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Process systems engineering (PSE) has been an active research area for nearly seventy years and ad-

dresses multiple systems from the process industry. Among these are Process Supply Chains that can be

described as interconnected sets of entities responsible for the sourcing, production and distribution of

a large set of chemical and/or bio- based products. Due to the high diversity of materials, processes and

information flows such networks result in highly complex systems that are very difficult to manage. The

PSE community has a critical role to support the design and management of such systems through the

development of tools that are able to address such complexity. Focusing initially on a real-world process

supply chain, the industrial gas supply chain, this paper identifies and discusses current contributions,

challenges and perspectives in process supply chains that can guide research professionals to address

such challenges. In general, such challenges encompass supply chain scope representations, modeling ap-

proaches, data management and implementation. Examples include supply chain risk and uncertainty,

multiscale decisions, sustainability and resiliency.

© 2019 Elsevier Ltd. All rights reserved.
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. Introduction

Supply chains (SC) play a crucial role in organizations as they

re responsible to guarantee product and service availability to

he final consumer and accordingly the financial success of the

nvolved entities. Nevertheless, the management of such systems

s quite complex due to the multiplicity of material and informa-

ion flows, diversified characteristics of entities, and often-present

ontradicting objectives. Moreover, the high level of uncertainty in-

erent to supply chain operations further augments its complexity.

Additionally, process supply chains face challenging market

nd societal demands that are characterized by shorter product

ife-cycles, mass customization, the drive for more sustainable

rocesses and products and the rapid and effective supply of

roducts (Barbosa-Povoa, 2014). To cope with such challenges,

rocess supply chains must be flexible, resilient and efficient,

hile guaranteeing customers’ specific demands at minimum cost,

nder an uncertain environment.

The Process Systems Engineering (PSE) community can make

n important contribution to address the challenges above through

he development of tools that support the required process sup-

ly chain flexibility (Barbosa-Povoa, 2014). Such contributions
∗ Corresponding author.
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lready exist and span from strategic (e.g. Network Design in

ardoso et al., 2013 and Mitra et al., 2014a) to tactical (e.g. Plan-

ing in You and Grossmann, 2013 and Malinowski et al., 2018)

nd operational problems (e.g. scheduling, routing and inventory

anagement in Amaro and Barbosa-Povoa, 2008; Dong et al.,

014; and Zhang et al., 2016a).

Several works provide a detailed analysis of such contri-

utions and challenges. Sargent (2005), in his paper “Process

ystems Engineering: a retrospective view with questions to the

uture”, stated that the process systems techniques can play an

mportant role when addressing supply chains by helping to

dentify the real problems and to address them. In the same year,

Shah 2005) identified the main requirements of process supply

hains, focusing on the pharmaceutical case. (Papageorgiou 2009)

rovided a comprehensive review of the design and planning

f process supply chains. (Stephanopoulos and Reklaitis 2012)

ighlighted the contributions and future of the PSE community in

everal areas, from which supply chain was identified as essential.

Grossmann 2012) presented the enterprise–wide optimization

oncept and highlighted the need of developing optimization

ools that explore the integration of decisions across the different

perations along the supply chain, considering different levels of

etail. (Lainez-Aguirre et al., 2012) reviewed developments for the

harmaceutical supply chain and (Barbosa-Povoa 2014) investi-

ated the literature on process supply chain considering multiple

ecision levels. (Garcia and You 2015) reviewed the multi-scale,
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multi-objective and multi-player aspects of the process supply

chain as major technical challenge areas, while looking at the inte-

gration of supply chain design with operation decisions. Recently,

(Barbosa-Povoa et al., 2018a) reviewed sustainable supply chains

and concluded that particularly (bio) process supply chains have

been actively addressing sustainability issues. However, there are

still many research opportunities to address.

All the above reviews converge to a common set of critical

problems, some under investigation by the research community,

whereas many others require further attention. Additionally, it

is important to mention that different types of process supply

chains are emerging, and additional opportunities will appear in

the near future. Examples are the new energy supply chains such

as hydrogen, solar, waste-to-value and biomass.

This paper focuses on the past, present and future of Process

Supply Chains from an industrial and academic perspectives.

Rather than providing a comprehensive review of the numerous

scientific achievements in the field, its objective is to assess the

challenges that exist in the area from an industrial and academic

perspectives on process supply chains by focusing on the industrial

gas supply chain, as well as to point to current and future research

challenges that are important to be undertaken based on industrial

needs.

The paper is organized as follows. In the next section, we

illustrate some of the existing opportunities in the context of

a real-world, complex process supply chain – the industrial gas

supply chain. While some challenges have been addressed, the

implementation of PSE is still far from effective. Thus, significant

progress is still required in addressing critical issues, both from an

industrial and an academic perspective, as discussed in Section 3.

Finally, in the last section we conclude that process supply chain

research has a major potential financial impact on the process

industry and brings scientific challenges where the PSE community

has an unquestionable role to play.

2. Process supply chains

According to the process industry chain framework as pre-

sented by (Marquardt et al., 2000), process supply chains are at

the macro scale level (see Fig. 1). Such systems deal mainly with

chemical, bio-based networks and involve a diverse and large set

of entities, materials and information that have the common goal

of transforming raw materials into final products, using different
Fig. 1. Process Industry Chain (adapte
ypes of transforming processes, so as to satisfy market demand in

erms of quality, quantity and time.

Process supply chains are diverse and range from the utilities

nd oil and gas sectors to environmental and food chains. Due

o their diversity and complexity, several challenges exist when

anaging such systems and subsequently both industrial and

he academic communities should be dedicated to address such

hallenges in close collaboration.

Although every supply chain has its own features, we use the

ndustrial gas supply chain as an example of process supply chains

here its different characteristics are described, and corresponding

hallenges identified.

.1. Industrial gas supply chain

The manufacturing of Oxygen, Nitrogen and Argon is con-

idered, as well as the retail business (hardgoods). The supply

hain comprises upstream, production, distribution and consumer

ntities (Fig. 2). Other process gas supply chains such as carbon

ioxide, helium and hydrogen are not discussed in this paper.

Electricity can be purchased from utility companies through

arious power contracts that differ in price, availability, and

enalty for under- or overconsumption (Zhang et al., 2016a).

iscount prices and penalties can also be defined with respect to

he amount of electricity purchased over a certain period, which

ould be hours, days, or even weeks. In practice, this means that

he cumulative electricity purchase must be recorded, and there

re pre-defined meter reading times at which the amount of

lectricity purchased since the last meter reading is computed.

ased on this cumulative electricity purchase between consecutive

eadings, discounts and penalties are issued (Zhang et al., 2016b).

Cryogenic air separation plants produce liquid oxygen (LO2), ni-

rogen (LN2) and argon (LAr) as well as gaseous oxygen (GO2) and

itrogen (GN2), all at high purities. Cryogenic processes achieve

eparation through liquefaction followed by low-temperature

istillation. All liquid products can be stored on-site in storage

anks. In contrast, gaseous products cannot be stored and must be

elivered immediately to customers.

Regarding distribution, industrial gas companies serve cus-

omers through three primary distribution modes: large process

lants, cryogenic liquid and packaged gases (PAG) (Megan and

ruton, 2017).
d from Marquardt et al., 2000).
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Fig. 2. Industrial Gas Supply Chain (Praxair, Inc.).
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For the largest customers, such as refineries and steel mills, in-

ustrial gas plants operate adjacent to their facilities and distribute

roducts via pipelines. Air separation units are built on or adjacent

o customers’ sites to continuously supply atmospheric gases at

equired pressure levels, which act as feedstocks or reactants.

heir role is typically similar to that of utility and water compa-

ies. In case of disruption in plant production, liquid products are

aporized and sent to pipelines, In the extreme case that liquid

torage is depleted, liquid is brought in from neighboring plants.

Liquified products from air separation units serve medium-

olume customers (2500 to 250,000 m3/month) at multiple

ressure levels in multiple industries, such as electronics, chemi-

als, healthcare, pharmaceuticals, among others. Customer facilities

ave liquid storage tanks with remote telemetry. The liquid prod-

ct is vaporized to serve the companies’ needs. Tank inventory is

onitored in real-time and product is delivered by a tanker-truck

eet. The industrial gas supplier determines the most cost-effective

ime and date to replenish the tank inventory, making sure the

ustomer does not run out of product. This is also referred to as a

endor-managed inventory model.

The delivery of packaged gases constitutes the third mode and

nvolves the largest number of customers. These range from small

etail to large manufacturing sites. These customers require in-

ustrial, medical and specialty gas mixtures; the latter are needed

or high value applications such as semiconductor manufacturing,

alibration, and laser cutting. As seen in Fig. 2, cylinders are

ither distributed directly to customers or shipped to depots or

tores, from which additional deliveries are made or customers

ickup their products. The industrial gas company typically owns

he cylinder assets and leases them to customers. Cylinders have

egulators that provide flow control as well as pressure and time-

o-empty readings; for some high-value products, telemetry is

lso provided. Effective management of cylinder inventory across

he supply chain is critical for maintaining holding costs and ser-

ice levels. Differently from the liquid customers, most packaged

as customers place orders rather than rely on vendor-managed

nventory policies.

In addition to cylinders, stores also retail hardgoods that are

urchased from vendors and shipped through multiple distribution

enters. These in turn either ship products directly to customers or

o stores for pickup or further delivery. Deliveries of hardgoods are

ade with third party companies and range from small packages

o multiple pallets. Major costs involve product handling, shipping

nd inventory.
The above industrial gas supply chain clearly illustrates the

omplexity of the design and management of real-world supply

hains and the need for a systems approach that is able to define

nd solve its underlying challenges, thus providing the necessary

ools and processes to support decision-makers. Being the focus of

SE the systematic and model-based solution of process systems

roblems, where systems thinking and systems problem solving

re prioritized rather than the mere application of computational

roblem-solving methods (Karsten-Ulrich and Marquardt, 2009),

he PSE community must play an active role in providing the

ight solutions to present and future process supply chain

hallenges.

.2. Literature review of industrial gas supply chains

The goal of this section is to review the contributions made in

he PSE area, regarding industrial gas supply chains. Contributions

rom the authors are addressed in detail in the next sections and

herefore are not presented here.

Within the industrial gas supply chain, there are a few con-

ributions that focus on its individual elements or subsections.

erapetritou et al. (2002) focused on the scheduling of air separa-

ion plants based on a two-stage stochastic programming approach

or uncertain power prices. (Zhu et al., 2011) focused on the op-

ration of air separation units to capture uncertain electricity

rices and product demands; the authors developed a multiperiod

onlinear programming formulation that includes a nonlinear,

ynamic first-principle model. (Cao et al., 2016) provided a dy-

amic strategy of product liquefaction and vaporization for air

eparation units based on electricity prices and demand profiles.

Pattison et al., 2016) proposed a methodology to integrate control

nd scheduling decisions based on empirical models generated

rom operating data and applied to an air separation unit.

Manenti and Rovaglio (2013) expanded the scope to industrial

as supply chains by considering a network of air separation plants

ith power agreement contracts that contain multiple penalties

nd take-or-pay clauses, as well as liquid storage. (Puranik et al.,

016) addressed a similar problem by fitting a data-driven re-

ression model for each equipment as a function of various input

ariables. These functions were then a part of an MINLP optimiza-

ion problem to solve a network of plants and pipeline customers.

owever, this approach did not consider any liquid demand at the

lants and assumed fixed energy prices at the plants.
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In the context of liquid distribution, Campbell et al. (1998) pre-

sented the basic IRP (Inventory Routing Problem), reviewed

existing solution methods and developed two new approaches

based on integer programming and dynamic programming to

solve the deterministic and stochastic versions, respectively.

Campbell et al. (2002) presented a two-phase approach for solving

the IRP that defines firstly the customers that receive a delivery

on each day of the planning horizon and their delivery volumes,

and secondly an insertion heuristic that determines vehicle routes

and schedules. Campbell and Savelsbergh (2004a) addressed the

IRP from a delivery volume perspective and described a linear

time algorithm for optimizing delivery volume. Various extensions

that occur in practice were introduced and modifications of the

solution method were described. Savelsbergh and Song (2008) de-

veloped a variation of the IRP, namely the IRP with continuous

moves (IRP-CM). In this case, the customers are served using

sleeper teams that distribute product over multiple days, pick-

ing product at multiple facilities and moving continuously. In

(Campbell and Savelsbergh 2004b), the authors developed a two-

phase approach to solve large scale instances; phase 1 consists

of an integer program to determine a high-level plan for a longer

time horizon that consists of which customers to serve on each

day and an estimate of volume to be delivered to them. Phase 2

then converts Phase 1 output into routes by using an insertion

heuristic with a scoring function.

One of the few contributions that focused on the integrated in-

dustrial gas supply chain is Marchetti et al. (2014), who proposed

a multi-period mixed-integer linear programming model includ-

ing production plants, distribution depots, gas customers and liq-

uid customers. It assessed the benefit of optimal coordination by

testing different strategies ranging from fixed sourcing to dynamic

sourcing of multi-plant/depot system. The production model in-

cluded multiple sites capable of operating at various modes with

focus on the cost of electricity. Distribution was modeled as an IRP,

with a general framework for generating a list of feasible routes

and entering a subset of proposed routes as an input to the fully

coordinated network optimization model. Misra et al. (2018) fo-

cused on formulating the same problem to curtail the num-

ber of binary variables to make the network computationally

efficient, by dividing the distribution network into regions to

guide the optimizer to select the vehicles closest to the plants.

Zamarripa et al. (2016) proposed a rolling horizon approach on the

full-space optimization problem. It decomposes the problem by di-

viding the time horizon into detailed and aggregated blocks.

3. Challenges

This section describes the main research and implementation

challenges from an industrial perspective and how they have

been addressed by the PSE community, including joint academia-

industry collaborations Within the industrial perspective four

main challenges are addressed: supply chain modeling; different

modelling approaches; data and implementation. The academic

perspective focuses on how previous industrial needs have been

addressed, as well as on novel academic challenges. These are

multiscale modeling; uncertainty, risk and resilience modeling;

sustainability modeling; efficient solution methods; and data man-

agement. It is important to note that the topics covered in this

section represent the background and experience of the authors

and should not be considered a comprehensive review.

3.1. Industry perspective

Given the wide variety of features encountered in process

supply chains and in particular in industrial gases supply chains, it

is not surprising that a large number of planning and scheduling
odels can be found in the literature. Modeling challenges within

he supply chain involve the accurate representation of the key

ecisions regarding sourcing, production and distribution at the

cheduling and planning levels. On the other hand, it is critical to

evelop models which are also computationally tractable. Conse-

uently, approaches that address uncertainty and multiscale prob-

ems must be carefully incorporated to have a real-world impact.

s supply chain models are data intensive, these must integrate

ith modern techniques that involve advanced analytics and big

ata. Finally, multiple implementation challenges are discussed,

uch as the “build vs. buy” dilemma and the computational per-

ormance of software tools, as well as the management of change

egarding the work process and the end-users of these tools.

.1.1. Supply chain scope challenges

Supply Chain Planning – Planning the merchant liquid sup-

ly chain is a very challenging problem (Marchetti et al., 2014;

amarripa et al., 2016; Zhang et al., 2017; Misra et al., 2018). Liq-

id plants, while all making the same basic set of products, often

ary in capacity and efficiency. As merchant liquid customers may

eceive shipped product from multiple locations, continuously op-

imizing this supply chain can be challenging. Uncertainties, such

s varying customer demand and time-of-day electricity prices,

ake the system quite dynamic. There is a need for sophisticated

orecasting tools (Weron, 2018) and large mixed integer linear

rogramming models in order to determine optimum production

nd distribution plans on a continuous basis (Marchetti et al.,

014; Zamarripa et al., 2016; Zhang et al., 2017; Misra et al.,

018). These planning tools, which should plan over a multi-week

ime horizon, then must guide the operational tools designed for

inute-to-minute optimization of the plants and logistics.

Fig. 3 illustrates the hierarchical decision-making process. At

he tactical level, a planning optimization tool minimizes the

verall sourcing, production and distribution costs within a cluster

f plants and customers, as well as defines the plant produc-

ion schedule and allocates production and customers to plants.

roduction decisions are enforced through real-time optimizers

nd model predictive controllers. Once customers are allocated to

lants at the planning level, routing decisions are made, either

anually or with inventory routing solvers.

Many supply chain problems are traditionally solved in a

equential fashion due to work processes and technological

imitations. Nevertheless, benefits may be obtained if they are

ntegrated in a single optimization model. For instance, in the

AG business the shuttle distribution optimization suggests how

requently products are delivered to stores. Ideally, this prob-

em should be solved in tandem with a multi-echelon cylinder

nventory optimization by trading-off distribution costs and the

apital cost associated with the required cylinders. The result-

ng model is a large-scale MINLP which calls for customized

olution/decomposition strategies.

Demand Side Management (DSM) – DSM refers to electric en-

rgy management on the consumers’ side and encompasses energy

fficiency and Demand Response (DR). DR presents challenges and

pportunities, primarily the optimization of operational flexibility

hrough the integration of production and energy management.

n the strategic level, large industrial electricity consumers often

nter into long-term contracts with favorable rates. However, such

ower contracts require the consumers to commit themselves to

he amount that they are going to purchase years in advance when

uture demand is not yet known with certainty. Hence, there is

he need to simultaneously optimize long-term electricity procure-

ent and production planning while considering uncertainty in

roduct demand (Zhang et al., 2018). Regarding mid-term (tactical)

ecisions, the main challenge is to integrate energy management,

roduction, sourcing and customer-plant allocation (Zhang et al.,
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Fig. 3. Hierarchical decision-making process.

Fig. 4. (a) Surrogate model in product space and (b) transition modes.
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017). This coordination problem gives rise to a multiscale opti-

ization model because while a detailed production scheduling

epresentation must capture all critical operational constraints on

fine time grid, vehicle routing can be considered in each time

eriod of a coarser time grid.

Process Modeling – The traditional way of modeling a process

nvolves heat and mass balances, which requires the detailed

escription of the system’s performance (e.g. thermodynamics,

inetics). The disadvantage of this approach is that the model can

ecome prohibitively hard to solve in the context of supply chain

ptimization due to its nonlinearities and its size. An alternative

pproach is to build surrogate models in reduced space, e.g. the

roduct space. To determine the feasible region of the plant in

he product space, production data can be obtained from extreme

perating points or from a sequence of steady-state simulations.

oreover, production modes may represent state of equipment,

.g. “off”, “production mode” or “ramp-up transition.” Only one

ode can be active, in other words the modes are disjoint. The

ata for each mode is represented as a collection of operating

oints (slates) that are the extreme points in terms of the products

Mitra et al., 2014 a; Zhang et al., 2016 a).

Fig. 4 shows an example of the feasible operating region of

process in two- dimensional product space, in terms of flow

ates. In this case, there are two products (P1 and P2) and three

perating modes. The feasible space of mode 1 is a single point

zero production). Modes 2 and 3 are described by two poly-
opes; these represent approximations of the true feasible region,

hich is in general nonconvex and nonlinear. Transitions between

ifferent modes can be represented via a transition graph, also

hown in Fig. 4, with four different modes (off, on, startup and

hutdown). The arcs indicate the directions and the corresponding

ime constraints (Zhang et al., 2016 a). With respect to Fig. 4a,

ode “on” could encompass

As discussed in (Harjunkoski et al., 2014) in the context of

roduction scheduling but generalizable to supply chains, mod-

ling of time can be classified into (i) precedence vs time-grid

ased, (ii) global vs. local or unit-specific and (iii) continuous

s. discrete time domain. Industrial gas supply chain models fall

nto a network, rather than a sequential structure and are natu-

ally represented as time grid models (Harjunkoski et al., 2014).

xisting supply chain models are represented as global grids in

iscrete time but there are opportunities in achieving higher

olution efficiency by addressing unit specific and continuous time

epresentations, particularly in route scheduling.

In terms of modeling elements, models can be classified into

atches and material amounts (Harjunkoski et al., 2014). Interest-

ngly, in the context of industrial gas supply chains, bulk processes

re logically represented in terms of material amounts, whereas

ackaged gases are represented as batches. Finally, there are

ignificant opportunities in capturing transient operations and

omplex plant behavior (Cao et al., 2016; Pattison et al., 2016;

hu et al., 2011) as well as key process variables that impact
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Fig. 5. Uncertainties in the industrial gas supply chain.

Fig. 6. Product demand trajectories in short term and long term (Mitra et al., 2014 a). Parameters μt and σ t denote the expected demand and the standard deviation in

time t.
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optimal conditions. Main challenges are that the resulting models

would become dynamic and nonlinear, as opposed to the existing

(mixed integer) linear planning and scheduling models.

Ye et al. (2019) investigated the tradeoff between design and

operations based on a superstructure with equipment redundancy.

Using a Markov-chain based MILP framework, the authors intro-

duced stochastic failures and repair schedules in order to calculate

the optimal number of units in order to maintain plant availability.

Inventory Route Planning – Executing a Vendor Management

Inventory (VMI) policy in an effective way is nontrivial, because

it requires the integration of two components of SC management,

inventory control and distribution routing (Dong et al., 2014). In

inventory control, the goal is the determination of orders (time

and amount) of customers, while in distribution routing the goal

is the generation of schedules to meet these deliveries. Delivery

frequency to customers should be such that they are visited when

their tank levels are close to safety stock levels. The integration of

the two problems, which can have a dramatic impact on overall

system performance, leads to the inventory routing problem (IRP)

which is at the heart of all VMI policies. The main objectives

in solving the IRP are to reduce the overall distance driven per

volume delivered to customers while ensuring that there are no

product outages, which have a sustainability impact by reducing

fuel emissions and managing supply risk.

3.1.2. Challenges in modeling approaches

Uncertainty – Uncertainty plays a crucial role in the manage-

ment of the supply chain. Electricity prices may fluctuate on an

hourly basis in certain markets; moreover, to ensure the stability of

the power grid, backup capacities are called upon when electricity

supply does not meet demand due to unexpected changes in the

grid (Fig. 5). As part of demand response efforts in recent years,
ndustrial gas companies are encouraged by financial incentives

o provide such operating reserve in the form of load reduction

apacities (interruptible load). However, a major challenge lies in

he uncertainty that one does not know in advance when load

eduction will be requested (Zhang et al., 2016c).

Although industrial gas sites operate at a very high level of

vailability, there are circumstances in which there are unplanned

hutdowns that are caused by electricity supply and/or equipment

ailure. As mentioned in the previous section, typically plants are

irectly connected to customer by pipelines to supply gaseous

roducts. Liquid storage tanks are usually installed onsite to be

sed as a backup when the plant is in outage. Assuming there

re data for historical reliability data of individual assets, the

ain question is how to make design and operations decisions to

aximize plant availability. Supply chain management plays an

mportant role in supplying liquid products during plant downtime

o guarantee uninterrupted supply to pipeline customers (Fig. 5).

ence, the study of supply chain resiliency could bring benefits to

he industry.

Besides electricity and plant availability, demand uncertainty

lays a pivotal role in production planning & scheduling, inventory

outing as well as in long-term capital investments (Mitra et al.,

014b). Fig. 6 illustrates product demand uncertainty in short term

nd long-term decisions, which ultimately affect all operational

production, routing), tactical (safety stock) and strategic (tank

izing, plant capacity) decisions.

Fig. 6. Product demand trajectories in short term and long term

Mitra et al., 2014a). Parameters μt and σ t denote the expected

emand and the standard deviation in time t.

Supply chain management is a dynamic process with new

nformation continuously available and with multiple sources of

ncertainty. Rescheduling is performed regularly to address uncer-
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Fig. 7. Multiscale decisions in the industrial gas supply chain (Mitra et al., 2014 a).
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ainty and the arrival of new information, e.g. resource availability

Harjunkoski et al., 2014). Rescheduling is typically done over a

oving (rolling or receding) horizon framework by fixing part of

he current solution. Alternatively, stochastic or robust optimiza-

ion approaches can be used to explicitly account for uncertainty.

s an example, it is important to characterize call-in orders

ncertainty in the PAG route optimization to develop robust multi-

eriod distribution models. The work of (Subramanyam et al.,

017) is a step towards this direction. Opportunities to evaluate

ustomer delivery window flexibility and its impact in the distribu-

ion cost can be further explored with this type of models. To the

est of the authors’ knowledge there is no known implementation

f approaches that account for uncertainty in process supply chains

nd particularly in industrial gas applications, given the challenges

n representing scenarios or uncertainty sets and the computation-

lly expensive approaches that address real-world problems.

Finally, in the context of inventory routing for the bulk busi-

ess, in addition to customer demand, there are uncertainties with

espect to travel times, service times at customers and delivery

ime windows, i.e., when customers allow access to bulk tanks.

uch uncertainties depend on the time of the day, traffic accidents,

eather conditions and other external factors. These may affect

elivery times or even prevent deliveries at end of routes.

Multiscale Modeling – One of the biggest challenges for the

esign and long-term capacity planning of industrial gas plants

s the incorporation of short-term operational decisions. Typically,

apacity planning is performed over a 10 to 15-year horizon.

nvestigating the trade-off between capital or retrofit, and op-

rating costs, related to electricity prices, which can vary on an

ourly basis, leads to a complex multiscale optimization problem

Mitra et al., 2014a,b). Fig. 7 illustrates the multistage, multiscale

ature of the problem, in which investments are reviewed an-

ually, and operational decisions are made based on short term

emand. In order to simplify operational decisions, four periods

re defined for each year that correspond to the seasonal behavior

f electricity prices. Furthermore, each season is considered with a

epresentative week that is repeated cyclically and in which elec-

ricity prices are specified in an hourly basis. With the proposed

pproach, a one-year model is represented with 672 time slots (4

easons with 168 h per week) in contrast to 8760 h in one-year.

At the tactical, mid-term level, there is also the need to coordi-

ate multiple time scales. In this case, monthly plans must be de-

ned to coordinate sourcing, production and distribution decisions,

s in (Zhang et al., 2017). Production decisions are optimized at the

ourly level to leverage energy price changes, whereas distribution

ecision require a coarser time grid to manage inventory levels in

lant and customer sites, as well as fleet and driver utilization.
.1.3. Data challenges

Data Availability and Management – Data must be available

or the successful implementation of any decision-support solu-

ion. In many instances, data availability is a bottleneck. The most

ommon internal data sources for supply chain applications are

he business ERP system, spreadsheets, production historians and

ogistics systems. Unfortunately, data is in many cases inaccurate,

ncomplete or inconsistent. In this regard, effective master data

anagement (MDM) becomes vital for the successful implemen-

ation of any supply chain management initiative. Increasingly,

nalytics can be used to cleanse, integrate and orchestrate data

cross multiple processes, systems, departments, lines of busi-

ess and geographic regions. For instance, MDM can enforce

usiness rules around data quality, prevent duplicate, inaccurate

r incomplete data. ETL (Extract, Transform and Load) and ma-

hine learning tools help businesses in this regard by effectively

urating the data, cleaning it up and writing it into MDM for

se in decision-support solutions. Moreover, with the growing

umber of sensors available in the supply chain, real-time data

as emerged as an MDM priority. Hence, high availability master

ata becomes a key requirement, as volume, velocity and variety

f data increase. Inbound and outbound data processing is often a

atch procedure in conventional MDM systems. Multidomain and

ultivector are emerging technologies that allow data systems to

ntegrate several data domains and move towards an event driven

r continuous process (Walker and Moran, 2017).

Data Analytics – Industrial gas plants require a high degree of

utomation and data analytics to ensure that they continuously

perate safely, reliably and efficiently (Megan and Bruton, 2017).

xamples include condition and predictive monitoring of equip-

ent such as motors and compressors to reduce failures and

herefore unplanned downtime. As with large process plants, the

endor managed inventory model for bulk customers requires a

ariety of analytics, from optimizing assets to scheduling daily

eliveries. Packaged gases are a very transaction-intensive business

ith many distinct products, which leads to many opportunities to

se analytics to manage the supply chain, understand margins and

etter target the sales force. Every supply chain planning activity

equires forecasting tools to predict inputs such as customer

emand and energy costs. Forecast accuracy is a common chal-

enge within companies. Forecasts are used for different purposes,

anging from short term replenishment and capacity planning to

ong term investment and procurement contracts. It is important

o note that demand at the customer level is important for the

hort term that is required by manufacturing, distribution center

eplenishment and customer shipment; whereas aggregate fore-

asting tends to be more accurate in the long term in cases such
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Fig. 8. Data sources for route optimization systems.
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as strategic decisions on supply chain network design. Extending

quantitative forecasting from the traditional statistical methods

and time series analysis to more complex machine learning al-

gorithms is an area that also requires further exploration in the

industrial gas supply chain. Nevertheless, there are still some

issues to address in this arena such as generation of confidence

intervals and uncertainty estimation, minimization/avoidance of

overfitting and model interpretation (Makridakis et al., 2018).

Big Data Analytics – There has been a paradigm shift in

leveraging data for supply chain, particularly external data, which

has been experiencing tremendous growth in the past few years.

The traditional approach has been to utilize internal data, from

few core applications that track the activity of the company and

automate various processes. Internal data is mostly structured and

stored in data warehouse(s). Moreover, data is relatively clean and

models activity related to customers and processes. With the ar-

rival of external big data, the number of systems and applications

will multiply. External data will not be clean or structured; neither

will be stored in data warehouses. Models will be a lot more com-

plex as they will relate to both internal and external processes. In

addition, a big data strategy must be defined and implemented.

Activities that can be directly impacted are customer service,

inventory replenishment, dynamic pricing, credit checks, among

others. In the context of the industrial gas supply chain the

availability of external data presents new opportunities. A real-

world application that would benefit from external data is route

optimization (Fig. 8). In this context, plans that either result from

Inventory Routing (IRP) or Vehicle Routing (VRP) policies typi-

cally rely on internal data sources, such as transactional logistics

systems, fleet maintenance & telematics, and customer demand

forecasting systems. Under this scenario, a plan is generated over a

short-term horizon (one day to one week) and the goal is to exe-

cute the trips as closely as possible. Notwithstanding, external data

such as traffic and weather, as well as accident data, can be used

for real time dynamic routing. This business model would allow for

added same-day new orders and existing plans could be continu-

ously reoptimized. It is important to note that there are significant

challenges in implementing such model because systems need

to adapt much faster to last minute changes. Moreover, in this

scenario real-time information must be passed back to logistics

planning systems from either mobile apps or telematics solutions.
.1.4. Implementation challenges

Enterprise Organization – Supply chain management provides

n opportunity to integrate multiple functions within an organi-

ation, which are often siloed in their decision-making. However,

he process of implementation of optimal supply chain decisions

an be very challenging due to conflicting objectives. For instance,

decision-support tool that optimizes operational decisions in a

lant would minimize the total power costs under varying hourly

ower prices; such a tool might recommend frequently switching

quipment on and off to avoid consuming power during a peak

ime of the day. However, such frequent swings of an equipment

ill have adverse effects on its life, resulting in significant re-

uction in the availability of the overall plant. Similarly, from

he distribution perspective, optimal inventory routing decision

nder a cost minimization objective would try to reduce product

ank levels at customer locations as low as possible in order to

ave trips to the customer sites. However, under uncertainty, if

he customers’ usage increases, the tanks will run out of product

ooner than predicted.

Software Tools – One of the main challenges in the devel-

pment and implementation of decision-support software tools

oncerns the “build versus buy” decision. Off-the-shelf software

resents itself as a faster and cheaper solution. However, off-the

helf software cannot satisfy every requirement or would demand

ignificant effort to modify built-in features. This limitation leads

o lack of customization, which can result in low software usage

nd in some cases even incorrect business decisions. Nevertheless,

t is important to note that off-the-shelf solutions are preferred

or companies with limited budget and technical proficiency or for

ompanies for which technology resulting from the software would

ot result in competitive advantage. Proprietary software requires

nvestment in people and resources and a comprehensive plan to

evelop and maintain. For instance, it may be advantageous to

evelop an integrated software platform rather than a set of mul-

iple point-to-point solutions. Also, a comprehensive maintenance,

upport and update plan must be established for the long term;

his involves a resourcing and funding model, which are equivalent

o the annual fees paid to third-party software companies.

Supply chain planning tools will also need to be able to allow

uick analysis through modern human machine interfaces and

eet the ever-increasing expectation of improved solution time
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mong supply chain decision-makers. Especially for short term

perational decisions, this will lead to more frequent optimization

nd implementation of optimal decisions.

Computational Performance – The complexity of real-world

ndustrial problems translates into large scale models, in terms

f constraints and variables. Most supply chain problems result

n mixed-integer linear programming models, which require the

nvestigation of customized solution techniques to obtain good

not necessarily optimal) feasible solutions in reasonable time.

xamples in strategic and tactical planning are: a hybrid bi-level

ecomposition scheme for a two-stage stochastic programming

roblem with mixed-integer recourse that results from a multi-

cale capacity planning problem with investment and operational

ecisions (Mitra et al., 2014b), and Helium SC planning in which

rolling horizon strategy is developed (Malinowski et al., 2018).

hort term examples are as follows: IRP for which a dynamic

reprocessing algorithm followed by a two-level decomposition

olution method (Dong et al., 2017), and production scheduling

f air separation units under uncertainty, for which an integrated

tochastic mixed-integer linear programming model is developed,

onditional Value-at-Risk (CVaR) is incorporated into the model as

measure of risk, and a strategy based on scenario reduction with

ulti-cut Benders decomposition is implemented to solve large-

cale real-world instances (Zhang et al., 2016b). Increasing trend

f on-demand high performance cloud computing will also aid in

reating such tools allowing quicker analytics and optimization of

omplex supply chain networks.

Change Management – One of the main challenges in the

mplementation of decision support tools is the management

f change with decision makers as well as with the business

rganization. Unfortunately, the PSE community does not have the

raining and often disregards the impact of change management in

he successful implementation of optimization tools. The change

anagement area has been primarily addressed by the business

anagement community (Cameron and Green, 2015) and ranges

rom mergers & acquisitions to projects. Although not core to the

SE community, change management should be part of any imple-

entation project. Indeed, there are opportunities to bring design

hinking into the area to better understand the interrelationship

etween tools and decision makers.

Supply Chain Visibility – Companies are increasingly us-

ng methods such as “Supply Chain Digital Twin” to perform

imulation and what-if analysis for linking low level operation

evel decision with total cost and high level strategic objectives

Schlager, 2018). Such tools aid supply chain decision-makers by

roviding full supply chain visibility (SCV) and effectively imple-

ent change management with all functions of the organization.

odern data visualization and BI (Business Intelligence) tools are

lso helping with SCV and making relevant supply chain data

uickly available to the decision- makers to act upon. Such tools

ave the potential to transform how users interact with data and

ake decisions. The concept of supply chain control tower has

merged to provide supply chain visibility and deliver the infor-

ation necessary to support collaboration and decision-making

n real-time (Titze et al., 2018). Modeled like an airport control

ower, a unified system, ideally at a single physical location, helps

n implementing critical decisions with impact on the entire

upply chain. As more data is available with digital enabled supply

hains, the business case for this type of platforms is becoming

ore favorable.

.2. Academic perspective

Process supply chains have been studied by the PSE commu-

ity with increased focus in recent years. Different challenges

ave been addressed in line with some of the industrial needs
entioned in the previous section. These span from operational

o strategic decision levels and have been covering different types

f problems (Barbosa-Povoa, 2014), but further research is still

equired.

Multiscale Modeling – At the strategic level, optimal design

nd planning of supply chains is a well-known problem that,

owever, continuously faces new challenges. The integration of

trategic and tactical decisions is still an area to explore where

omprehensive models that account for different supply chain

haracteristics are required. For instance, uncertainty, sustainabil-

ty, risk and resilience management should be targeted. Addition-

lly, the availability of large amounts of data is nowadays a reality,

hich entails further study to lead to accurate industrial represen-

ations and allows further decision-sharing (Ning and You, 2017).

The integration of tactical-operational decisions is also an open

ssue that has been seldom studied. Supply chain planning and

perations appear as a research opportunity, where production

lanning, inventory management and logistics decisions should

e considered simultaneously. Multiscale supply chain models

ill help to answer to these challenges where Enterprise Wide

ptimization approaches (Grossmann, 2012) ought to be explored.

n this context, not only centralized supply chain decisions, as

ommonly treated by the academic community, should be ana-

yzed but rather trade-offs between different supply chain entities

eed to be accounted for, where decentralized decisions are at

take (Sahay and Ierapetritou, 2014).

Game theoretic approaches may be used to address prob-

ems where conflicting objectives are often present. Some have

een explored within the PSE community, including the effect

f market competition. For instance, Nash-based approaches

ave been applied by (Gjerdrum et al., 2001;Gjerdrum et al.,

002) for the fair optimization of transfer prices among multi-

nterprise supply chains. (Zamarripa et al., 2012) proposed the

onstruction of Pareto-optimal fair solutions for supply chains

nder cooperative and competitive scenarios, whose pay-off ma-

rix was computed through a series of multi-objective MILPs.

he case of capacity planning in a competitive environment has

ecently been addressed by Garcia-Herreros et al. (2016) and

lorensa et al. (2017) from a bilevel and a trilevel perspec-

ive, respectively. The strategic planning of petroleum refineries

as recently studied through a game theoretic perspective

y Tominac and Mahalec (2017), who formulated the prob-

em as a game where several refineries are engaged in a

ournot oligopoly and solved the resulting non-convex (MI-)NLP.

jaila et al. (2017) explored a Stackelberg-game-based approach

or the coordination of multi-enterprise supply chains in a com-

etitive uncertain environment. Yue and You (2017) used the

tackelberg-game-based approach for supply chain design and

lanning optimization, while recently (Gao and You 2018) studied

he influence of multiple stakeholders’ uncertain performance in

on-cooperative supply chains.

Uncertainty, Risk, Resilience Modeling – uncertainty is in-

erent to supply chains. Different approaches exist to model it,

uch as constraint programming; multi parametric; fuzzy systems;

mong others – see the comprehensive review by Sahinidis (2004).

owever, with supply chains the main approaches explored have

een stochastic and robust. The first one focuses on the estab-

ishment of representative scenarios to model uncertainty but the

se of a large number of scenarios leads to intractable models.

ne possible way to tackle this problem is to explore the use

nalytics on uncertain parameters, e.g. in demand and supply

o as to establish the most representative scenarios. Moreover,

tatistical, data mining or machine learning techniques, amongst

thers may also be explored. This has been studied by some

uthors (Yue and You, 2016; Lima et al., 2018) and constitutes

n emerging research area. An example is shown in Fig. 9, based
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Fig. 9. Stochastic approach to the treatment of uncertainty in the planning of oil supply chains (Lima et al., 2018).

Fig. 10. Risk measures analysis (Cardoso et al., 2016).
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on the work of Lima et al. (2018), where a multistage stochastic

programming approach to optimally solve the distribution prob-

lem of refined products was developed. The stochastic model

uses historical data and relies on a time series analysis, as well

as on a scenario tree analysis, in order to effectively deal and

represent uncertainty in oil price and demand. The Autoregres-

sive Integrated Moving Average (ARIMA) methodology is used

to study the time series of the random parameters, aiming

to provide their future outcomes, which are then used in the

scenario-based approach. As the designed methodology leads to

a large-scale optimization problem, a scenario reduction approach

is employed to reduce model size and improve its computational

performance.

Regarding robust optimization-based approaches, research has

been focused on how to minimize the conservativeness of the

models, but a clear understanding of the problem is still needed.

The modeling of different exogenous and endogenous uncertainties

is also a problem to be tackled.

Highly interconnected to uncertainty rises the challenge of risk

modelling, where the search for adequate measures is very impor-
ant. Different metrics have been explored and many authors have

dentified CVaR (Conditional Value at Risk) as the most adequate

ne (Zhang et al., 2016b; You et al., 2009). This is summarized in

ig. 10 where four main risk measures are analyzed within the

esign and planning of supply chains (Cardoso et al., 2016). On the

ne hand, the variability index appears the most adequate when

ecision-makers are risk averse and when the main objective is

o reduce the variability of the results (blue circle in Fig. 10). On

he other hand, when decision makers are risk takers CVaR is the

ost appropriate and allows the understanding of any long tail

hat can appear in the objective function –NPV (Net Present Value)

n the application considered – as identified with the blue circle

n Fig. 10. Note that the latter also appears as a coherent risk mea-

ure, which is an important feature of risk metrics (Artzner et al.,

999).

With risk comes the need of guaranteeing supply chain

esilience, a critical feature to supply chain management

ue to the uncertain environment under which they operate.

dhitya et al. (2009) explored a HAZard and OPerability (HAZOP)

nalysis method so as to systematically generate deviations in



A.P. Barbosa-Povoa and J.M. Pinto / Computers and Chemical Engineering 132 (2020) 106606 11

Fig. 11. Extended Supply Chain – towards sustainable a supply chain.
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everal supply chain parameters and identify their possible causes,

onsequences, safeguards, as well as mitigating actions.

More recently, Cardoso et al. (2015) also addressed risk and

odeled disruptions in a probabilistic manner, resulting in the

ncorporation diverse sources of uncertainty. Eleven indicators

re considered to assess supply chain resilience, which comprise

etwork design, centralization and operational indicators. The

uthors conclude that when resiliency is considered from the

nitial design of the network, fewer mitigation strategies are re-

uired to cope with disruptions. Nevertheless, added redundancy

oes not necessarily result in the most resilient supply chain.

ardoso et al. (2015) is one of the few works that address explic-

tly resilience in supply chains. Thus, resilience modeling is not yet

ell understood and there still exists a long way to trail on this

opic (Ribeiro and Barbosa-Povoa, 2018).

Sustainability Modeling – increased concern for the man-

gement of sustainability in supply chain decisions has been

itnessed in the last decade, often pressed by governmental

egulations and societal pressures (Barbosa-Povoa et al., 2018a).

his calls for decisions that seek for a solution of compromise

etween the three sustainability pillars: economic; environmental

nd social. An extended supply chain view must then be adopted

Fig. 11), where supply chain activities must be linked not only

hrough forward flows, to satisfy costumers needs, but also incor-

orate reverse flows, where waste generated along the chain is re-

overed and transformed into supply chain added value (e.g. end of

ife products; non-conform materials other activities waste genera-

ion). In this way supply chains become more sustainable systems

here environmental concerns (e.g. sustainable natural resource

vailability; sustainable operations) as well as societal expectations

e.g. creation of jobs in less developed regions) are incorporated.

In this context, a set of challenges can be thus identified.

tarting with the economical pillar. Although this has been widely

ddressed by the academic community the developed studies have

ainly focused on the minimization of costs or on the maxi-

ization of profit. Important aspects have been left out, which

re part of supply chains as these operate in a wide geography.

hese are related to international characteristics as taxes, transfer

rices, duties as well as multi-modes and outsourcing options

Barbosa-Povoa et al., 2018a). Regarding the environmental and

ocial pillars, a limited number of works have addressed such

oncerns (Mota et al., 2018). Nonetheless, these concerns are of

xtreme importance in process supply chains as these often deal

ith pollutant and/or hazardous products and/or processes, and

hus their adequate treatment must be in place (Bojarski et al.,
009). As an example, and as discussed above, the optimization of

nergy consumption is a great industrial need, which should target

ot only economic objectives but also environmental concerns.

ence, it is necessary to understand what the most adequate

ethod should be to quantify environmental impacts so as to seek

solution of compromise between economic and environmental

oals. The LCA method has been identified as one of the most

omprehensive methods, and it has been studied using different

urrent approaches as the Impact 2002+, Eco-indicator 99, ReCiPe,

nd PEF. But comprehensive models are still missing that should

oundly address the environmental aspects in the design, planning

nd operation of supply chains. Finally, very few works have

ddressed the third sustainability pillar, the social concern, which

s a challenging research issue to address due to the subjectivity

nvolved (Mota et al., 2018).

The scope of sustainable process supply chains must be then

urther developed from a PSE standpoint. Firstly, it is important to

learly define the problem in study. Recently, Barbosa-Povoa et al.

2018b) proposed a framework – SusFrame, to guide practitioners

nd/or researchers in the development of optimization models

or the design and planning of sustainable supply chains. This

s represented in Fig. 12 where four main steps are identified

s crucial, when addressing sustainable supply chains through

ptimization approaches.

The first important step is to set the boundaries of the problem,

hich allows the definition of the data set. Problem boundaries

elate to the type of supply chain in study: forward, reverse,

r both (closed-loop supply chains). The second step calls for a

lear identification of the decisions to be made: strategic and

actical (e.g. suppliers’ selection, location of entities, transportation

ptions, product recovery strategies, or inventory levels). The third

nd fourth steps define the constraints and objectives. The for-

er describes the problem restrictions and may be of economic,

nvironmental or social focus; the same applies to the latter –

nd here the question on which the best indicator is remains

pen. Finally, the fifth step investigates the outputs and solution

pproaches. The model could target a single objective where envi-

onmental and social concerns may be transformed into a common

onetary unit, using for instance the EPS method (Silva et al.,

018), or follow a multi-objective approach, where methods as the

ugmented ε-constraint method proposed by Mavrotas (2009), in

hich the range of the objective functions over the efficient set

s calculated through the use of a lexicographic optimization for

very objective function (Mota et al., 2018). In the latter, envi-

onmental concerns can be treated through LCA methods, being
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Fig. 12. SusFrame framework (from Barbosa-Povoa et al., 2018b).

Fig. 13. Process supply chain 4.0 and analytics challenges.
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ReCiPe and PEF the recommended ones, and social indicators may

measure the creation of jobs in non-developed or less populated

areas (Barbosa-Povoa et al., 2018a). In this topic, the PSE commu-

nity has a lot to contribute towards developing methodological

advances, which could be integrated into real-world problems.

Efficient Solution Methods – the treatment of the above iden-

tified concerns evidently requires the development of models with

increasing complexity. This requires new solution methods, where

efficient decomposition methods should be explored by the PSE

community. One possible example is the use of math-heuristics,

where evolutionary methods coupled with mathematical program-

ming are explored, amongst other methods (Lima et al., 2016).

Also, the mathematical representation of such challenges may lead

to non-linear models, which the PSE research community should

address (Misener and Floudas, 2014; Su et al., 2018). For instance,

Lara et al. (2018) developed a global optimization algorithm for

capacitated multi-facility continuous location-allocation.

Data Management – Finally, the so-called “Supply Chain 4.0′′
is nowadays a reality and the wide availability of data from the

supply chain, customer demand, resource consumption, as well as

other associated internal and external activities opens new chal-

lenging research areas. As identified in the industrial challenges,

Big Data availability ought to increase the number of systems and

applications, which implies that the use of analytics, coupled with

PSE models, will support the improvement of model accuracy, ap-

plicability and solution, and therefore enhance solution quality. An-

alytics has the potential to transform data into decision-making in-

sights for process supply chains (Fig. 13). Prescriptive analytics can

improve decision making in different supply chain areas as plan-

ning, sourcing, logistics and transportation, and can be deployed to

improve end-to-end supply chain performance. Some of the paths

to explore are the incorporation of dimension-reduction techniques

to transform big data series into valuable inputs, and the develop-

ment of new data architectures combining data mining with ma-

chine learning algorithms. Moreover, improved data management

will allow continuous inventory review that supports the optimiza-

tion of safety stock levels across the supply chain, thus achieving

a reduction of costs with no detriment to targeted service levels.

Data access will also support a proactive supply-demand balance

that allows the construction and analysis of scenarios that will

impact supply chain profitability. Finally, supply chain digitaliza-
ion coupled with PSE tools will create the conditions to monitor

nd proactively manage supply chain risks, improve supply chain

esilience and so increase its ability to cope with unexpected,

isruptive events. Some of the above aspects have been discussed

y some authors within the PSE community as is the recent

ase of Lee et al. (2018), where the applicability of reinforcement

earning to multi-stage decision problems was discussed and

otential applications and research directions of machine learning

echniques to handle data management were presented. Recently,

ing and You (2019) review advances in the field of optimization

nder uncertainty exploring data-driven optimization approaches.

Supply Chain Domains – process supply chains, as mentioned

efore, include a large range of sectors from utilities to pharma-

eutical and food. Within this diverse set, new domains have been

merging and will gain higher importance in the near future. This

s the case of energy supply chains where new energy sources as

ydrogen (Moreno-Benito et al., 2017; Biqué and Zondervan, 2018),

un or biomass (Paulo et al., 2015; d’Amore and Bezzo, 2016),

eed to be further studied and integrated with more conservative

nergy sources, as oil. In such systems, apart from the challenges

bove identified, new ones exist as is the case of efficient storage

or non-renewable energies or is the synchronization between

upply and demand when facing high supply variability. When

ntegration is at stake a critical factor that needs to be addressed
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s to identify the appropriate “insertion points” through which the

upply chains should be connected. Another supply chain domain

hat is today facing a reorganization, is the agri-food supply chains.

igher market requirements for freshness and security imposes a

ove from global to local supply chains (Jonkman et al., 2019). In

hese new challenges emerge as is the case of moving to produce

mall where economies of scale cannot be anymore explored to

ptimize costs and how to restructure the existent system to

nswer to this new market demand. Finally, according to Laínez-

guirre et al. (2012) and Gautam and Pan (2016) pharmaceutical

upply chains are changing to more lean and focused companies,

ith the specialty products and emerging markets growing as key

evenue streams. The new pharmaceutical supply chain is now

xpected to be highly focused on patient and value deliver. This

rings new challenges where increased flexibility is the key.

Other supply chain domains are expected to emerge in the near

uture but above all the identified challenges with continue to ap-

ly adding to new challenges related to new technological contexts

llied to new market needs.

. Conclusions and perspectives

Supply Chain optimization presents multiple opportunities for

alue creation in the process industry and has been the focus of

ncreasing research by the PSE community. However, there are

any challenges that still prevent the successful implementation

f decision-support technologies that are relevant to the design

nd management of supply chains.

This was demonstrated by addressing a real-world, process

upply chain – the industrial gas SC and its components – whose

oal was used to illustrate the complexity of the decisions and

nformation involved. Based on the product and supply mode, we

lassified the main supply chains as bulk atmospheric gases (BAG)

nd process gases and packaged gases (PAG). In each part, we

escribed the different SC activities such as upstream, sourcing,

roduction, storage, and distribution, while underscoring the

articularities of the industrial gas sector.

After outlining the main operations within each supply chain,

e discussed contributions that address problems in the SC as

ell as ongoing challenges. Several challenges were discussed that

elate to the modeling scope of supply chains, including planning

nd scheduling and the representation of entities (energy, pro-

uction, distribution). Moreover, the paper addressed the different

pproaches that result from integrated decision support systems,

uch as multiscale and uncertainty, as well as their treatment.

ata challenges were also discussed in terms of their management

nd the need for advanced analytics. Finally, implementation

hallenges were also discussed that result from the organization

f the enterprise, large scale models that require custom solution

ethods, as well as the impact of decision support tools that

equires the management of change and supply chain visibil-

ty. From this analysis it is possible to conclude that PSE tools

ave contributed to address real supply chain problems and are

f critical importance when it comes to support the industrial

ecision-making process; however, further supply chain challenges

re still to be dealt by the PSE community.

Such challenges align and converge from an industrial and an

cademic perspective. Namely, comprehensive decision support

ools are required to coordinate cross-functional models. Such

ools should consider the major supply chain challenges, such as:

multiscale decision-making – from strategic to tactical to opera-

ional decisions, the presence of uncertainty (variability, resilience

nd risk), sustainability targets – as new regulations are in place

nd society urges organizations to contribute to welfare. Moreover,

hese tools should manage data effectively, as data availability and
omplexity are increasing. Such challenges lead to further complex

odels that demand investment in efficient solution methods.

In addition to the challenges discussed in this paper, advances

n sensors (Internet of Things), computing, AI and robotics will

ush automation of various supply chain decisions with the

romise of increasing efficiency and performance. In industrial

ases, this would mean improved and automated forecasting,

utomated predictive shipping, machines providing real-time

nformation, automatic re-optimization of network (Alicke and

achor, 2016), among other applications.

There will be an additional need to combine the traditional PSE

odels and methods with big data analytics, machine learning,

nd advanced statistical methods, amongst others, so as to be able

o improve the decision-making process regarding supply chains.

his will support the development of the Supply Chain Digital

win” concept allowing the test of different integrated supply

hain decisions linking low level operation decisions with high

evel strategic objectives. Process supply chains that will master

he right mix of digital capabilities leveraging data management

nd will explore innovative decision supporting tools will be best

ositioned to innovate, compete and succeed in a digital business

uture. All the above aspects call for an increase in a close inte-

ration between academia and industry aiming to reduce the gap

etween research and development and the implementation of

olutions that will make a significant impact on real-world process

upply chains.
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