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Abstract: The emergence of technology associated with the Internet of Things (IoT) is reshaping 

our lives, while simultaneously raising many issues due to their low level of security, which 

attackers can exploit for malicious purposes. This research paper conducts a comprehensive 

analysis of previous studies on IoT device security with a focus on the various tools used to test IoT 

devices and the vulnerabilities that were found. Additionally, the paper contains a survey of 

IoT-based security testbeds in the research literature. In this research study, we introduce an open 

source platform for identifying weaknesses in IoT networks and communications. The platform is 

easily modifiable and extendible to enable the addition of new security assessment tests and 

functionalities. It automates security evaluation, allowing for testing without human intervention. 

The testbed reports the security problems of the tested devices and can detect all attacks made 

against the devices. It is also designed to monitor communications within the testbed and with 

connected devices, enabling the system to abort if malicious activity is detected. To demonstrate 

the capabilities of the proposed IoT security testbed, it is used to examine the vulnerabilities of two 

IoT devices: a wireless camera and a smart bulb.  

Keywords: Internet of Things; IoT Testbed; Vulnerability Assessment; Automated Testbed 

Architecture 

 

1. Introduction 

The Internet of Things (IoT) is a recent evolution in communication technology that is rapidly 

reshaping our future. This technology enables communication and interaction between small 

embedded devices, improving the ability of such devices to better serve our needs [1]. In the future, 

IoT will be a key technological solution for many sectors including health care, agriculture and 

manufacturing [2], [3]. For example, in the field of health care, IoT can monitor and control human 

health indicators and rapidly deliver reports and alarms to medical personnel. The application of 

these devices is saving many lives. According to [4], the total worth of all existing IoT devices is 

valued at around $6.2 trillion, most of which is deployed in healthcare applications. 

Moreover, IoT technology is considered to be one of the main components in the 

up-and-coming trend of smart cities. Many studies have discussed the various uses of IoT in shaping 

healthier building structures, managing waste, monitoring noise, controlling smart lighting and 

even relieving traffic [5]. The concept of smart cities is emerging as a result of the perceived benefits 

to citizens, government and the environment.  

However, due to the limited capabilities of IoT devices, many of them have vulnerabilities that 

make them prone to various attacks. A vulnerable IoT device can be a dangerous hole in any 

network, regardless of its security level [6]. Many attacks have involved leveraging the 
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vulnerabilities of IoT devices, including actions such as replay attacks, zero-day attacks, 

impersonation attacks and spoofing attacks. An increase in botnet attacks has also been observed. 

The Mirai botnet is a well-known example; it attacks devices by exploiting default credentials [7], [8]. 

According to Proofpoint, more than 25% of the botnet’s targets were smart TVs, baby monitors and 

other smart home devices [9]. Hundreds of IoT devices have been corrupted and forced to launch 

Denial of Service (DoS) attacks on critical servers. These attacks use Domain Name Service (DNS) 

and Network Time Protocol (NTP) as a form of distributed DoS (DDoS) attack. One study reported 

that the main reason the Mirai botnet is so effective is the use of low-cost, easy-to-install IoT devices, 

developed with little or no concern for security [10]. 

Testing the security of IoT devices before introducing them to the market is an important step in 

product development, and this is a field in which testbeds can be extremely useful. A security 

testbed is a predefined testing environment in which all triggers, tests, attacks and devices are 

controlled [11]. Testbeds are isolated to prevent interference from surrounding noise. They perform 

comprehensive vulnerability assessments on devices using penetration testing tools within certain 

environmental conditions. Generally, testbeds consist of an array of software and hardware tools 

working with simulators to change environmental settings such as light, time, GPS location, etc. 

They assess the device’s vulnerabilities under real-world conditions and analyze its behavior to 

detect any malicious applications. Testbeds can specify various parameters to assess different 

security aspects. They examine the IoT device’s response to each test in order to draw conclusions 

about the device’s weaknesses and vulnerabilities. 

According to Murad et al. [12], testing IoT devices can be challenging due to the characteristics 

and limitations of these devices. The next section of this paper is a comprehensive literature review 

presenting studies that attempt to analyze IoT device vulnerabilities and discussing the tests 

developed for each product. Some researchers have introduced structures for IoT security testbeds, 

but few of these designs were implemented. To the best of our knowledge, one of the most 

comprehensive IoT security testbeds was implemented and developed by Siboni et al. [13]. They 

introduced a testbed structure and implementation plan for testing IoT devices, using a 

closed-source tool as a testbed orchestra. However, their testbed lacks scalability, making it difficult 

to add more tests. The aim of this paper is to design an automated IoT security testbed that is 

comprehensive, easy to use and repeatable, using only open-source tools. The testbed has a modular 

structure so that tests can be added without affecting the testbed’s structure and behavior. This 

testbed will assess the security of IoT products that are fully functional and ready to be used. The 

main goal of this testbed is to identify the minimum security level of IoT products.  

The practical implications of our product are that it can be used by IoT pen-testers and product 

manufacturers to assess the security of IoT devices before they are distributed. It can also be used by 

market regulators to set a minimum level of security for IoT devices sold on the market. The 

modular nature of our software also allows researchers to extend the system and add their own test 

cases to the IoT testbed, making it a powerful tool for research and experimentation. We are 

providing the IoT security testbed as a service for individuals from academia and industry, and for 

smart home IoT end users. The implementation results in Section 5 show the testbed’s effectiveness 

at detecting the vulnerabilities of IoT devices. 

The main contributions of this paper are to: 

 Conduct a comprehensive analysis of previous studies on IoT device security stating what tools 

were used on which devices and what vulnerabilities were found. 

 Introduce a survey of IoT-based security testbeds introduced in the research literature. 

 Define a structure for building an IoT security testbed to assess the vulnerabilities of IoT devices 

using open source tools. 

 Introduce an automated testbed that reduces user interaction. This will guarantee that all 

connected devices are authenticated in order to meet security requirements. It will report attacks 

against devices as well as against the testbed itself. In addition, it is designed to monitor 

communication within the testbed and with outboard connections. It aborts upon detecting 

malicious activity. 
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 Demonstrate the functionality of the fully implemented automated testbed by testing two IoT 

devices: a wireless camera and a smart bulb. 

Our automated testbed is used on two IoT devices: a wireless camera and a smart bulb. The 

wireless camera is an example of an IoT device that hosts a web server to provide its services. The 

device is configured via a web page hosted in the web server. In contrast, the smart bulb is an 

example of an IoT device that publishes its updated status in the network (advertisements). Such 

devices can usually be configured by using a mobile application that connects directly to the IoT 

device through a Wireless Local Network (WLAN) or by connecting to the vendor server. Due to the 

different structures of the two IoT devices, the tests conducted by the proposed testbed are different 

as well. It is the role of the automated testbed to identify the device type and the services hosted in 

every port in order to launch the appropriate test attack. In our experiment, we reported that the 

wireless camera is vulnerable due to the fact that it sends user credentials in plain text with no 

encryption, and due to the fact that it does not use certificates. As for the smart bulb, it is vulnerable 

to replay attacks, as it accepted repeated packets from nodes in the network other than the 

authenticated user.  

The structure of this research paper is as follows: Section 2 is a comprehensive review of the 

literature on IoT security and mitigation attempts including testbeds. Section 3 presents the 

requirements and structure of our proposed IoT security testbed. The setup for the proposed testbed 

is shown in Section 4. Section 5 demonstrates a full implementation of our testbed and shows its 

capabilities by testing two IoT devices and analyzing the results. Finally, some recommendations 

and future plans are suggested in Section 6. 

2. Comprehensive Study on IoT Security Analysis  

Markets nowadays promote various types of IoT devices and products—smart cameras, smart 

plugs, etc.—some of which have severe security issues. Many security researchers have conducted 

vulnerability assessments for IoT products, which we discuss in this section.  

2.1 IoT Vulnerabilities 

Several researchers have investigated security breaches in IoT devices in order to assess their 

security mechanisms and identify all potential vulnerabilities [14]–[23]. Section 2.1 concentrates on 

the weaknesses found in IoT products in the academic literature.  

A case study on the security of the August Smart Lock was done by Ye et al. [24]. The study 

analyzed the device’s vulnerabilities, which include exposure of the device’s handshake key and the 

owner’s account data and personal information, as well as susceptibility to Denial of Service (DoS) 

attacks. Methods to defend the devices against these attacks were conducted in the study in an effort 

to improve the device’s security. In another study, Ly & Jin [14] analyzed the problem of user 

information leakage. They examined the firmware of tech wristbands including the Nike+ Fuelband, 

the Huawei band, the Xiaomi Mi band and the Codoon band and found insufficient security causing 

leakage of user information. 

Another IoT device that has been the focus of security testing is the smart meter. Two research 

teams, Wurm et al. [15] and Tabrizi et al. [16], both published studies in which they simulated smart 

meter functionalities and launched controlled attacks to discover the device’s weak points. Wurm et 

al. [16] proposed solutions to improve the device’s security, while Tabrizi et al. [16] added an 

analysis tool to enable users to detect malicious activity. 

Smart lock security has also grabbed the attention of researchers [17]–[20], many of whom have 

analyzed the various risks associated with these IoT devices. Some of the smart locks under scrutiny 

exposed sensitive user information, while others could be controlled by unauthorized devices. To 

solve the access control issue, Kim et al. [17] suggested that modern smart locks should have the 

following control levels: full, restricted, partial and minimal. Chistiakov et al. [20] developed a new 

security design for smart locks using an Electrically Erasable Programmable Read-Only Memory 

(EEPROM) chip. The improved design included user authentication over the Hypertext Transfer 

Protocol Secure (HTTPS) channel. 
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The Smart Nest Learning Thermostat is another smart home device that has been analyzed by 

researchers. In their study, Hernandez et al. [21] tested the device by booting a malicious image 

through a USB port. In another paper, Oren et al. [22] discovered attacks on smart TVs that targeted 

the devices’ communication protocols. 

With the emergence of IoT technology, another concept entering the market is smart home 

technology, which enables wireless control of doors, lights and other appliances. According to 

Denning et al. [23], these types of home devices are vulnerable to attacks due to the lack of a 

professional administrator. Studies by Denning et al. [25] and Ur et al. [26] have analyzed access 

control policies and threats associated with these types of devices. They also discussed possible 

attacks on smart home devices such as data destruction, illegal physical entry and attacks of privacy 

violation. They showed how such attacks could reduce the security level of home devices. 

As the number of IoT devices deployed in homes increases, controlling these devices becomes 

progressively more complicated because each device uses a separate mobile application. This issue 

can be resolved with a smart home system, such as Samsung’s SmartThings or Apple’s HomeKit, 

which controls all devices efficiently using a single app. 

The analysis of Samsung SmartThings by Fernandes [27] identified four possible attacks that 

could be launched against IoT device control applications. These included creating backdoors in 

mobile apps, snooping door-lock pin codes, disabling protection setups and generating fake alarms. 

In addition, Gyory and Chuah [28] found security bugs in SmartThings that gave a third party 

privileged access to the system. The researchers solved this issue by proposing IoT ONE, an 

open-source automation platform developed by openHab that supports a number of IoT devices 

along with Z-wave, Zigbee and Wi-Fi protocols. However, openHab is not compatible with all 

SmartThings devices. Ammar et al. [29] also conducted a comprehensive analysis on Samsung 

SmartThings and Apple HomeKit, as well as IoT frameworks such as AWS IoT Amazon and Azure 

IoT Microsoft.  

Studies by Fernandez et al. [30] and Alghamdi et al. [31] examined the security drawbacks of 

network protocols, which have been the target of attacks in recent years. Fernandez et al. [30] 

studied DoS attack patterns on VoIP networks and improved the security structure of the protocol, 

but their improvement requires effort to be applied. Alghamdi et al. [31] examined the security 

drawbacks of the Constrained Application Protocol (CoAP), which is an application layer for 

constrained IoT devices. 

Other researchers have launched attacks on IoT devices in order to investigate potential 

security weaknesses [15], [32]–[34]. Cyr et al. [32] conducted network analyses and firmware 

analyses on smart watches, while also checking for mobile app vulnerabilities. The authors traced 

the user’s private address from the IoT device, captured the key exchange, reverse-engineered the 

mobile app, monitored traffic between the app and the Fitbit server and used proxy Transport Layer 

Security (TLS) traffic to intercept and extract data. The authors used various tools including 

Ubertooth, Wireshark, crackle, APK Extractor and dex2jar. Moreover, they used the Joint Testing 

Action Group (JTAG) for hardware analysis. Willingham et al. [57] focused on assessing the security 

of BLE devices. They tested the security of smart watches manually using Wireshark, Kismet and 

Crackle. 

Table 1 shows a summary of the research conducted to assess the vulnerabilities of IoT products 

though attacks. The table lists the topic of each paper and the IoT products that were analyzed. The 

table also lists the tools used and the attacks conducted in the research papers, as well as the results 

and findings of each attack.  
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Table 1. Conducted IoT Attacks and Results 

R
ef

. 

Y
E

A
R

 

SUMMARY 
PRODUCTS 

TESTED 
TOOLS ATTACKS RESULTS 

C
Y

R
 e

t 
a

l.
 [

3
2

] 

2
0

1
4 

 Analyzed smart 

watches by network 

analysis, firmware 

analysis. 

 Assessment of mobile 

app vulnerabilities. 

 Fitbit smart watch. 

 JTAG 

 Ubertooth 

 Wireshark 

 Crackle 

 APK 

Extractor 

 Backsmali 

 dex2jar 

 Trace private addresses. 

 Capture key exchange. 

 Reverse engineer mobile 

app. 

 Monitor traffic between 

app and Fitbit server and 

intercept TLS traffic with 

proxy. 

 MAC address is 

traceable. 

 Key exchange is not 

exposed. 

 TLS was replaced 

through a proxy to 

extract clear text 

credentials. 

A
R

IA
S

 e
t 

a
l.

 [
3

5
] 

2
0

1
5
 

 Created a Trojan 

Horse that exposed 

devices to an external 

IP address to be 

attacked by a server. 

 Accessed devices 

physically to change 

firmware. 

 Nest Thermostat 

 Nike+ Fuelband 
     - 

 Hardware  

access on  

Nike+ FuelBand. 

 Physical tamper for Nest 

to get backdoor. 

 Firmware and 

checksum modifiable. 

B
A

C
H

Y
 e

t 
a

l.
 

[3
6

] 

2
0

1
5 

 Multiple attacks  

on smart TV by 

intercepting channel 

or attacking apps 

running on the TV. 

 Smart TV – 4 

types. 
 Binwalk 

 Compromise devices in 

public network ADSL to 

extract firmware. 

 Apply XSS attacks on web 

browser. 

 Firmware is updated in 

an unsecured channel, 

making it prone to 

firmware modification 

attack. 

M
O

O
D

Y
 a

n
d

 H
U

N
T

E
R

 

[3
3

] 

2
0

1
6 

 Used Kiddie Scripts 

(tool for non-IT 

practitioners) to 

exploit devices. 

 Nest thermostat. 

 Kiddie 

scripts 

 Wireshark 

 Ettercap 

 Forensic 

 Toolkit 

(FTK)  

 Autopsy 

 Physical access to gain 

credentials. 

 Packet analysis. 

 Failure to gain root 

access. 

 Communication was 

encrypted with AES128 

encryption. 

W
U

R
M

 e
t 

a
l.

 [
1

5
] 

2
0

1
6 

 Analyzed security of 

Haier home systems 

through different 

attacks. 

 Haier Smart Care  

home automation 

system. 

 Wireshark, 

UART. 

 Obtain password with 

brute force attack. 

 Gain root shell by 

accessing UART. 

 Analyze network analysis 

and reverse engineer 

firmware on air. 

 Telnet credentials were 

exposed by root shell 

access. 

 Firmware updates 

were sent in clear text. 

 Reversed firmware 

exposed details about 

device’s MQTT 

information. 

R
O

N
E

N
 a

n
d

 

S
H

A
M

IR
 [

3
3

] 

2
0

1
6 

 Analyzed smart bulb 

security issues and 

attempted to gain 

control from 100 

meters away. 

 Limitless LED 

 Philips Lux 

 Introduced 

their own 

receiver. 

 Eavesdrop control 

packets. 

 Extract secret information 

using API. 

 Private data were 

exposed during MITM 

attack. 

S
IV

A
R

A
M

A
N

 e
t 

a
l.

 

[3
7

] 

2
0

1
6 

 Injected malware in 

an iOS mobile app to 

discover BLE and 

wireless IoT devices 

with a server. 

 Devices exposed to 

external IP using 

 Dlink  

DCS-5500G 

camera. 

 WeMO plug 

 Netgear 

Nighthawk R7000 

AP [Emulated] 

 iOS App 

 a cloud- 

hosted 

server to 

receive scan 

results from 

the app. 

 Search nearby LANs to 

find devices. 

 Expose those devices to a 

public IP address. 

 Use SSDP to collect 

device responses in 

LAN and analyze them 

to check for IoT 

devices. 

 Exposed devices 

enabled server to attack 
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UPnP were attacked 

by server. 

devices. 

 

M
O

R
G

N
E

R
 e

t 
a

l.
 [

3
8

] 

 

2
0

1
6 

 Leverage insecurity of 

Zigbee light link 

(ZLL) to attack smart 

bulbs. 

 Philips Hue 

 Osram Lightify 

 GE Link 

 Ubertooth 

spectrum 

analyzer 

 DoS attack. 

 Reset device attack. 

 Network hijacking. 

 Command injection 

attacks. 

 ZLL devices vulnerable 

to command injection, 

DoS and device reset 

attacks. 

 New passwords 

injected by attackers as 

master keys. 

L
IN

G
 e

t 
a

l.
 [

3
9

] 

2
0

1
7 

 Reversed 

communication of 

smart socket. 

 Socket Edimax 

plug. 

 Special 

attacking 

scripts 

written in 

python 

 Device scanning. 

 Brute force. 

 Spoofing. 

 Firmware modification 

attack 

 Insecure 

communication 

protocols. 

 Lack of device 

authentication. 

 Weak password policy. 

L
IN

G
 e

t 
a

l.
 [

4
0

] 

2
0

1
7 

 Analyzed 

communication 

protocols and 

architecture of 

Edimax IP camera 

and extracted 

vulnerabilities. 

 Edimax IP camera 

system. 
     - 

 Scan online devices by 

enumerating all possible 

MAC combinations. 

 Brute force device 

credentials. 

 Emulate victim camera to 

fool authentication server. 

 The camera exposed its 

connection status 

(online/offline). 

 Vulnerable to brute 

force. 

 Spoof attack can 

impersonate real 

cameras to get 

authentication 

information. 

S
E

R
A

L
A

T
H

A
N

 e
t 

a
l.

 [
4

1
] 

2
0

1
8  Analyzed IP camera 

traffic. 
 IP Cameras 

 Nmap 

 Wireshark 

 Perform network analysis 

and MITM. 

 Brute force port RTSP to 

get video streams. 

 Reverse engineer mobile 

app. 

 RTSP port found to 

expose real-time 

streams that can send 

commands. 

 Commands/ 

credentials sent in clear 

text. 

 Failed to get video 

streams. 

 Credentials in mobile 

app are in clear text. 

H
U

R
A

J 
et

 a
l.

 [
4

2
] 

2
0

1
8 

 Created a reflected 

UDP-based DoS 

attack using IoT 

devices. 

 IP camera 

 Philips Hue 

Bridge 

 AirLive Wireless 

Printer 

 Raspberry Pi 

 Hping3 

tool. 

 Flood UDP DoS attack 

using victim’s IP. 

 Victim device services 

were not affected. 

S
IB

O
N

I 
et

 a
l.

 [
4

3
] 

2
0

1
8 

 Compromised smart 

watch to impersonate 

a WiFi printer. 

 WiFi Printer. 

 Wireshark 

 Printer 

Command 

Language 

(PCL) 

 Airoplay 

 De-authenticate 

legitimate printer and 

host fake AP. 

 Successfully received 

printing orders from 

devices in network. 

X
U

, X
U

, 
a

n
d

 

C
H

E
N

 [
4

4
] 

2
0

1
8 

 Used Insecam website 

to retrieve open 

cameras with live 

streams. 

 Different IP 

cameras taken 

from Insecam 

website. 

 Angry IP 

(for 

scanning 

domains). 

 Checked open-access 

devices. 

 Many IP cameras did 

not have passwords 

set. 
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C
L

A
S

S
E

N
 e

t 
a

l.
 [

4
5

] 

2
0

1
8 

 Analyzed many 

security 

vulnerabilities and 

attacks on Fitbit 

smartwatch. 

 Fitbit smartwatch 

 APKtool 

 Gatttool 

 Many 

others 

 Leak information. 

 Analyze firmware and 

modify protocols. 

 Modify Fitbit mobile app 

to access cloud. 

 Information leakage. 

 Injecting compromised 

firmware. 

 Modifying app to 

access developer mode 

and gain access to 

cloud. 

W
IL

L
IN

G
H

A
M

 

E
T

 A
L

. [
4

6
] 

2
0

1
8 

 Find exploits in the 

BLE protocol through 

testing smartwatches 

using Kali Linux and 

Ubertooth 

 FitBit Charge 

 Logitech 

Keyboard 

 LG watch 

 Wireshark 

 Kismet 

 Crackle 

 Packet sniffing 

 Ubertooth was not able 

to read personal data. 

 Due to unawareness 

packet, format packets 

were not 

understandable. 

2.2 Vulnerability Mitigation Techniques and Security Testbeds 

To mitigate security holes, researchers have developed defense methodologies. Some 

researchers, such as Prokofiev, Smirnova & Surov [47], proposed tools that can detect attacks in 

advance. They introduced a logistic regression method that analyzes IoT devices and their network 

characteristics to assess the probability of botnet attacks on IoT devices. Gegick & Williams [48] 

compiled attack patterns that highlight security issues in software design and found that matching 

these patterns to security threats in the design phase helps to prevent threats early. Miettinen et al. 

[49] introduced a framework to secure vulnerable devices by identifying devices connected to a 

network using network traffic fingerprinting and machine learning techniques. This is useful in 

increasing or decreasing the security restriction level on connected devices. 

As discussed earlier, smart home security is essential. Demetriou et al. [50] increased security in 

the home environment by creating a software-defined network (SDN) that categorizes IoT devices as 

nodes and smartphones as monitors to check node behavior. Gelenbe et al. [51] proposed SerIoT, an 

IoT platform based on SDN and secure routers. 

Another important focus of recent research was testbed assessments. Generally, IoT testbeds 

analyze various aspects of IoT, but they do not specifically address device security. According to 

Chernyshev et al. [52] and Adjih et al. [2], sometimes testbeds are used experimentally as a substitute 

for IoT simulators. For example, FIT IoT-LAB is a testbed for low-power wireless devices used in 

conjunction with mobile robots for large-scale environment experiments. The resulting 

heterogeneous testing system covers many IoT case studies and applications. 

Nevertheless, to gain a more general understanding of IoT device exploits and vulnerabilities, 

many researchers used security testbeds. Berhanu & Abie [53] illustrated a testbed for securing IoT 

devices in eHealth applications. For example, many low-power devices communicate by receiving 

and forwarding patient indicators using low-rate communication media. The researchers developed 

a scenario for the assessment and validation of context-aware adaptive security solutions for 

eHealth.  

Moreover, Sachidananda et al. [54] introduced a security testbed to analyze the security issues 

of IoT devices. This testbed specified architecture and design requirements to support the 

development of penetration testing for security analysis. The penetration testing included port 

scanning, fingerprinting, process enumeration and vulnerability scanning. They conducted testing 

based on the security holes in the IoT device market (i.e. Amazon Echo, Nest Cam, Philips Hue, 

SENSE Mother, Samsung SmartThings, Withings HOME, WeMo Smart Crock-Pot and Netatmo 

Security Camera). The testbed included various IoT devices such as smart home devices, smart 

wearables and Wireless Sensor Networks (WSNs), which were tested according to security 

requirements. In terms of testbed control and management, their testbed uses NI TestStand software 

to manage testbed events and processes. NI TestStand is a closed source software that runs 

exclusively on Windows OS which is heavily restrictive and proprietary. This prevents tests from 

managing wireless cards, passive capture of packets and other network or low-level functionalities, 

which is considered a huge drawback as it limits network penetration testing capabilities. 
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Hale et al. [55] proposes an open source platform called SecuWear which identifies the 

vulnerabilities of commercial hardware. The SecuWear testbed captures the information necessary 

for identifying different attacks, thereby assessing the security of wearable devices. Moreover, it 

provides to the security community a process for performing attacks and mitigating information. 

The disadvantage of SecuWear is that identified vulnerabilities on Metawear must still be 

investigated in commercial IoT devices to determine if they apply. Furthermore, vulnerabilities may 

be specific to certain open source components, causing false positives when identifying security 

issues as common problems. 

Table 2 summarizes the findings of our research on IoT security testbeds and compares it with 

our IoT security testbed. This comparison is based on the testbed’s approach, the hardware setup 

required to build the testbed, the devices tested, the attacks performed by the testbed and the 

software tools used. Information is also included about whether or not the testbeds are automated, 

the availability of a Management System (MS) that controls the testbed, and whether or not the MS is 

open source (OS), as well as the existence of Wi-Fi and BLE options.  

Table 2. Literature review of IoT security testbeds  

R
ef

. 

Y
ea

r 

Testbed approach Hardware Setup Devices tested 
Attacks and experiments 

covered 
SOFTWARE 

A
u

to
-m

a
te

d
 

M
S

 

O
S

 

W
i-

F
i 

B
L

E
 

T
e

k
e

o
g

lu
 a

n
d

 T
o

su
n

 [
5

6
] 

2
0

16
  Analyze captured 

packets from network 

layers 2 and 3. 

 A hub that connects 

2 access points 

 Kali Linux machine 

 Ubertooth with 

Wireshark in 

another machine 

 Smartphones to 

control the IoTs 

from a different 

WLAN 

 HDMI sticks 

 Wireless 

cameras 

 Drones 

 Activity 

trackers 

 Smart watches 

 Nmap 

 Cipher suit checks 

 Firmware updates in 

clear text 

 Weak password checks 

 Brute force detection 

checks 

 Extracts video streams 

from cameras 

 Iptables 

 Ebtables 

 Wireshark 

 Kismet 

 OpenWrt 

 OpenVAS 

 Binwalk 

  -   

S
a

ch
id

a
n

a
n

d
a

 e
t 

a
l.

 [
54

] 

2
0

17
 

 Penetration testing for 

security analysis. 

 Uses the  

closed source  

NI TestStand tool. 

 Nest Cam 

 Philips Hue 

 Amazon Echo 

 SENSE Mother 

 Samsung 

SmartThings 

 Others 

 Port scanning 

 Fingerprinting 

 Process enumeration 

 NMAP 

 Wireshark 

 Aircrack 

 Nessus 

 OpenVAS 

 Cain & 

Abel 

 OSSEC 

 Tenable 
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  Identify security risks in 

wearable IoT devices by 

using Metawear. 

 SecuWear with 

Metawear chip 

 Kali Linux 

 Ubertooth 

 Metawear only 

(development 

chip simulating 

BLE devices) 

 Eavesdropping attack 

 DoS attack 
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 Develop an IoT 

penetration testing 

platform to assess risks 

and vulnerabilities of IoT 

devices 

 Multiple modules: 

o GUI 

o Testing 

o Network 

monitoring 

o Reporting 

o Storage 

 Smart Bulb 

 IP camera 

 Port scanning 

 Vulnerability scans 

 Downgrading attack 

 Search exploits 

 Brute force directories, 

passwords and port 

services 

 Testing SSL 

configuration. 

 Nmap 

 Tshark 

 Metasploit 

 WAFW00F 

 SQLmap 

 SSLStrip 

 Dirb 

 SSL Scan 

 Nikto 

 TLS proper 
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2.3 Our Testbed Contribution  

In this paper, we propose an automated IoT security testbed that can evaluate the security of 

IoT devices. We also define its main components and structure. As the testbed leverages open source 

tools, it is easily modifiable and extendible. The model will be tested on two off-the-shelf IoT 

devices. Later in this paper, we analyze the results and discuss vulnerability reports. Our IoT 

security testbed has the following features:  

1. The implemented IoT security testbed is based on open source tools controlled by an open 

source MS. 

2. The IoT security testbed consists of an interface module, a testing module, a network module, 

a report module and a storage module. All modules interact to perform as a complete security 

testing software. They are controlled by the MS and their updates are displayed to the user via 

an easy-to-use GUI.  

3. The modular structure and architecture of the testbed allows other researchers to use it to 

build their own testing tools. It is a flexible and extendible system, meaning that researchers 

can adopt the initial structure and add to the modular design.   

4. The IoT testbed lists all exploits and CVEs found for the device tested, as well as for the 

services the device hosts in each port. For example: OpenSSH 7.6 service on port 22 (SSH).   

5. The IoT testbed automatically generates formal word reports containing the results of all 

devices. 

3. Testbed Requirements, Structure and Components 

Building a security testbed for IoT devices requires defining the main area of interest and 

developing a roadmap for the analysis process. In this section, we propose an automated IoT testbed 

structure to assess the vulnerabilities of IoT devices. This structure automates the penetration testing 

task, thereby reducing user intervention. Our objective is to build a secure IoT testbed that tests 

devices from various security aspects. The testbed should: 

 Establish secure communication between testbed components 

 Authenticate all nodes in the network 

 Control test modules and test sequencing 

 Record events and test results 

 Establish reusable tests and testbed components 

 Ensure scalability of the testbed, enabling more tests to be added 

3.1  Testbed Structure 

Our testbed uses a modular architecture, whereby every part of the testbed is made of modules 

that can be extended or even replaced completely. The structure also allows for the easy addition of 

more security tests.  

The initial testbed structure consists of five modules, as shown in Figure 1. 

 Interface Module: This module acts as an I/O interface. It consists of two units: a Graphical User 

Interface (GUI) unit and an Output unit. The GUI takes input feeds from users (when required) 

and delivers them to the Testing Module for analysis. This method reduces user intervention 

during the testing process. When the analysis is complete, a summarized report is generated by 

the Report Module and sent to the user. 

 Testing Module: This module manages the test cases and launches them in order. All test cases 

and scripts are saved in the Storage Module. Once the testbed is in operation, it calls up general 

scripts from the database to examine the general network characteristics of the IoT devices. 

Based on the device’s response, the testing module launches more advanced test cases to tackle 

security issues. For example, after recognizing any open ports in the IoT device, dedicated test 

cases will be launched to test the vulnerability of those ports. Such vulnerabilities can include 

outdated services or low-security configuration or authentication. Moreover, IoT device 

responses will be checked to determine whether each test case passed or failed. 
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Figure 1. Structure of the proposed IoT Testbed 

 Network Module: This module controls network activities and communication with IoT 

devices. It creates and monitors the Network Access Point (AP) and will be further discussed in 

Section 3.2. 

 Report Module: This module generates a final report of the security assessment results for the 

device. It is compiled from test results and logs. 

 Storage Module: This unit stores all events initiated by the different modules for later retrieval 

and for final report generation once the assessment is complete. It saves all information about 

the tested devices and stores the test case scripts. 

3.2. Testbed Main Components 

In terms of function, our proposed automated testbed relies on five components that use the 

testbed structure modules. Figure 2 summarizes the testbed components and their roles. 

 

Figure 2. IoT testbed components 
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The testbed has the following five main functional components: 

 IoT Device Under Investigation (DUI). This is the IoT device to be tested, such as a smart 

socket, smart wireless camera, etc. It will be connected to the wireless network of the testbed. 

 Admin Machine. This is the main component of the security testbed that runs the Kali Linux 

operating system. Using the Network Module, it audits all network traffic and examines packets 

in the network. It also sends an alert if any type of attack is detected using python scripts and 

Tshark. Any IP address requested by the DUI will be checked against IP blacklists to determine 

whether or not it is malicious. Malicious calls will be blocked and reported. Moreover, the admin 

machine acts as an orchestra, using the Testing Module to launch and coordinate test scenarios. 

Once a test is launched, its results are analyzed to determine which test should be run next. The 

storage module stores information about all registered devices in the testbed, blocking 

unregistered devices from the network. 

 Private Wireless Network. Usually, testbeds use wireless routers to simulate network 

environments. Sniffing software is then deployed to collect data broadcast over the local 

network. To acquire more information or packets between two nodes in the network, 

interception tools such as Address Resolution Protocol (ARP) spoofing are used to launch an 

attack. Based on our experiments, new IoT devices detect ARP spoofing attacks and disconnect 

automatically from the network once they are discovered. Using the admin machine, a Wireless 

hotspot is created using a virtual AP tool to create a Wireless Local Access Network (WLAN). 

This method is preferred over using a physical router, as it gives the testbed automation system 

privileged access to Dynamic Host Configuration Protocol (DHCP) server services and other 

functionalities in the AP. It therefore allows the testbed to audit network traffic with 

administrative privilege to circumvent the need for ARP Spoofing. The virtual AP tool provides 

communication encryption and security using the WPA2-PSK Wi-Fi key managed by the 

network module. In addition, it monitors the outboard connection of the DUI. In other words, 

the module checks all external IP addresses requested by the DUI against a collection of 

blacklisted IPs to prevent malware from attempting to connect to Command and Control (CNC) 

servers. If the device is already infected by malware, it will be detected and the device will be 

excluded from the network. This countermeasure fulfills the security requirements of the 

testbed. 

 Controlling Applications. Some IoT devices can only be controlled through their associated 

mobile application. The testbed therefore includes a smartphone device that is equipped with 

authorized mobile applications to control IoT devices under testing. It generates traffic and 

packets with controlling commands on the network, and can be used to check whether or not the 

controlling commands and messages are sent in clear text, i.e. readable by attackers. In addition, 

it replicates packets to form replay attacks, thereby revealing weaknesses in IoT devices. 

 Attacking Machine. The attacking machine (Kali Linux) is used to launch attacks against the 

DUI to uncover weaknesses. For instance, it can launch replay attacks or brute force password 

attacks. In addition, it runs DoS attacks against the testbed and the DUI to test their resistance 

and ability to block such attacks. 

To give a better idea of how the testbed modules cooperate, Figure 3 summarizes the scenario 

for a DUI connected to the testing network. As shown in Figure 3, once a new device tries to connect 

to the network, the testbed will check its identity by looking it up in the testbed local database 

records. The testbed operator registers the devices to be tested in the database of the program before 

starting the test. If the network module does not find the device in the database, the testbed will 

reject the device from the network. 
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Figure 3. Communication between testbed modules 

After the authorization step, the testing module launches a list of test cases on the DUI, analyzes 

the DUI test results and stores the results in the storage module. An example of a test case is the scan 

test script, in which the testbed software scans DUI directories, seeking open directories with no 

authentication. This vulnerability could lead to system intrusion and data leakage. After all tests 

have been run, test results will be listed in a formal report.  

The formal report is a word file generated by a python script listing the test results in a format 

that is easy for a human operator to understand. A sample report is shown in Figure 4. The report 

lists device information in a table, including its detected Operating System and port services. It also 

lists all CVEs and exploits found using the device model number or device name. Additionally, as all 

ports are scanned during the testing process, any services found in the device’s open ports will be 

checked on the CVE and exploits databases. The test results are then listed in the results section of 

the report. The Test Case column lists all tests launched against the IoT device, while the Test Result 

column informs the reader of the results of each test. The test result is listed as Not Vulnerable if the 

device was not found to be vulnerable to the test and Vulnerable if the device was vulnerable. The 

Assessment column includes short comments generated by each test. Furthermore, some of the 

complex tests generate extra logs and save them in a separate text file to be reviewed later by the 

operator. Some tests don’t generate any logs; these simply enter a dash (-) in the Additional 

Information column. If necessary, tests can be modified in the future to include more comments. 

In Section 4, we will focus on the testing mechanisms and tools that check the security aspects of 

IoT devices. 
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Figure 4. Sample of report generated by the IoT testbed 

4. Experimental Setup 

In this section, we demonstrate how the testbed architecture and components are used to test 

the security of IoT devices. Our experiments are conducted in two phases: a semi-manual Extensive 

Analysis Phase and an Automated Testing Phase. Analyzing the threads of IoT devices is a very 

complicated task, as pen-testing the devices involves testing the security of communications 

between IoT devices and smartphones, as well as between IoT devices and the cloud. It also requires 

testing the vulnerabilities of the IoT device itself, and testing the effect of physical tampering. The 

process by which communications are sent and received by IoT devices—a potential source of 

vulnerability—is shown in Figure 5. The devil image represents hackers and their possible points of 

attack. 

The first phase is conducted to understand the nature of the IoT device, its communication 

characteristics, its possible vulnerabilities and the used tools to detect them. This information is then 

used to shape the second phase: an extensive automatized security analysis of the IoT device. Table 3 

sets a comparison between these two phases. The comparison is based on testing setup, expected 

results in each phase and the method used to obtain the results.  

 

Figure 5. Points of weakness in IoT device communications 
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Table 3. Comparison between extensive analysis phase and automated testing phase 

Research 

phases 

Set up Expected result Methodology 

Phase 1: 

Extensive 

Analysis 

Each device is tested 

individually using a list of 

tools conducting different 

hacking attempts to find the 

IoT device’s vulnerabilities. 

Each test will generate 

different 

results/outcomes. 

Tests are done manually. 

Results are obtained 

manually through analysis. 

Phase 2: 

Automated 

Testing 

The testbed system’s software 

is based on a modular 

structure. Each testing module 

will automatically run a list of 

tests to check the IoT device’s 

vulnerabilities. 

The test results will be 

expressed as Vulnerable 

or Not Vulnerable. If the 

device passes a given test, 

it is not vulnerable in that 

area; if it fails, the device is 

vulnerable to attack. 

The module’s test cases are 

in Python code. The 

module analyzes the IoT 

device’s responses to each 

test script to determine if it 

passed or failed the security 

test. 

4.1 Phase 1- Extensive Analysis Phase 

The first testing phase investigates the security of IoT devices using the following steps, 

summarized below in Table 4: 

 Gather information and scan for vulnerabilities. Before testing the IoT device, it is necessary to 

search for device vulnerabilities and any related exploit attempts. This can be done using 

Shodan, vulnerabilities databases such as the Common Vulnerabilities and Exposures database 

(CVE), the National Vulnerabilities Database (NVD) and the Rapid7 Exploits Database, and 

tools such as Snitch, OWASP ZAP, Wascan, Skipfish or other similar tools. If any exploits are 

found for similar devices, whether of the same type or from the same vendor, these are tested on 

the DUI to assess its vulnerability. 

 Perform Nmap scanning. The DUI and all its ports are checked using the Nmap scanner to 

analyze the vulnerability of any open ports. Nmap responses should be checked to ensure that 

the DUI doesn’t expose critical information during the Nmap test. 

 Check Secure Sockets Layer (SSL) certificate. The SSL certificate is tested to see if a DUI that 

hosts a web server has a reliable certificate. This can be checked using TLS-proper, SSLScan and 

Nikto tools. 

 Check asynchronous connection with a time server. This test checks if the IoT device is 

synchronized with a time server. If this test fails, the resulting vulnerability could make it hard 

to track its system logs and events, and also to perform operations that require timestamps and 

synchronization. 

 Perform downgrading attack. This attack focuses on reducing the level of cryptography used in 

the communication channels between two nodes [57]. Reducing the level of encryption used in 

the secure channel can result in the device sending information without any encryption at all, as 

is the case with HTTP. This test forces communications to downgrade from HTTPS to HTTP 

using SSLStrip, Ettercap, Better-cap, etc. If a conversation is successfully downgraded, critical 

information such as credentials and control packets may be collected by a third party. If the 

device refuses the downgrade and rejects any non-HTTPS connections, it is considered a secure 

device. 

 Perform credentials check and brute force attacks. Another potential vulnerability that must be 

tested is the use of default credentials. As mentioned earlier, Mirai botnets have been known to 

gain control over devices with default credentials. If users are not forced to change the default 

password during configuration, the resulting vulnerability is a severe issue. Another potential 

issue is when IoT devices allow an unlimited number of false access trials. Limiting access trials 

prevents brute force attacks. These are all aspects that we can test using a simple python script. 

 Conduct brute force attack on directories. If the DUI is hosting a web server, this server could 

have multiple directories. Even if it has credentials, it’s possible that not all directories will be 
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protected. To check if any directories are left without credentials, the testbed uses a dictionary to 

conduct a brute force attack using Dirb and DirBuster tools. 

 Bypass basic HTTP authentication. Some web servers use HTTP basic authentication to obtain 

user credentials. HTTP requests can use POST and GET methods. If servers are weakly 

configured, they may bypass HTTP authentication requests that have HTTP methods other than 

GET/POST. As a result, private data may be exposed or non-authenticated users may gain 

access. 

 Inject XSS and SQL commands. If the DUI hosts a web server with an HTML interface, it could 

be vulnerable to XSS and SQL injection attacks. This can be checked using tools such as SQLmap 

that examine the parameters of an HTTP GET request to inject SQL commands. If the web server 

is not protected against this type of attack, the server’s SQL service may expose critical 

information.  

 Check firewalls. Some web servers have firewalls that protect them from network attacks. The 

firewall of the DUI web server can be tested using a WAFWoof tool. 

 Check exploits. As shown in the literature review, researchers are interested in revealing the 

vulnerabilities of different types of IoT products, and many CVEs are reported every day. Some 

CVEs are also publicized with a python or a bash script that takes advantage of the vulnerability 

to perform an attack. Existing exploits on devices similar to the DUI can be checked using 

Metasploit and Armitage tools. 

 Analyze communication between the IoT device and the user machine. In this task, we 

intercept the communication between the IoT device and the user’s machine. First, traffic will be 

generated by using a mobile application (or the browser, if the device contains a web server) to 

control the IoT device. This allows us to check if communication occurs in clear text, and 

whether the device is vulnerable to replay, impersonation or modification attacks. In addition, 

this task detects if any credentials are sent in clear text. 

 Check requested external IP addresses. In this test, the testbed will report any attempt by the 

DUI to connect to malicious IP addresses. 

 Disassemble mobile application. Breaking down the mobile application can give hints about 

control packet creation and expose secret information. Applications can slow down reverse 

engineering by using obfuscation techniques, which raises the security level in smartphone 

applications. 

 Check firmware. Outdated firmware is usually vulnerable. If vendors do not enforce updates on 

an IoT device’s firmware, the device may be compromised. Analyzing firmware can highlight 

the existence of backdoors, hardcoded admin credentials or command injection vulnerabilities. 

Analyzing firmware requires experience in reverse engineering. 

 Analyze hardware. Some IoT device vendors don’t give public access to device firmware. An 

alternative method is extracting the firmware from the IoT device. By disassembling the device, 

the printed circuit board (PCB) can be checked to find universal asynchronous 

receiver-transmitter (UART) ports or other serial ports. If ports are found, a PC/laptop can be 

connected to the IoT device to analyze its binary image and extract its credentials, i.e. a physical 

tampering attack. 

Table 4. Summary of the test cases and their expected results. 

Tests Used tools Expected results 

Gather information 

and scan for 

vulnerabilities 

Snitch, OWASP 

ZAP, Wascan, 

Skipfish 

Gathers information about the DUI’s vulnerabilities or about 

previous attack attempts recorded in the CVE database. 

Wascam and Skipfish are security penetration testing tools that 

recursively crawl web pages hosted in webservers. They assess 

security and look for vulnerabilities such as flaws, links, email 

addresses and any other information that could lead to social 

engineering, malware injections, etc. 

Nmap scanning Nmap Lists all open ports along with their services and DUI 
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information. DUI information could include the operating 

system running on the device, its version number, etc. 

Check Secure 

Sockets Layer 

certificate 

TLS-proper, 

SSLScan and 

Nikto tools 

Compares the HTTPS certificate signature to the database. This 

reveals information about the certificate such as the encryption 

used, the generation date, etc. 

Check asynchronous 

connection with a 

time server 

Wireshark If the device fails to synchronize with the NTP server during 

multiple connection requests, it is considered vulnerable. 

Downgrade Attack SSLStrip, Ettercap, 

Better-cap 

If the device refuses the HTTP connection/request, then it is not 

vulnerable. If the device accepts an HTTP request (instead of 

HTTPS), it is vulnerable to this kind of attack. 

Credentials check 

and brute force 

attacks 

Python Script Attempts to authenticate user by sending many usernames and 

passwords. If the device doesn’t detect the attack or if the 

password is found, the device is vulnerable to this kind of 

attack. 

Brute force attack on 

directories 

Dirb and 

DirBuster 

Lists directories that are accessible without authentication, 

indicating that the device is vulnerable. 

Bypass basic HTTP 

authentication 

Web browser 

plugin (HTTP 

headers 

Sends misconfigured http header to check for possible 

configurations that may give access. 

Inject XSS and SQL 

commands 

SQLmap, Manual If XSS or SQL injection attempts successfully reveal hidden 

information, the device is vulnerable. 

Check firewalls WAFWoof Checks whether or not firewall is used 

Check exploits Metasploit and 

Armitage 

Reports any attacks and vulnerabilities in the IoT device found 

by Metasploit. 

Analyze 

communication 

between IoT device 

and user machine 

Wireshark, 

Manually 

If control packets are sent between the user machine and the 

DUI in clear text without encryption, the device is vulnerable. 

Check requested 

external IP addresses 

Wireshark, 

manually 

If the device attempts to connect to malicious servers, it is 

considered vulnerable. 

Disassemble mobile 

application 

Dex2jar If the dissembled mobile application contains hard-coded 

credentials, it is considered vulnerable. 

Firmware check Binwalk Outdated firmware is usually vulnerable. The firmware is 

therefore checked to ensure that the device is using the latest 

version. 

Hardware analysis UART This test attempts to dump firmware from the hardware using 

UART in order to obtain root shell and access sensitive 

information 

 

In this phase, the security of several IoT devices was assessed manually by using the above test 

cases. For an example, we will detail the assessment of two devices: a medical gateway and a 

wireless camera. Both devices host a webserver, but the medical gateway leverages HTTPs for 

communication while the wireless camera uses HTTP. The detailed test report for the two devices is 

shown in Appendix 1.  

During the manual security assessment, the tested devices are grouped into two sets: devices 

that contain a web server and devices that act as hosts, connecting to a cloud or a server. The devices 

that host web servers can be recognized by examining the services available in port 80, 8080 or 443. 

The Nmap tool is capable of recognizing the services on the ports, as it has an extensive database of 

service signatures. The devices can therefore be categorized as webserver or host-based according to 

the Nmap results for the services hosted in port 80, 8080 or 443. The devices that host a web server 

can be attacked using the same mechanisms as those used against email servers and web servers. 
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However, IoT devices are much weaker than the regular web servers due to their limited power and 

computing capabilities, which affects their security capabilities. 

An automated IoT testbed is required for this step, as it can detect the vulnerabilities of a group 

of different IoT devices automatically without the need of human intervention. 

4.2. Phase 2- Automated Testing Phase 

Automating IoT vulnerabilities assessments can be a challenging task due to the limitations of 

IoT devices, as explained earlier. Based on the experiments conducted in Section 4.1, we propose 

methods with different security testing scenarios for different IoT devices. These scenarios will run 

automatically using the system in Figure 1. The tests are to be conducted with minimal user 

intervention. As shown in Figure 1, all modules work simultaneously at the back end, while the GUI 

shows the testbed status and related results. The various steps of the automated testing process are 

as follows: 

As shown in Algorithm 1, once the operator chooses one or more devices to be tested, the 

testbed assesses each one individually in turn. To test each IoT device, the testbed first excludes all 

IoT devices from the network other than the DUI. The testing module then launches some initial test 

cases, including an extensive Nmap test to check network activity and report open ports. Based on 

the results of these preliminary tests, the testing module will determine whether or not there is a web 

server hosted in the IoT device. Based on this data, the testing module will launch the corresponding 

tests as shown in Figure 6. 

 

Algorithm 1 Automated Testbed Process 

Require: DUI; Testing device; 
Ensure: DUI is configured with wireless network of the testbed 

1: DUI connect to the wireless network  
2: Testbed check device information in Database 
3: if not found then  
4:      Reject the device connection request 
5:      return 0 
6:    Accept connection, allow device to be in the network 
7:    Testbed launch Nmap on ports 80, 443, 8080 
8:    for Nmap results in port (80, 443, 8080) do 
9:         Check services on the port 
10:      if port has webservices then 
11:          DUI = webserver 
12:      else 
13:          DUI = host 
14:      end if 
15: end for 
16: if DUI = webserver then 
17:       results = webserver_tests( ) 
18: else 
19:       results = host _tests( ) 
20: end if 
21: report= Generate_Report(results) 
22:      return report 

 

In non-web server cases, a replay attack is used to replay control packets after a period of time. 

The control packets contain the commands that affect the status of the IoT device. 
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Figure 6: Tests launched for web server DUI vs non-web server DUI 

Figure 7 shows the updated testbed GUI and its functionalities. Users can choose to test 

multiple devices, which will be listed in the left panel. The test updates will be shown in the middle 

panel: the upper part shows the test logs, while the lower table lists test summaries and results. In 

the right panel, the user can see network traffic inside the WLAN, as well as traffic to and from the 

DUI. In addition, the testbed lists the last connections attempted by the DUI. Using the proposed 

automated testbed architecture, vulnerability assessments are conducted on multiple IoT devices. In 

Section 5, we discuss the use of the testbed on a wireless camera and a smart bulb. 

 
Figure 7. Graphical user interface of the testbed 

To demonstrate the wireless camera security testing scenario, the steps in Figure 8 are followed. 

The wireless camera is contacted to be connected to the local network. If the testbed system software 

detects the camera, it tries to authorize and identify the device and retrieves saved information from 

its database. Once accepted, all traffic generated in the testbed—especially traffic originating from 

the device—is monitored and analyzed, as are the device’s external connections. The fingerprints of 

all ports are checked with the Nmap tool to determine whether or not the device hosts a webserver. 

As the camera hosts a webserver on port 80, it is categorized as a “device with embedded 

webserver”. The testbed runs a predefined list of tests to check open ports and discover any web 

server vulnerabilities. Each test assesses a specific security aspect. For example, the SQL injection test 

uses the SQLmap tool, which injects an SQL statement into the HTML page of the web server. If the 

webserver executes the statement, the device is considered to be vulnerable. Similarly, the device’s 
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SSL, firewall and certificates are checked. Some scripts use different approaches to determine if the 

device is vulnerable or not. For example, the “device sync with NTP server” test entails scanning all 

NTP packets in the device’s communications to determine whether or not it is synchronized with the 

NTP server. Each test case checks a specific characteristic of the device and reports if the device 

passed or failed this security check. Finally, once all the tests are done, all results will be reported in 

a word document as shown in Figure 4. 

 

Figure 8. Testing for wireless camera assessment by the testbed software 

Table 5 lists the test results generated by the proposed testbed from the wireless camera 

security assessment. Each test checks one vulnerability. If the vulnerability is found, the report 

indicates “Vulnerable” for that particular test. If the test found no vulnerability in a given domain, it 

is listed as a “Not Vulnerable”. If a device receives “Not Vulnerable” for all tests, it means that no 

weak point was found, and the device is not vulnerable to the tests specified. Some tests generate 

detailed reports in the reporting module that must be reviewed by an operator, as shown in the 

“Additional information” column in Table 5. A column was added to the table to discuss the results.  

From the test results, one can conclude that the wireless camera is vulnerable to attack, as it 

sends authentication credentials in clear text with no encryption. However, its use of an HTTP 

authentication mechanism means that it is not prone to SQL injection and XSS, as long as HTTPS 

protocol is used in communications instead of HTTP. 

Table 5. Testbed report for wireless camera 

Test case Status Additional 

information 

Results discussion 

Check 

Requested IPs 

Not 

Vulnerable 

Details of 

each IP are 

saved 

During the test, the device did not connect to any 

malicious IP addresses; therefore, the device passed the 

test. The results of each IP address request have been 

exported in a separate file. 

Device Sync 

with NTP 

Not 

Vulnerable 

- The device was found to be in sync with NTP server; 

therefore, the DUI passed the test. 

Scan 

Directories 

Not 

Vulnerable 

Details are 

saved 

As no web server directory was found to be open without 

authentication, the device passed the test. 

Check Firewall Vulnerable No WAF 

detected 

The testbed did not find any firewalls in the web server; 

therefore, the DUI failed this security test. 

Authentication 

in plain text 

Vulnerable User: Pass 

found 

Authentication in plain text: When the DUI used an HTTP 

authentication mechanism, the authentication information 

(Username: Password) was sent in clear text without 

encryption. This is a very severe vulnerability, as an 

attacker could control the device as an admin using those 

credentials. 

Extensive Port Vulnerable - In this test, port 80 (HTTP and HTTPS) was found to be 
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Scan open on the device, as well as port 23 (telnet) and 21 (FTP 

server). The fact that ports 21 and 23 were open means that 

the device was more prone to attacks. The testbed 

therefore reported that the device failed this particular 

test. 

Nitko Test Vulnerable Vulnerable to 

cross-site 

request 

forgery and 

downgrade 

attack 

The Nikto web assessment tool was used to assess the 

DUI. It reported some severe vulnerabilities. Therefore, 

the device failed the test.  

Check 

Certificate 

Vulnerable No HTTPS The DUI did not use a proper certificate in its 

communications, and port 443 was found to be open and 

not secured. Therefore, the device failed the test. 

Check SSL Vulnerable No HTTPS The DUI did not use SSL. 

SQL Injection Not 

Vulnerable 

Details are 

saved 

In this test, tools such as SQLmap are used to check if the 

device is vulnerable to SQL injection. However, the DUI 

used HTTP authentication rather than an HTML page and 

no SQL server were found. Consequently, device was not 

vulnerable to SQL injection, and it passed the test. 

5.2. Smart Bulb Assessment 

A smart bulb is an IoT device controlled by UDP packets. It receives controlling commands 

directly from users via a dedicated application or through a server or cloud. Information is sent 

using UDP or TCP packets, which are usually encrypted or ciphered. However, if the messages are 

not secure, the bulb may be vulnerable to replay attacks. For this reason, we test such devices against 

replay attacks and packet fabrication. 

We tested a smart bulb controlled by a mobile application with our IoT security testbed. Only 

five tests were applicable, as the bulb did not have many open ports. The testbed started by checking 

IP addresses requested by the DUI, scanning for smart bulb exploits, replaying UDP packets, 

performing an Nmap scan and checking asynchronous connections with the time server. Conversely 

to the multiple tests run specifically for server host devices such as the smart camera, the only test 

uniquely dedicated to non-web server devices is the replay UDP packets test. This is because the 

smart bulb receives control commands through UDP packets.  

The report generated from the smart bulb tests can be found in Table 6. The report lists a test as 

“Vulnerable” if an attack is successful; if the attack is unsuccessful, the test is listed as a “Not 

Vulnerable”. The results show that the device is vulnerable to replay attacks, as it applied the 

commands received without checking the sender’s MAC address. 

 

Table 6. Testbed report for the smart bulb 

Test case Status Additional information 

Check Requested IPs Not Vulnerable Details of each IP are saved 

Exploit Scan Not Vulnerable Details are saved 

Replay attack – UDP Vulnerable .. 

Extensive Nmap scan Not Vulnerable .. 

Verification of asynchronous 

connection with time server 

Vulnerable .. 

6. Conclusion and Future Research  

With the recent exponential increase in the use of IoT devices, security breaches associated with 

these devices are also on the rise. IoT device security testing is needed before the devices can be used 
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by the public. Assessing the security of IoT devices is difficult due to the wide variety and 

functionality of IoT devices. Although many research studies have explored IoT security assessment, 

there is an urgent need for extensive analysis and testing for vulnerabilities, and it is clear that these 

tasks should be automated. The goal of this research is to propose a new IoT security testbed 

architecture, and to present an automated IoT testbed to analyze IoT device security gaps. 

Various penetration and security testing tools are leveraged to assess vulnerabilities in IoT 

devices. The proposed framework also secures the testbed, authenticates all devices used by the 

testbed and encrypts all communication between them. Furthermore, it records and logs all events 

that occur during the tests and generates reports informing the user if each test was passed or failed. 

The results provide data to inform the feasibility of practical experiments to assess common threats 

against these IoT devices. Two devices were successfully tested by our IoT testbed. 

One of the biggest challenges in this domain is the exploding number of IoT devices being used, 

the great variety of IoT devices and protocols, and the lack of standardization in the field. This 

coupled with IoT devices interacting with each other greatly increases available attack vectors and 

the possibility of zero-day attacks, making it very hard for security experts and security testing tools 

to accurately assess the security level of different IoT devices. 

We believe that an adequate testing architectureone that is comprehensive enough to manage 

the abovementioned challenges and able to handle the evolving complexity of the IoT ecosystemis 

yet to be developed. It will be interesting to see what developments take place in that direction. 

However, in designing our testbed, we think that we have taken a step in the right direction in 

helping to solve this difficult problem. The modular nature of our testbed and the ability to easily 

add new tests and change existing ones gives it the flexibility it needs to stay relevant as a security 

solution and to keep up with the demands of the growing IoT ecosystem. 

Future work will include additional automated test cases and scenarios that tackle different 

aspects of IoT device security. More IoT devices need to be analyzed in order to increase the scope of 

our IoT testbed test case database. We are also looking forward to employing artificial intelligence to 

improve our methods for analyzing IoT devices and their vulnerabilities. 
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Appendix A 

Table A1. Extensive Analysis Phase: First Device - Medical Gateway 

 Test case Description Test result Notes 

Check SSL 

certificate weakness 

Tools test the existence of SSL 

certificate and gain more 

information. 

Not 

vulnerable  

SSL certificate uses OpenSSL and get 

TLS 1.2. 

Downgrade attack Force use of HTTP over HTTPs. Not 

vulnerable 

Downgrading the communication from 

HTTPs to HTTP doesn’t work. The 

device refuses the connection request. 

Break the password Attempt to brute force the 

password. 

Not 

vulnerable 

The process takes a very long time. 

Multiple logins at 

the same time 

Attempt to login as admin using 

different devices at the same time. 

Vulnerable The device doesn’t reject the second 

access, nor does it notify admin of the 

existence of another admin. 

Directory access List directories that are accessible 

without authentication. 

Not 

vulnerable 

No directories are open. 

HTML analysis Check vulnerabilities in html code. Not 

vulnerable 

No HTML 

Inject JavaScript in 

the URL 

Injecting JavaScript commands in 

the URL can give indirect access to 

information. 

Not 

vulnerable 

The test is not applicable for this device. 

SQL injection in 

HTTP request 

Use SQL injection in HTTP requests 

to gain unauthorized access to 

saved data in the server’s database. 

Not 

vulnerable 

The test is not applicable for this device. 

Bypass base 

authentication  

Send misconfigured HTTP header 

to check if misconfigurations exist, 

which might give access to 

authorized information. 

Not 

vulnerable 

The device doesn’t respond to 

misconfigured HTTP requests. 

Firewall 

information 

Tool to check the firewall used. Not 

applicable  

The web server rejects all connections. 

Check Metasploit / 

Armtage for 

possible exploits 

Metasploit / Armtage checks if an 

attack is possible against the 

device. 

Not 

vulnerable 

No exploits 

Key installation 

attack (KRACK)– 

Proof of concept  

The KRACK breaks the WPA2 

protocol by forcing devices to reuse 

nonce during WPA2 handshake. 

Vulnerable The device uses another layer of 

encryption, as it uses TLS. 

Optional encryption 

effects 

The attack tests if confidential 

information (i.e. admin password) 

is exposed. 

Vulnerable  The admin has the option of using 

HTTP or HTTPS in the configuration 

page. Once it is chosen, credentials are 

sent in clear text. 

Table A2. Extensive Analysis Phase: Second Device – Wireless Camera 

 Test case Description Test result Notes 

Multiple logins at 

the same time 

Attempt to log in as admin using 

different devices at the same time. 

Vulnerable The device doesn’t reject the second 

access, nor does it notify the admin with 

the existence of another admin. 

Multiple access 

attempts 

Try multiple passwords, which 

results in multiple failed attempts. 

Vulnerable DUI doesn’t block attempts, which can 

lead to brute force or dictionary attack. 

Breaking the 

password 

Attempt to get the password using 

dictionary attack. 

Vulnerable As the size of the password increases, 

the time it takes to break the password 

increases. 
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Directory access Check for directories that are 

accessible without authorization. 

Not 

vulnerable 

No directories found to be accessible 

without authentication.  

HTML analysis Check vulnerabilities in HTML 

code. 

Not 

vulnerable 

No HTML 

Inject JavaScript in 

URL 

Injecting JavaScript commands in 

the URL can give indirect access to 

information. 

Not 

vulnerable 

The test is not applicable for this device. 

SQL injection in 

HTTP request 

Injecting SQL requests in HTTP to 

gain unauthorized access to data 

saved in the server database. 

Not 

vulnerable 

The test is not applicable for this device. 

Bypass the base 

authentication  

Send misconfigured HTTP header 

to check if misconfigurations exist, 

which might give access to 

authorized information. 

Not 

vulnerable 

The device doesn’t respond to 

misconfigured HTTP requests. 

Firewall 

information 

Tool to check Firewall used. Not 

available 

The web server rejects all connections. 

Check Metasploit / 

Armitage for 

possible exploits 

Metasploit / Armitage will check if 

attacks are possible against the 

device. 

Not 

vulnerable 

No exploits are found. 

Key installation 

attack (KRACK)– 

Proof of concept  

The KRACK breaks WPA2 protocol 

by forcing devices to reuse nonce 

during the WPA2 handshake. 

Not 

vulnerable  

The device doesn’t reuse nonce. 

Man in the Middle 

(MITM) attack 

The attack tests if confidential 

information (i.e. admin password) 

is exposed. 

Vulnerable The device doesn’t use HTTPs. Device 

credentials are sent in clear text with no 

encryption during MITM attack. 

Deauthentication 

attack 

This attack tests if the camera can 

be disabled from the wireless. 

Vulnerable The device is disassociated from the 

network successfully.  

Obtaining firmware This tests if the firmware of the IP 

camera is found in online 

resources. 

Applicable  The firmware of the wireless camera is 

found in online resources. 

Reverse engineering This test attempts to dump 

firmware from the hardware using 

UART in order to obtain root shell 

to access sensitive information. 

Vulnerable The camera is accessed through the 

UART. All files have been sent to 

another PC by using FTP server for later 

revision. Attackers are also able to write 

in the memory of the camera and change 

the password. 

Cross domain attack The attack tests if the camera has a 

file containing weak or improper 

configurations. 

Vulnerable Both firmware versions (1.02 and 1.16) 

are vulnerable to this attack. 
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