Y. Xu, Y. Jin, and X. Fu, “An End-to-End View of IoT Security and Privacy,” in

GLOBECOM 2017-2017 IEEE Global Communications Conference, 2017, pp. 1–7.

[41] Y. Seralathan et al., “IoT security vulnerability: A case study of a Web camera,” in Advanced

Communication Technology (ICACT), 2018 20th International Conference on, 2018, pp. 172–177.

[42] L. Huraj, M. Simon, and T. Hor{k, “IoT Measuring of UDP-Based Distributed Reflective DoS Attack,” in

2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY), 2018, pp. 209–214.

[43] S. Siboni, A. Shabtai, and Y. Elovici, “Leaking data from enterprise networks using a compromised

smartwatch device,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp.

741–750.

[44] H. Xu, F. Xu, and B. Chen, “Internet Protocol Cameras with No Password Protection: An Empirical

Investigation,” in International Conference on Passive and Active Network Measurement, 2018, pp. 47–59.

[45] J. Classen, D. Wegemer, P. Patras, T. Spink, and M. Hollick, “Anatomy of a Vulnerable Fitness Tracking

System: Dissecting the Fitbit Cloud, App, and Firmware,” Proc. ACM Interactive, Mobile, Wearable

Ubiquitous Technol., vol. 2, no. 1, p. 5, 2018.

[46] T. Willingham, C. Henderson, B. Kiel, M. S. Haque, and T. Atkison, “Testing vulnerabilities in bluetooth

low energy,” in Proceedings of the ACMSE 2018 Conference, 2018, p. 6.

[47] A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, “A method to detect Internet of Things botnets,” in

Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018 IEEE Conference of Russian,

2018, pp. 105–108.

[48] M. Gegick and L. Williams, “Matching attack patterns to security vulnerabilities in software-intensive

system designs,” ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, p. 1, 2005.

[49] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, “IoT Sentinel:

Automated device-type identification for security enforcement in IoT,” in Distributed Computing Systems

(ICDCS), 2017 IEEE 37th International Conference on, 2017, pp. 2177–2184.

[50] S. Demetriou et al., “Guardian of the HAN: Thwarting Mobile Attacks on Smart-Home Devices Using

OS-level Situation Awareness,” arXiv Prepr. arXiv1703.01537, 2017.

[51] E. Gelenbe, J. Domanska, T. Cz|chorski, A. Drosou, and D. Tzovaras, “Security for internet of things:

the SerIoT project,” in 2018 International Symposium on Networks, Computers and Communications (ISNCC),

2018, pp. 1–5.

[52] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things (IoT): research, simulators, and

testbeds,” IEEE Internet Things J., vol. 5, no. 3, pp. 1637–1647, 2018.

[53] Y. Berhanu, H. Abie, and M. Hamdi, “A testbed for adaptive security for IoT in eHealth,” in Proceedings

of the International Workshop on Adaptive Security, 2013, p. 5.

[54] V. Sachidananda, J. Toh, S. Siboni, S. Bhairav, A. Shabtai, and Y. Elovici, “Let the cat out of the bag: A

holistic approach towards security analysis of the internet of things,” in Proceedings of the 3rd ACM

International Workshop on IoT Privacy, Trust, and Security, co-located with ASIA CCS 2017, 2017, pp. 3–10.

[55] M. L. Hale, K. Lotfy, R. F. Gamble, C. Walter, and J. Lin, “Developing a platform to evaluate and assess

the security of wearable devices,” Digit. Commun. Networks, 2018.

[56] A. Tekeoglu and A. S. Tosun, “A Testbed for Security and Privacy Analysis of IoT Devices,” in Mobile

Ad Hoc and Sensor Systems (MASS), 2016 IEEE 13th International Conference on, 2016, pp. 343–348.

 27 of 28

[57] E. S. Alashwali and K. Rasmussen, “What’s in a Downgrade? A Taxonomy of Downgrade Attacks in

the TLS Protocol and Application Protocols Using TLS,” in International Conference on Security and

Privacy in Communication Systems, 2018, pp. 468–487.

 28 of 28

Omnia Abu Waraga

Omnia Abu Waraga received her bachelor’s degree (with honor) in computer engineering from University of

Sharjah, UAE in 2017. Currently, she is persuading her master’s degree in computer science in the same

university. She is also a research assistant in OpenUAE Research and Development group. She has interests in

Internet of Things security, vulnerability assessment and artificial intelligence. Omnia is a mentoring coordinator

in ArabWIC UAE chapter, member of IEEE and an event organizer in Google Developer Group Sharjah branch.

Meriem Bettayeb

Meriem Bettayeb received her bachelor’s degree (with first honor) in computer engineering from University of

Sharjah, UAE in 2017 and received her master’s degree in computer engineering with honor in the same

university in 2019. Currently, she is a research assistant in OpenUAE Research and Development group. She has

interests in Internet of Things security, firmware analysis, artificial intelligence and Blockchain technology.

Meriem is a mentoring and event coordinator in ArabWIC UAE chapter, member of IEEE and an event organizer

in Google Developer Group Sharjah branch.

Dr. Manar Abu Talib

Dr. Manar Abu Talib has interest in software engineering software measurement, software quality and testing,

ISO-27001 for Information Security and OpenSource Software. Dr. Manar was involved in developing the Arabic

version of ISO-19761 (COSMIC-FFP measurement method). She published +40 refereed conferences and journals,

involved in +200 professional and research activities and supervised 30 capstone projects. Dr. Manar is a

Co-coordinator of OpenUAE Research & Development Group and the International Collaborator to Software

Engineering Research Laboratory in Montreal, Canada. Manar is the ArabWIC VP, Google WTM Lead, an executive member in UAE

IEEE Section and the UAE representative for the COSMIC-FPP Education Committee.

Dr. Qassim Nasir

Dr. Qassim Nasir is currently an associate professor in University of Sharjah since 2009. He received his B.Sc.,

M.Sc., and Ph.D. degrees from the University of Baghdad, Iraq. He was working with Nortel Networks, Canada, as a

senior system designer and then as a senior firmware system designer. His current research interests are in

telecommunication and network security, CPS, IoT, drones and GPS jamming. Dr. Qassim has published over 90

refereed conferences, journals, book chapter, and technical reports. He holds professional certificate such as CISSP and Cisco trainer. He

was visiting professor at Helsinki University of Technology, Finland, during the summers of 2002-2009. Dr. Qassim is a Co-coordinator of

OpenUAE Research & Development Group.

