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ABSTRACT In this paper, a Proportional-Integral-Derivative (PID) controller tuning scheme by Initialized
Model Reference Adaptive Control (IMRAC) for a Lower Limb Exoskeleton (LLE) is presented.
Mathematical expression of the LLE structure is determined using Lagrangian and Kirchoff’s equations.
The transfer function of the structure based on the physical features of the links, and actuators is established
under Range of Motion (RoM) condition. The PID controller of the LLE is tuned in a closed-loop control
system using Ziegler-Nichols (Z-N) for initializing parameters of IMRAC. Adjustment mechanism is a
gradient based method for real-time adaptation of tuned PID controller. A Lyapunov function has been
applied to confirm the stability of IMRAC. The proposed IMRAC shows faster convergence in comparison
with conventional non-initialized model reference adaptive control. It can be ascertained the proposed tuning
scheme is applicable for real-time tuning of PID controller of LLE.

INDEX TERMS Proportional-integral-derivative controller, lower limb exoskeleton, Lyapunov method,
model reference adaptive control.

I. INTRODUCTION
In recent years, the demands for exoskeleton as a rehabili-
tation device have been increased, because of the growing
population of elderly people and brain injuries such as stroke
and Spinal Cord Injury (SCI) [1]–[3]. Therefore, develop-
ment of the exoskeleton has been focused in assisting patients
who lost their muscle stamina to recover their mobility func-
tion [4]–[6]. Lower Limb Exoskeleton (LLE) is a type of
rehabilitation wearable robots, which is worn in parallel with
patients’ lower limb. The main application of LLE is to help
physiotherapist for gait training [7]–[9]. Thus, designing a
robust controller that can work under different conditions is
essential for optimizing the LLE performance.

In this paper, Proportional-Integral-Derivative (PID) is
developed as a controller in an adaptive control system.
Combination of adaptive control and PID is used in several
works [10], [11]. Aboud et al. [12] proposed multiple model
adaptive control schemes, in which PID controller is selected
as the controller for a mechatronic suspension system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng H. Zhu .

Han et al. [13] developed a model-free based adaptive
consists of intelligent Proportional-Integral (PI) controller,
time-delay estimation, and adaptive sliding mode compen-
sator for a 12 DoF LLE. Their control strategy in a simulated
model was verified, and the stability was validated via Lya-
punov theory. Wang et al. [14] combined fuzzy self-adaptive
and variable-speed integral PID and presented fuzzy adap-
tive PID hybrid control strategy for a Multi-rotor Unmanned
Aerial Vehicle (MUAV).

Many researches have been carried out to design an adap-
tive control system for LLE to withstand the external distur-
bance and noises. For instance, Zhang et. al. [15] employed a
Neural Network (NN) and time-delay estimation to accom-
plish tracking trajectory for 10 Degree of Freedom (DoF)
virtual prototype LLE. Its stability and effectiveness were
compared with the results of the Proportional-Derivative
(PD) controller. Zhu et al. [16] established a radial basis
function of NN for controlling lower extremity exoskele-
ton by improving tracking performance and reducing inter-
action force between human and robot. They developed
a robust non-linear integral sliding mode controller to
improve the performance of their robot against uncertainties.
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Hou et al. [17] presented approach of Model-Free Adaptive
Control (MFAC) and compared their results with data-driven
PID control method for some simulation case studies, and
they proved the effectiveness ofMFACby numerical analysis.
Al-Mahbashi et al. [18] applied Lyapunov theory, and an
adaptive control scheme to achieve hybrid function projec-
tive for synchronizing behavior between chaotic and hyper-
chaotic systems. Gains of Adaptive control are designed
based on adaptive update law. The effectiveness of their pro-
posed model is demonstrated by numerical example. Roman
et al. [19] compared three data-driven techniques such as
data-driven MFAC, Model-Free Control (MFC) and Virtual
Reference Feedback Tuning (VRFT) to control representa-
tive non-linear Multi-Input-Multi-Output (MIMO) system.
Wang et al. [20] proposed combination of adaptive NN con-
trol scheme andNonlinearModel Predictive Control (NMPC)
for a nonlinear system of multirate networked industrial
process. They confirmed the effectiveness of their proposed
control system in the simulation of continuous stirred tank
reactor.

Several robust control systems for the LLE have been
developed to handle the external disturbances and uncer-
tainties [21]–[23]. For instance, He et al. [24] applied an
adaptive neural network to estimate the unknown model of
a two DoF rehabilitation robot by reducing the tracking
error and effective interactions between human and robot.
Wu et al. [25] presented an adaptive control scheme for a
three DoF lower limb rehabilitation robot (LLRR) for adapt-
ing robot’s uncertainties and overcome patients’ disturbance.
Their validation in simulation and experiments shows the
effectiveness of the scheme in trajectory tracking problems.
Ou et al. [26] developed Lyapunov-based adaptive fuzzy con-
trol to enable a human shank to track any continuous desired
trajectory. Asl et al. [27] used an adaptive feed-forward NN,
which works with position data of links in complying with
the unknown non-linear dynamic of two DoF LLE. They
validated their control system in simulation and experiment
with satisfactory performance.

The main contribution of this paper is a new design of
an adaptive control which tuned PID controller in real-time.
The proposed tuning scheme can be used for a rehabilitation
LLE. In addition, the novelty of this paper is to initialize
an adaptive controller to reduce the trajectory error and to
provide pre-computation before the prototype based on the
mathematical model.

The control approach of this paper is Initialized Model
Reference Adaptive Controller (IMRAC) which adopts PID
controller, and a gradient based method known as MIT-rule
for adjustment mechanism. A model reference transfer func-
tion of the plant was determined using Lagrangian and Kir-
choff’s equations. The gains of PID controller are tuned in
closed-loop system using Ziegler-Nichols(Z-N). Tuned PID
controller is used for initializing adjustment mechanism that
is a gradient based method called MIT-rule. In addition,
Lyapunov function is utilized to validate the stability of the
control system. The proposed tuning scheme is tested on a

4 DoF LLE and compared with conventional non-initialized
model reference adaptive controller.

II. DYNAMIC MODEL
Several methods such as Newton-Euler, Lagrangian, and
inverse pendulum have been used to determine the dynamic
equation of the multi-rigid-body robot [25], [28]. Among
these methods, Lagrangian which is based on the analysis of
energy of the model is widely used to determine the dynamic
equation of the LLE. Figure 1 illustrates the simplified free
body diagram in the sagittal plane. The LLE consists of two
DoF in each leg [29].

FIGURE 1. Free body diagram of two-DoF LLE leg.

The Lagrangian equation is given by,

La = Ek − Ep (1)

Tli =
d
dt

(
∂La

∂θ̇i

)
−

(
∂La
∂θi

)
(2)

where, La is the Lagrangian function. Tli is the torque of
femur and tibia, respectively. θi and θ̇i, where i = 1, 2, are
the trajectory angle and angular velocity. Ek and Ep are the
total kinematic and potential energy respectively. In [25] the
equations of Ep and Ek are determined as,

Ep =
2∑
i=1

migyi (3)

Ek =
2∑
i=1

[
1
2
mi(ẋ2i + ẏ

2
i )+

1
2
Ii ˙θ2i ] (4)

where, mi is the mass of each link. Ii is the inertia; g is the
gravity acceleration. In figure 1 O1 is the coordinate origin.
(x, y) is position of the Center of Gravity (CoG) which is
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FIGURE 2. Block diagram of electrical and mechanical part of the LLE model.

derived by geometric relation, represented as,

x =
i−1∑
j=1

ljsin(θj)+ disin(θi) (5)

y =
i−1∑
j=1

ljcos(θj)+ dicos(θi) (6)

where, l is the length of the links; di is the length from joint
origin to the CoG. The state space dynamic equation of the
links is given by,

Tl = M (θ )θ̈ + V (θ, θ̇ )+ G(θ ) (7)

where, Tl is a 2×1 vector of the input torque toward the link;
θ̈ is the 2 × 1 angular acceleration vector; M (θ ) is the 2 × 2
massmatrix;V (θ, θ̇ ) is a 2×1 centrifugal and Coriolis vector;
and G(θ ) is a 2× 1 gravity vector.

III. MOTOR MODEL
Direct Current (DC) motor is used as an actuator in the LLE
which provides the required torque for joints to rotate [30],
[31]. The DC motor includes electrical and mechanical parts
that are rotary shaft, and armature [32].The electrical part is
determined by Kirchhoff’s voltage law given as follows,

U = L(
di
dt
)+ Ri (8)

where, L is the electric inductance; R and i are the resistance
and the current of the DC motor; U is the input voltage. The
torque as output of DC motor that rotates the mechanical part
is proportioned to the current as follows,

Tm = Kmi (9)

where, Km and Tm are torque sensitivity and torque of
DC motor, respectively. Dynamic equation of the shaft is
expressed as follows,

Tsh = J θ̈ + Bθ̇ (10)

where, J is the inertia of the shaft and B represents the friction
of the DCmotor. The mechanical part of the LLE is the rotary

shaft of the DC motor which is connected to the link of the
LLE. The output torque of DC motor, applied to the shaft and
link is written as follows,

Tm = Tl + Tsh (11)

Therefore,M ,V , andG of equation 7 for the torque applied
to the shaft and joints are expressed as follows,

M (θ ) =
[
I1 + m2l21 + m1d21 + J m2l1d2cos(θ2 − θ1)
m2l1d2cos(θ2 − θ1) I2 + m2d22 + J

]
(12)

V (θ, θ̇ ) =
[
m2l1d2θ̇22 sin(θ2 − θ1)+ Bθ̇1
m2l1d2θ̇1θ̇2sin(θ2 − θ1)+ Bθ̇2

]
(13)

G(θ) =
[
m1gd1sin(θ1)+ m2gl1sin(θ1)

m2gd2sin(θ2)

]
(14)

Figure 2 represents the block diagram of electrical and
mechanical parts of the LLE.
Transfer function of hip under Range of Motion (RoM)

condition, in which while one joint is moving, the other joint
is fixed [25], [33], is shown as follows.

G1(s) =
θ1(s)
U1(s)

=
b

a11s3 + a12s2 + a13s+ a14
(15)

where,

b = Km (16)

a11 = Ll21m2 + Ld21m1 + LJ + LI1 (17)

a12 = Rl21m2 + Rd21m1 + RJ + RI1 + LB (18)

a13 = l1Lgm2 + Ld1gm1 + RB (19)

a14 = Rl1gm2 + Rd1gm1 (20)

Similarly, transfer function of the knee in RoM condition
is given as follows,

G2(s) =
θ2(s)
U2(s)

=
b

a21s3 + a22s2 + a23s+ a24
(21)

where,

a21 = Ld22m2 + LJ + LI2 (22)

a22 = Rd22m2 + RJ + RI2 + LB (23)
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FIGURE 3. Validation of transfer function.

TABLE 1. Transfer functions under RoM condition.

a23 = Ld2d2gm2 + RB (24)

a24 = Rd2gm2 (25)

Parameters of the transfer functions of hip and knee are
positive and constant values. These parameters are identified
using parameter estimation TOOLBOX of MATLAB that set
values for the parameters optimally, until the error between
the experimentally measured and calculated trajectory con-
verge to almost zero. Table 1 exhibits the transfer function of
hip, and knee under RoM condition.

Figures 3a and 3b compare the output of the transfer func-
tion in an open-loop and actual trajectory that is measured
using an encoder. For transfer function and actual the input
is voltage, and the output is the angular trajectory of the
joint. The output of transfer function is shown by ‘‘S−’’ and
actual one is expressed by ‘‘A−’’. For both hip and knee,
the simulated graphs follow the actual one that represents the
validation of transfer functions of hip and knee.

IV. DESIGN OF IMRAC
A. PID CONTROLLER
PID controller is one of the most popular controllers in indus-
try because of its ease of implementation in a control system
[34]–[36]. This controller consists of three parameters, which
are proportional, integral, and derivative terms, denoted by
Kp, Ki, and Kd , respectively. Figure 4 illustrates the block
diagram of PID controller.

Laplace transfer function of PID controller is given as
follows,

C(s) =
U
e
= Kp +

1
s
Ki + Kd s (26)

C(s) =
Kps+ Ki + Kd s2

s
(27)

Figure 5 illustrates the closed-loop control system.

FIGURE 4. Block diagram of PID controller.

FIGURE 5. closed-loop control system.

θdes and θact are desired and actual trajectory. In addition,
e represents the error of the control system, which is the
difference of the actual and desired trajectory.

e = θdes − θact (28)

Transfer function of closed-loop control system as the
following equation.

θact

θdes
=

GiC(s)
1+ GiC(s)

(29)

Gi(s) is transfer function of hip and knee, while i = 1 and
i = 2 respectively.
The PID parameters are tuned by Z-Nmethod, which is the

classical observation technique of tuning. The pseudo code of
the Z-N is explained in Algorithm 1.
In the Algorithm 1, Ku is the Kp, while the Ki and Kd are

zero. Ku is initialized from zero and increased by Ks as step
value in each iteration until a stable oscillation is obtained.
The final value of Ku is ultimate gain distinguished by Kcr
and Tu is measured as the ultimate oscillation period. The
parameters of PID controller are expressed as follows,

Kp = 0.6× Kcr (30)

Ki =
1.2× Kcr

Tu
(31)
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Algorithm 1 Algorithm of Z-N
1: start
2: set Ki = 0;
3: set Kd = 0;
4: set Kp = Ku;
5: initialize Ku;
6: set step value for as Ks
7: while observe stable oscillation do;
8: set value for Ku;
9: Ku = Ku + Ks;

10: end while
11: set Ku = Kcr ;
12: calculate oscillation period as Tu;
13: calculate Kp, Ki, and Kd
14: end

TABLE 2. Parameters of the PID controller.

Kd =
3× Kcr × Tu

40
(32)

Table 2 illustrates the gains of the PID for each joint.
The proportional, integral, and derivative gains for hip are

5.25224, 9.9557, and 0.3898, respectively. Similarly, these
values for knee are 2.1933, 3.9952, and 0.1823.

Figure 6 shows the trajectory angle of the hip and knee joint
in a closed-loop controller system. Performance of the PID
controller tuned by Z-N is verified in the closed-loop control
system.

B. ADAPTATION LAW
In this paper, IMRAC approach is used for designing an adap-
tive control. IMRAC consists of a plant, an adjustment mech-
anism that set controller parameters in real-time, a model
reference that provides ideal behavior of the control system
[37], [38]. The initial values of PID controller are set from the
closed-loop control system. Figure 7 shows block diagram of
adaptive control.
θm and é represent the trajectory of model reference and

tracking error, which is the difference between θm and the
actual trajectory.

é = θact − θm (33)

Model reference is estimated in such a way that produces
the ideal trajectory of the joints and is in the same order with
the closed-loop transfer function.

Gm(s) =
s2 + bm1s+ bm2

s4 + am1s3 + am2s2 + am3s+ am4

(34)

C. ADJUSTMENT MECHANISM
Parameters of the tuned PID controller are adapted by an
adjustment mechanism to minimize tracking error. MIT-rule

FIGURE 7. Configuration of IMRAC.

is an efficientmethod based on gradient approach tominimize
the tracking error [39], [40]. The cost function is given as
follows,

J (Kj) =
é2

2
j = p, i, d (35)

Kj is parameters of PID controller, which should be adjusted
to minimize the cost function. Therefore, the change of the Kj
in negative direction of the gradient of J (Kj),

dKj
dt
= −γ

∂J
∂Kj

(36)

dKj
dt
= −γje′

∂e′

∂Kj
= −γie′

∂θact

∂Kj
(37)

where, ∂e
′

∂Kj
is sensitivity derivatives of tracking error; γ rep-

resents speed of adaption. From equation 29, θact is given as
follows,

θact =
GiC(s)

1+ GiC(s)
θdes (38)

The symbolic transfer function of Gi can be expressed as
follows,

Gi =
b

s3 + a1s2 + a2s+ a3
(39)

By substituting equations 27 and 39 in equation 38, θact is
written as follows,

θact =
b(Kd s2 + Kps+ Ki)

s4 + a1s3 + (a2 + bKd )s2 + (a3 + bKp)s+ bKi
θdes

(40)

Consequently, by assuming,

am1 = a1 am2 = a2 + bKd am3 = a3 + bKp (41)

am4 = bKps+ bKi (42)

the partial of θact over Kj while j = p, i, d is given as follows,

∂θact

∂Kp
=

bes
s4 + am1s3 + am2s2 + am3s+ am4

(43)

∂θact

∂Ki
=

be
s4 + am1s3 + am2s2 + am3s+ am4

(44)
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FIGURE 6. Validation of PID controller.

∂θact

∂Kd
=

bes2

s4 + am1s3 + am2s2 + am3s+ am4

(45)

By substitution of equations 43,44, and 45 in equation 37
and its integral in Laplace, the parameters of PID controller
are determined as follows,

KP = −γpe′
bes

s4 + am1s3 + am2s2 + am3s+ am4

+ cp (46)

Ki = −γie′
be

s4 + am1s3 + am2s2 + am3s+ am4

+ ci (47)

Kd = −γde′
bes2

s4 + am1s3 + am2s2 + am3s+ am4

+ cd (48)

where, cp, ci, and cd represent the initial values of the PID
parameters that are selected from the tuned PID controller
using Z-N. By selecting the initial value the error and the
computational time will be reduced.

V. LYAPUNOV STABILITY
In this study, Lyapunov function is utilized in validation
the stability of the control system. Equation of plant which
consists of the electrical and mechanical parts of the LLE is
given as follows,

...
y + a1ÿ+ a2ẏ+ a3y = bu (49)

The state space variables are assumed as follows,

X1 = y (50)

X2 = ẏ = Ẋ1 (51)

X3 = ÿ = Ẋ2 (52)

State space of equation 49 is given as,

Ẋ3 =
...
y = −a1X3 − a2X2X2 − a3X1 + bu (53)

From equations 52 and 53, the control system is donated as,Ẋ1Ẋ2
Ẋ3

 = −
 0 1 0
0 0 1
a1 a2 a3

X1X2
X3

+
00
b

 u (54)

or

Ẋ = −AX + Bu (55)

y =
[
1 0 0

]X1X2
X3

 = CX (56)

Similarly for reference model, the state space can be deter-
mined as follows

Ẋm = −AmXm + Bmr (57)

where, r represents the reference of the control system which
is θact . The controller of the system is given as,

u
e
= Kp +

1
s
Ki + Kd s (58)

e = r − CX (59)

u =
[
1 1

s s
] kp

ki
s
kd s

 (r − CX ) = OPr − OPCX (60)

In this paper, the MIT-rule can be expressed from
equations 46,47, and 48 as,

k̇p = −γpe′
s(r − CX )

r
(61)

k̇i = −γie′
(r − CX )

r
(62)

k̇d = −γde′
s2(r − CX )

r
(63)

where equations 61, 62, and 63 can be written as follows,k̇pk̇i
k̇d

 =
− γpsr− γir
−
γd s2

r

 e′(r − CX ) (64)

By substitution of Ṗ =

k̇pk̇i
k̇d

 and Γ =

− γpsr− γir
−
γd s2

r

, the adjust-
ment mechanism is expressed as follows,

Ṗ ≈ Γ e′(r − CX ) ≈ Γ e′r − Γ e′CX (65)
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Equation 60 is substituted in equation 55

Ẋ=−AX + B(OPr − OPCX ) = −(A+ BOPC)X + BOPr

(66)

By comparing equations 66 and 57, the parameters of model
reference can be estimated as follows,

Am = A+ BOP̂C (67)

Bm = BOP̂ (68)

where P̂ is an estimation of the controller parameters. The
tracking error is given as,

e′ = X − Xm (69)

then,

ė′ = Ẋ − Ẋm (70)

ė′ = −(A+ BOPC)X + BOPr + AmXm − Bmr (71)

Xm can be substituted by X −e′. Furthermore, by substitution
equation 68 in the equation 71, ė′ can be written as,

ė′ = −(A+ BOPC)X + BOPr

+ (A+ BOP̂c)(X − e′)− BOP̂r (72)

ė′ = (−A− BOPC + A+ BOP̂C)X

+ (BOP− BOP̂)r − Ae′ (73)

ė′ = −BO(P− P̂)CX + BO(P− P̂)r − Ae′ (74)

Assuming that p− p̂ is θ , then equation 73 is given as,

ė′ = −BOθCX + BOθr − Ae′ (75)

Therefor, the candidate Lyapunov equation is given as,

v =
1
2
(ė′ +

1
λ
θ2) (76)

v̇ = ė′e′ +
1
λ
θ̇θ (77)

where, θ̇ = Ṗ. By substitution of equation 65 and 73 in
the equation 77, derivative of the Lyapunov function can be
expressed as,

v̇ = e′(−BOθCX + BOθr − Ae′)+
1
λ
θ(Γ e′r − Γ e′CX )

(78)

v̇ = (−BOθC − é
1
λ
θΓC)X + (BOθ é+

1
λ
θΓ é)r − Aé2

(79)

For λ = −[BO]−1Γ ,

v̇ = −Aé2 (80)

where, [BO] and A, which are a 3 × 3 matrix should be a
positive definite matrix. Because the derivative of Lyapunov
function is negative, the system is stable [41].

FIGURE 8. Components of LLE.

FIGURE 9. Hardware configuration.

VI. EXPERIMENT
The LLE consists of the control box, which is connected to
the waist, and two legs, connected to the backpack frame.
Each leg is composed of two links as femur and tibia. Femur
is attached to the backpack frame by the hip joint which is
a revolute joint. The same connection is assembled for tibia
to the femur. The actuator of the LLE is brushed permanent
magnet DC motor and gearbox. DC motor and a gearbox are
connected in parallel with the links. The gearbox reduces
the speed of the motor and increases the torque. Figure 8
illustrates components of the LLE.

Figure 9 shows hardware configuration, including micro-
controller, encoder, and motor driver. A quadrature encoder
is located at the output shaft of gearbox and position of the
joint is sent to the control system as feedback. Arduino Mega
2560 microcontroller is employed to communicate with the
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FIGURE 10. Parameters of PID controller.

hardwares and PC. A motor driver is utilized for each motor
to control voltage and movement direction of the DC motors.
The input of the control system toward Arduino is Pulse
Width Modulation (PWM) which is bounded from 0 to 255.
In addition, direction data are sent to Arduino, which is zero
when the voltage to the plant is positive, and it is one when the
voltage toward the plant is negative. Motor driver is utilized
to convert direction and PWM data to clockwise and coun-
terclockwise rotation by changing the positive and negative
input voltage to DCmotor, which can tolerate maximum 12V.

VII. RESULTS AND DISCUSSION
The performance of IMRAC is tested with the LLE and com-
pared with conventional Model Reference Adaptive Control
(MRAC). MATLAB-SIMULINK is employed for control-
ling and communication with the LLE. A periodic trajec-
tory is defined as reference of the control system for each
joint.

Figure 10 exhibits the changes of Kp, Ki, and Kd for both
IMRAC and MRAC for hip and knee. The initial parameters
for MRAC are set to zero and raised while, PID parameters
for IMRAC are kept remained as a constant value without
significant changes, because, they are initialized by Z-N
shown in table 2 based on the mathematical model of the
LLE expressed at the table 1. The initial values are used in
adjustment mechanism of IMRAC, which are represented in
equations 46, 47, 48.

Figures 11a and 11b show the comparison of tracking
trajectories of the IMRAC and MRAC for hip and knee joint,
respectively. The actual trajectory of the MIRAC response
faster to the desired trajectory thanMRACbecause the adjust-
ment mechanism is initialized. Although, it is not necessary

TABLE 3. Error of trajectory for each joint.

for IMRAC to search PID parameters from zero, it can adapt
PID parameters based on comparing the output of control
system and reference model. In the figures 11c and 11d
E_MRAC and E_IMRAC stand for angular trajectory error of
hip and knee, respectively. E_MRAC starts from greater error
that E_IMRAC and gradually decreases for both joints, while
still stays greater than E_MRAC at the end of the time period,
because initialization of IMRAC causes fast convergence.

Figure 12 illustrates the voltage of each joint, which are
periodic graphs. The voltages are the output signal of the
controller to Arduino. For IMRAC, voltage is started sending
to LLE from initial times, while for MRAC, it takes time that
controller set parameters for PID and start sending voltage.
In addition, voltage consumption of hip is greater than knee
because the actuator of hip carries the weight of femur and
tibia while the knee actuator only handles the weight of the
tibia.

Table 3 exhibits numerical analysis of trajectory error of
each joint in both IMRAC andMRAC.MaximumError (ME)
of hip and joint by MRAC shows higher values compared
to IMRAC, which exhibits the efficiency of the proposed
scheme. On the other hand, Average Error (AE) follows the
same trend withME and does not exceed 0.05. Similarly, for
Root Mean Square (RMS) the values for IMRAC are far less
than MRAC for each joint.
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FIGURE 11. Angular trajectory and its error of each joint.

FIGURE 12. Actual voltage of each joint.

VIII. CONCLUSION
In this paper, IMRAC was used to control a LLE. PID was
employed as controller and MIT-rule were used as an adjust-
ment mechanism to adapt parameters of PID controller for
a two DoF rehabilitation LLE. The dynamic equations of
the LLE and DC motor as an actuator were determined by
using Lagrangian and Kirchhoff’s equations. Furthermore,
transfer functions of the DC motor and the links of the LLE
were determined based on the physical features of the LLE in

the RoM condition. The transfer functions were developed
in the closed-loop control system to tune PID controller
using Z-N. The parameters of the tuned PID controller were
implemented as initial values in the adjustment mechanism.
The comparison between the results of the IMRAC and con-
ventional MRAC, shows the IMRAC converged faster and
consumed less computational time than MRAC.

The proposed control system can be used in LLE as a gait
training robot for rehabilitation purpose. However, the control
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system has not been validated in the LLE with adjustment
links or different actuators. In addition, the LLE has not
been tested in the environmentwith disturbances and different
tasks of rehabilitation. Based on the limitations, the controller
can be set to bemore robust to the disturbances and the control
system can be applied in different frames of the LLE under
various conditions with other kinds of actuators.
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