
Received July 10, 2019, accepted July 27, 2019, date of current version December 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937337

Mobile Edge Computing-Enhanced Proximity
Detection in Time-Aware Road Networks
YAQIONG LIU 1, (Member, IEEE), MUGEN PENG 2, (Senior Member, IEEE),
AND GUOCHU SHOU1
1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Yaqiong Liu (liuyaqiong@bupt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant No. 61901052, Fundamental Research Funds
for the Central Universities under Grant No. 2018RC03, and 111 Project of China under Grant No. B17007.

ABSTRACT Given a set of moving objects as well as their friend relationships, a time-aware road network,
and a time threshold per friend pair, the proximity detection problem in time-aware road networks is to find
each pair of moving objects such that the time distance (defined as the shortest time needed for two moving
objects to meet each other) between them is within the given threshold. The problem of proximity detection
is often encountered in autonomous driving and traffic safety related applications, which require low-latency,
real time proximity detection with relatively low communication cost. However, (i) most existing proximity
detection solutions focus on the Euclidean space which cannot be used in road network space, (ii) the
solutions for road networks focus on static road networks and do not consider time distance and thus cannot
be applied in time-aware road networks, and (iii) there are no works aiming to simultaneously reduce the
communication cost, the communication latency, and computational cost. Motivated by these, we first design
a low-latency proximity detection architecture based on Mobile Edge Computing (MEC) with the purpose
of achieving low communication latency, then propose a proximity detection method including a client-side
algorithm and a server-side algorithm, aiming at reducing the communication cost, and subsequently propose
server-side computational cost optimization techniques to reduce the computational cost. Experimental
results show that our MEC enhanced proximity detection architecture, our proximity detection method,
and the server-side computational cost optimization techniques can reduce the communication latency,
the communication cost, and the computational cost effectively.

INDEX TERMS Cost optimization, low latency, mobile edge computing, proximity detection, time-aware
road networks, time distance.

I. INTRODUCTION
In a road network, how to effectively detect whether the
moving users are within proximity or not, is referred to
as the problem of proximity detection in road networks.
In a dynamically changing road network, proximity detection
among a large number of moving users plays an important
role in ensuring traffic safety, guaranteeing assisted driving,
and realizing the future large-scale autonomous driving.

With the spreading of modern mobile devices like smart
phones, PDAs or car navigation systems and the development
of positioning technologies such as GPS, WiFi, cellular base
station positioning or A-GPS, users can conveniently obtain
their positions and send their location information to control

The associate editor coordinating the review of this manuscript and
approving it for publication was Debashis De.

center servers or other users’ mobile devices. Mobile users
communicate with servers or other users frequently, leading
to a large number of communication messages referred to as
communication cost, consuming a lot of network bandwidth.

Given a large number of mobile users and time distance
Tε , time-aware proximity detection problem in road networks
is to find a solution which not only can continuously detect
which pairs of users among all users are within proximity
based on time distance, but also can achieve the objectives
of reducing communication cost, communication latency, and
computational cost, so as to save the network bandwidth and
improve the reliability and efficiency of proximity detection.
Here, time distance refers to the shortest time needed for two
users to meet each other.

However, most existing proximity detection solu-
tions adopt traditional client-server (C/S) architecture or

167958 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-3376-9719
https://orcid.org/0000-0002-4755-7231

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

absolutely distributed peer-to-peer (P2P) architecture, based
on geographical distance (Euclidean distance or road network
distance), facing the bottlenecks of long communication
latency, long computational time, and large communication
cost. Moreover, most existing solutions neglect a fact that in
most cases time distance is more important and meaningful
than geographical distance. For example, an autonomous
driving vehicle must avoid those oncoming vehicles which
may collide with it within a short time rather than those
vehicles running in parallel with it which have very close
geographical distance to it. In addition, adopting absolutely
distributed P2P architecture may incur too many communica-
tion messages since every two users communicate with each
other in P2P architecture, and moreover, P2P architecture
cannot provide a global view on the proximity states of all
moving users in the network. Therefore, P2P architecture
cannot be applicable to this problem. In contrast, traditional
C/S architecture can provide a global view on the proximity
states of all moving users, but it faces the problems of long
communication latency and large computational time.

In order to reduce the communication latency, Mobile
Edge Computing (MEC) [1], [2] was firstly proposed by
ETSI (European Telecommunications Standards Institute)
in 2014. MEC provides an IT service environment and
cloud-computing capabilities at the edge of the mobile net-
work, within the Radio Access Network (RAN) and in
close proximity to mobile subscribers. In the MEC archi-
tecture, servers are also deployed at the edge. MEC plat-
forms can reduce network latency by enhancing the com-
putation and storage capabilities of the edge network. As a
key technology towards 5G, MEC creates an effective way to
realize 5G [3], [4].

Regarding the abovementioned background, this paper
conducts researches on proximity detection problem in road
networks based on time distance. The contributions of this
paper are summarized as follows.
• We define a proximity detection problem in time-aware
road networks and use the metric of time distance to
judge whether two users are within proximity or not.

• We adopt the Mobile Edge Computing (MEC) paradigm
to design the proximity detection architecture, which can
reduce the communication latency between the clients
and the server greatly.

• We propose a time-aware mobile region based prox-
imity detection method, namely, TMRBD, including
a client-side algorithm and a server-side algorithm,
to solve the time-aware proximity detection problem,
which can reduce the communication cost effectively.

• We propose server-side computational cost optimization
techniques, which can reduce the computational time at
the server side to a large extent.

The remainder of this paper is organized as follows. Section II
presents related work on spatial query processing and prox-
imity detection in Euclidean space or road network space.
Section III proposes the problem setting and useful defi-
nitions to model the time-aware road network. Section IV

presents the MEC enhanced architecture for proximity detec-
tion. Section V proposes a mobile region based proximity
detection method to solve proximity detection problem for
mobile users. Section VI introduces the server-side com-
putational cost optimization techniques. Section VII studies
the effectiveness and efficiency of our proposed solutions.
Finally, Section VIII concludes this paper.

II. RELATED WORK
In this section, we first present related work on spatial query
processing as proximity detection is a kind of spatial queries,
subsequently present existing works on proximity detection
in Euclidean space, and finally review related work on prox-
imity detection in road networks.

A. SPATIAL QUERY PROCESSING
As an important spatial query, proximity detection plays
a key role in the traffic safety related applications.
Recently, researchers have proposed various approaches
for spatial query processing on moving objects. Gener-
ally, the approaches for spatial query processing on moving
objects can be classified into two classes, snapshot-based
methods and continuous query monitoring based methods.

Snapshot based methods such as [5]–[13] aim at efficiently
processing queries that are issued at certain points of time.
Some of these methods [5], [10], [11], [14] exploit index
structures that can cope with moving objects. Reference [6]
studies multiple k nearest neighbor queries. Reference [7]
processes nearest neighbor queries in road networks. Refer-
ence [8] studies voronoi based k nearest neighbor queries.
Reference [9] proposes an architecture integrating network
and Euclidean information, which can be applied to the
most popular spatial queries, namely nearest neighbors, range
search, closest pairs and e-distance joins. Reference [12]
proposes an index structure called the TPR*-tree for predic-
tive queries. Reference [13] focuses on two common spa-
tial queries, namely, nearest neighbor queries and window
queries.

Some of continuous query monitoring based methods
such as [15]–[26] focus on Euclidean space. Among these
works, [15] adopts the distributed P2P architecture and pro-
poses a ‘‘strips’’ algorithm; [16] presents several location
updating methods and compares their efficiency; [19] pro-
poses a generic framework for monitoring continuous spa-
tial queries; [17], [18], [20], [21], [23], [25], [26] resolve
range-monitoring queries, continuously moving queries, k
nearest neighbor queries, and nearest neighbor queries,
respectively; another two works [22], [24] also deal with
spatial queries in Euclidean space.

Many existing works for spatial query processing do
not address our requirements for proximity detection. For
instance, [27], [28] focus on the k nearest neighbor (kNN)
query. Reference [29] focuses on reverse nearest neigh-
bor (RNN) queries. References [30], [31] deal with contin-
uous nearest neighbor (CNN) queries. Reference [32] deals
with e-Distance joins query. References [33]–[35] resolve

VOLUME 7, 2019 167959

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

spatial keyword queries. Reference [36] handles optimal loca-
tion queries. Reference [37] studies the top k most influential
facilities over a set of uncertain objects. All these above-
mentioned works do not provide algorithms to detect and to
monitor proximity relations.

B. PROXIMITY DETECTION IN EUCLIDEAN SPACE
The proximity detection problem has been studied in [15],
[38]–[44]. Most existing proximity detection solutions focus
on Euclidean space where the distance between two objects
is determined solely by their relative positions in Euclidean
space. References [38], [39] develop client-server solutions
that focus on reducing the communication cost of proxim-
ity detection. The dynamic centered circle method proposed
by [38] assigns each user a circle such that the minimum
distance between any two circles is above the distance thresh-
old. However, the circle is static, causing that the user moves
outside it soon, triggering a location update to the server. Ref-
erence [39] employsmoving sector regions for tracking users’
locations and detecting the proximity among them at the
server. The moving sector region of a user is described by
three parameters with predefined values: an angular thresh-
old R, the minimum speed Vmin and the maximum speed
Vmax . Other solutions include absolutely distributed P2P solu-
tions like the strips algorithm [15] and centralized solutions
like [41]. [15] requires each user to maintain a strip for
each of his friends, and thus its performance does not scale
well to a large number of friends. Reference [41] applies
self-tuning policies in Euclidean space and the server detects
whether the Euclidean distance of each friend pair is within
the proximity threshold. Another work [40] generalizes the
proximity detection problem to the constrained detection
problem. A constraint is satisfied when a specified set of k
objects can be enclosed by a circle with a diameter of at most
ε. They propose a centralized solution, which tracks objects
in a space-partitioning grid. An object (i.e., client) does not
issue any location updates to the server until it enters another
cell of the grid. Based on the locations of the objects in the
grid, their solution identifies the objects that definitely satisfy
the constraints and the objects that definitely dissatisfy the
constraints. Reference [42] processes proximity queries as
a batch and focus on probing rather than location update to
enable communication-efficient proximity detection. Refer-
ence [43] studies the proximity detection problem with a safe
region that is constructed by trajectory prediction techniques.
Reference [44] proposes a method named ‘‘TROY’’, which
considers the influence of the distance between two users on
the energy cost of the mobile terminals, aiming to reduce the
energy cost of the mobile terminals. However, ‘‘TROY’’ does
not take the number of communication messages into consid-
eration and in some cases it even incurs more communication
messages than other methods.

C. PROXIMITY DETECTION IN ROAD NETWORKS
There are some works focusing on road network space. A net-
work graph embedding technique to speed up distance-range

and kNN queries is proposed in [45]. However, the key issue
in this paper is distance-range and kNN queries instead of the
proximity detection problem. It has not given any solutions
for proximity detection. A more related work (CPMRN [46])
proposes a region-based (zone-based) update strategy for
continuous proximity monitoring in road networks. The key
idea is to store both a proximity region and a separation region
for each client and as long as the client does not reach the
boundary of one of its regions, it does not need to update the
proximity/separation join results. Another work [47] defines
three types of proximity relations that induce location con-
straints to model continuous spatial-temporal queries among
sets of moving objects in road networks, but they do not give a
solution to the proximity detection problem in road networks.
Another representative work to tackle proximity detection in
road networks is [48], which not only proposes a fixed-radius
mobile detection method, but also adopts a self-tuning policy
to automatically adjust the radius of the mobile region.

The works above focus on static road networks. However,
in most cases, the road networks are time-aware rather than
static. Few works resolve proximity detection problem in
time-aware road networks. The work [49] studies proximity
queries in time-dependent road networks using graph embed-
ding technique. However, the purposes of this work do not
include reducing the communication cost or the communi-
cation latency. Therefore, there is still a critical demand of
developing efficient proximity detection solutions in time-
aware road networks to minimize the communication cost as
well as the communication latency and computational cost.

In this paper, we extend our previous work [48] and address
the proximity detection problem in time-aware road net-
works. In time-aware road networks, the speeds of each object
is dependent upon time, and we adopt the metric of time
distance to measure the proximity of each pair of friends.
If the time distance between a pair of friends is smaller than or
equal to the proximity threshold (i.e., time threshold), we say
that this friend pair is within proximity. Aiming at reducing
the communication latency, we propose a proximity detec-
tion architecture enhanced by MEC. Aiming to reduce the
communication cost, we propose four pruning lemmas, and
propose client-side and server-side algorithms. We further
propose computational cost optimization techniques for the
purpose of minimizing the computational cost.

III. PROBLEM STATEMENT
In this section, we define time-aware road network, and after-
wards give the definition of the proximity detection problem
in time-aware road networks.

A. DEFINITIONS AND NOTATIONS
We extend the definitions of [48], and present the definitions
as well as some notations to model the time-aware road
network.
Definition 1 Node: A node is a junction of road seg-

ments, or say, an intersection of two or more different road
segments. ♥

167960 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

FIGURE 1. Fixed-radius mobile regions in a road network.

As shown in Fig. 1(a), J1, J2, J3 and J4 are typical
junctions.
Definition 2 Edge: An edge is a line segment connecting

two adjacent nodes. An edge e is represented as a quadruple
(eid , nidfrom, nidto, len), where, eid is the identifier of e,
nidfrom and nidto refer to the identifiers of the starting and end-
ing nodes of e, and len is the length of e. ♥

As shown in Fig. 1(a), (J1, J2), (J1, J3), (J3, J4), and
(J2, J4) are all edges.
Definition 3 Network Point: A network point is a two-

dimensional point located on the edges of a road network.♥
For example, P1, Q1, P2, Q2, J1, J2, J3 and J4 in Fig. 1(a)

are all network points.
Definition 4 Network Distance: Given two network points

P and P′ in the road network, their network distance is
given by

D(P,P′) = min
i∈{s,t},
i′∈{s′,t ′}

(D(P, Ji)+ D(Ji, Ji′)+ D(Ji′ ,P
′)) (1)

♥

where Js, Jt , and Js′ , Jt ′ are the two end nodes of the edges
on which P and P′ lie, respectively. The network distance
between two network points in a road network is the length
of the shortest path between the two points. For example,
in Fig. 1(a), the Euclidean distance between P1 and Q1
is denoted as |P1Q1|, while the network distance between
them is:

D(P1,Q1) = min
i∈{1,2},
i′∈{3,4}

(D(P1, Ji)+ D(Ji, Ji′)+ D(Ji′ ,Q1)).

Definition 5 Line Segment: A line segment is a segment
between two network points on the same edge. The first
network point is the starting point and the second network
point is the ending point. ♥

As shown in Fig. 1(a), P1P2 and Q1Q2 are line segments.
Definition 6 Time-Aware Road Network: A time-aware

road networkGT = (N ,E) is a directed graph, which is com-
prised of two finite sets N and E , representing the set of junc-
tions (nodes) and set of edges, respectively. Every edge (Ji, Jj)
has two functions associated with it: vmax((Ji, Jj), t,O), and
len(Ji, Jj), which denote the maximum speed allowed on edge
(Ji, Jj) for objectOwhen departing Ji at time t , and the length
of edge (Ji, Jj), respectively. Note that the average speed to
travel along each segment for each kind of object is time
dependent while the length of each edge is independent of
time. ♥

FIGURE 2. An example of a time-aware road network.

For example, Fig. 2 depicts a simple road network.
Definition 7 TimeDistance:The time distance between two

moving objects at time t is defined as the least travel time
needed for the two objects to meet each other if departing
from their current positions at time t . ♥

Taking Fig. 2 as an example, at a certain time stamp, objects
O1 and O2 are moving towards J2 and J5, respectively. The
network distance betweenO1 andO2 is computed as follows:
D(O1,O2) = 10 + 20 + 10 = 40. In time-aware road
networks, the maximum speeds of the moving objects are
dependent upon time. Suppose O1 and O2 are moving with
a constant velocity of v1 and v2, respectively, then the time
distance Tavg(O1,O2) =

D(O1,O2)
v1+v2

=
40
2+3 = 8.

Definition 8 Mobile Region: A mobile region of an object
is one line segment on one edge, or several line segments on
several edges. More formally, a mobile region can be repre-
sented by a tree composed of a sequence of line segments.
If the radius of a mobile region is R, the network distance
from the root of this tree to each of the leaves is equal to
2×R. We denote a mobile region of an object Om at time t
by Rm(t). ♥

Suppose (A1,A2, . . . ,Ap) are vertices of Rm(t), and
(B1,B2, . . . ,Bq) are vertices of Rn(t), then Rm(t) and Rn(t)
have p− 1 edges and q− 1 edges, respectively.

Rm(t) =
⋃

1≤i≤p−1

e(m)i , Rn(t) =
⋃

1≤j≤q−1

e(n)j . (2)

where, e(m)i and e(n)j represent an arbitrary edge of Rm(t)

and Rn(t), respectively. e
(m)
i = e(m)i .from, e(m)i .to, e(n)j =

e(n)j .from, e
(n)
j .to, where e

(m)
i .from and e(m)i .to represent the

end points of edge e(m)i ; e(n)j .from and e(n)j .to represent the end

points of edge e(n)j .
As shown in Fig. 1(b), themobile regionR1(t) ofO1 at time

t equals {P1P2} and the mobile region R2(t) of O2 at time t
equals {Q1J4, J4Q2, J4Q2′ , J4Q2′′}.
Notations: We give the notations used in this paper

in Table 1.

B. PROBLEM SETTING
Definition 9 Proximity Detection in Time-Aware Road Net-
works:Given a time-aware road networkGT , a set of moving
objects as well as the friendship between them, the average
speed functions for each edge for each category of objects

VOLUME 7, 2019 167961

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

TABLE 1. Notations.

with respect to time, and a time proximity threshold Tε ,
the proposed proximity detection problem in time-aware road
networks GT is to design efficient solutions which incur low
communication cost, low communication latency, and low
computational cost, to findwhether the time distance between
each pair of friends is no more than Tε . ♥

Note that the metric used to measure proximity is the time
distance between two moving objects instead of the network
distance between them.

We assume that all moving objects are equipped with
positioning devices. All servers are equipped with a map of
the road network and are aware of the length of each edge
and the coordinates of each junction of the road network. The
server aims to check the proximity relationship of each friend
pair every epoch (e.g., every second).

IV. MEC ENHANCED PROXIMITY DETECTION
ARCHITECTURE
A. ARCHITECTURE
As mentioned in Section I, one objective is to reduce the
communication latency between the clients and the server
as much as possible since time delay should be as short as
possible for the reliability and efficiency of proximity detec-
tion in road networks. To this end, we design the proximity
detection architecture based on MEC, as shown in Fig. 3,
since MEC can offer a service environment with low latency,
high-bandwidth, and direct access to real-time network
information.

In our MEC enhanced proximity detection architecture,
the core network is located in the center of communication
networks, and multiple MEC servers are deployed at multiple
edge clouds. Eachmoving client communicates with the near-
est MEC server, instead of communicating with the central
server via the core network. The communication mechanism
is as follows: the client can send updatemessages to the server

FIGURE 3. Proximity detection architecture based on MEC.

to report its location and other motion parameters such as its
speed; the server can probe the client regarding its motion
state, and the server can also send notification messages to
a client to tell it with whom it is within proximity. There-
fore, the communication cost includes the number of update
messages, the number of probing messages and the number
of notification messages. Thus, the normal communication
mechanism between the client and the server is preserved and
the advantages of MEC can be adopted. Meanwhile, in the
traditional client-server architecture, the central server is in
charge of all the computation of the proximity relationships
among all mobile clients, which causes high computational
burden and high computational complexity for the central
server. In contrast, in our new proximity detection archi-
tecture, each MEC server only needs to take charge of the
proximity detection for the clients which communicate with
it so that it has low computational burden.

It is noteworthy that, most clients can find their friends
which are in proximity with them inside the coverage of one
MEC server. However, for some clients which are located at
the border of the coverage of one MEC server, their friends
which are in proximity with them may not be inside the

167962 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

FIGURE 4. Flow diagram.

coverage of the same MEC server, but may be inside the
coverage of another MEC server and thereby communicate
with another MEC server. Thus, to ensure the accuracy of
proximity detection, each MEC server reports those clients
which are located at the border of its coverage to the central
server, and let the central server take charge of the proximity
detection of these clients which are at the border of the
coverage of each MEC server.

In other words, proximity detection for most clients are
carried out at MEC servers, and only those clients which are
located at the border of the coverage of each MEC server
require the central server to check their proximity. The detec-
tion results computed by the central server will be updated
to the corresponding MEC server. Note that in our proposed
MEC based proximity detection architecture, both the major-
ity of clients whose proximity relationship with other clients
are calculated by the MEC server and the minority of clients
whose proximity relationship with other clients are calculated
by the central server communicate with their nearest MEC
server and do not communicate with the central server, which
guarantees the low-latency characteristics of our proposed
architecture.

B. FLOW DIAGRAM
The flow diagram of our proximity detection system is shown
in Fig. 4. For the purpose of realizing proximity detection
with low communication cost and low computational cost,
the client and the servers need to do their respective work
continuously.

At the client side, each client has a mobile region, inside
which as long as the client is, it has no need to send
update messages to the server; The client performs the
client-side algorithm which will be detailed in Algorithm 3 in
Section V-C.

At the MEC server side, the work of the server includes
computing the mobile region dynamically for each moving
client and performing the server-side algorithm which will
be detailed in Algorithm 4 in Section V-C. The abovemen-
tioned tasks are done by adopting multi-threading parallel
computing with OpenMP,1 the details of which will be given
in Section VI-B.

V. ALGORITHMS: TIME-AWARE MOBILE REGION
BASED DETECTION METHOD
Based on the proposed architecture, we present a proximity
detection method, namely, Time-awareMobile Region Based

1https://www.openmp.org/

Detection (TMRBD), with a mobile region for each client.
We first present the mobile regions used in our method, and
then propose four pruning lemmas which make use of the
lower bound and upper bound of the time distance between
mobile regions of two clients. We finally give the algorithms
at the client side and server side, respectively.

A. MOBILE REGION IN TIME-AWARE ROAD NETWORKS
We define a mobile region for each client in such a way that
unless a client moves outside its mobile region, it does not
need to send an update message to the server initiatively. Let
R denote the fixed radius of the mobile region of each client,
Tlast denote the time stamp of last update, Tcur denote the
current time stamp where Tcur = Tlast + 1T , PTlast denote
the position of the client at time Tlast , PTcur denote the current
position of the client at current time Tcur , and let vavg denote
the average velocity during time period (Tlast , Tcur). Then
the exact network distance between P(Tlast+1T) and PTlast is
calculated as follows:

D(P(Tlast+1T),PTlast) = vavg ·1T (3)

1) ALGORITHMS FOR COMPUTING MOBILE REGIONS
The algorithms for computing the mobile regions are given
in Algorithm 1 and Algorithm 2. The key idea is starting
from the current position pos which is the center of the final
mobile region MR, recursively calculating the forward and
backward line segments one by one, until the total length
len from the center pos to the forward ending point and the
backward ending point is equal to R.

Algorithm 1 The Computation Algorithm of Mobile
Regions: ComputeMobileRegion
Input: the radius R of mobile regions, the current

position pos of a moving object, the edge e on
which the moving object lies

Output: the mobile region MR
1 len = 0;
2 line segment lsprev, lsnext ;
3 lsprev.p1 = pos;
4 lsprev.p2 = e.p1;
5 ComputeNewSegment(len, lsprev, lsprev.p1);
6 lsnext .p1 = pos;
7 lsnext .p2 = e.p2;
8 ComputeNewSegment(len, lsnext , lsnext .p1);

Algorithm 1 describes the key function, i.e., Compute-
MobileRegion (R, pos, e), for computing the mobile region
MR for an object. In Algorithm 1, the variable len represents
the current length from the center pos to the two ending
points of the current mobile region. At the beginning, len
is set to be 0 (Line 1), indicating that the current mobile
region is still empty and there are no segments added to
the mobile region; Then, two line segments lsprev, lsnext are
created (Line 2), representing the backward and forward

VOLUME 7, 2019 167963

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

Algorithm 2 Void ComputeNewSegment
Input: len, ls, p
Output: MR

1 if len + ls.length ≥ R then
2 nextlen = R− len ;
3 newP.x = ls.p1.x + nextlen

ls.length ∗ (ls.p2.x − ls.p1.x);
4 newP.y = ls.p1.y+ nextlen

ls.length ∗ (ls.p2.y− ls.p1.y);
5 len = R ;
6 line segment ls0;
7 ls0.p1 = ls.p1;
8 ls0.p2 = newP;
9 MR.push_back(ls0);

10 end
11 else
12 MR.push_back(ls);
13 newP = ls.p2;
14 len+ = ls.length;
15 for each outgoing edge ei from ls.p2 && ei! = ls do
16 ComputeNewSegment(len, ei, newP);
17 end
18 end

line segments, with pos being its starting point lsprev.p1 or
lsnext .p1 (Line 3, Line 6) and e.p1 or e.p2 being its end-
ing point (Line 4 or Line 7), where e represents the edge
which this object lies on and e.p1 or e.p2 represents the two
ending points of edge e; Subsequently, this function calls
another functionComputeNewSegment(len, lsprev, lsprev.p1)
or ComputeNewSegment(len, lsnext , lsnext .p1) (Line 5 or
Line 8) which is detailed in Algorithm 2.

Algorithm 2 describes the function ComputeNewSeg-
ment (len, ls, p) which recursively computes the new line seg-
ment that should be added into the mobile regionMR one by
one, taking the current length len, the candidate line segment
ls, and the starting point p of ls as input. If len+ ls.length ≥ R
(Line 1), which demonstrates that the line segment ls should
not be fully added into the final mobile region MR, then we
compute the new line segment ls0 which is a part of ls (Lines
2-8), and add it into the final mobile region MR (Line 9);
Otherwise (Line 11), the entire line segment ls should be
fully added into the mobile region MR (Line 12), meanwhile
we update the value of len which is the current total length
from the center pos to the ending point newP (i.e., ls.p2)
(Lines 13-14), and then, for each outgoing edge ei from ls.p2
except for ls itself (Line 15), we recursively call the function
ComputeNewSegment(len, ei, newP) (Line 16) to compute
the next line segment that should be added into the final
mobile region MR.

2) A RUNNING EXAMPLE OF MOBILE REGIONS
We give an example of mobile regions in a time-aware road
network. As shown in Fig. 1, O1 and O2 are two clients
moving along edges (J1, J2) and (J3, J4). In Fig. 1(a), suppose
two clients O1 and O2 have just reported their positions to
the server at time T1, and the line segments P1P2 and Q1Q2

FIGURE 5. Two moving objects and their mobile regions.

with length 2R highlighted in green are the mobile regions
of O1 and O2, with O1 and O2 being the midpoints of P1P2
and Q1Q2, respectively. In Fig. 1(b), at time T2, O1 and O2
send position update messages to the server again, then line
segment P1P2 with length 2R is the new mobile region of O1
with the midpointO1. AsO2 approaches J4, its mobile region
is no longer completely within the edge (J3, J4). Suppose
O2 is a-unit distance away from J4, where a < R, then
the leftmost point Q1 of its mobile region is (R + a) units
away from J4. Here,O2 has three different directions to move
along when it arrives at junction J4, and therefore edges
J4Q2, J4Q2′ , J4Q2′′ are included into its mobile region, where
|J4Q2| = |J4Q2′ | = |J4Q2′′ | = b = R− a.

B. PRUNING LEMMAS
In time-aware road networks, the server checks whether the
time distance between each pair of friends which it takes
charge of is within time proximity threshold or not. In fact,
the server does not need to probe every client regarding his
location and speed continuously. Sometimes it is unnecessary
to probe some friend pairs because we can safely prune such
friend pairs. In order to facilitate the server to avoid checking
some friend pairs unnecessarily, we propose four pruning
lemmas as follows.

1) UNQUALIFIED FRIEND PAIRS PRUNING BASED ON
LOWER BOUND OF TIME DISTANCE
Theorem 1: Given two mobile regions Rm(t) and Rn(t),

as depicted in Fig. 5, then the following inequality holds.

dmin(Rm(t),Rn(t)) ≤ D(Rm(t),Rn(t)) (4)

where, dmin(Rm(t),Rn(t)) gives a lower bound of
D(Rm(t),Rn(t)) from the point of view of Euclidean distance,
and can be computed by the following Equation:

dmin(Rm(t),Rn(t)) = min
1≤i≤p,1≤j≤q

|Ai,Bj| (5)

where, (A1,A2, . . . ,Ap) are vertices of Rm(t), and
(B1,B2, . . . ,Bq) are vertices ofRn(t). ♠

Theorem 2: Given two mobile regions Rm(t) and Rn(t),
as depicted in Fig. 5, then the following inequality holds.

Dmin(Rm(t),Rn(t)) ≤ D(Rm(t),Rn(t)) (6)

where, Dmin(Rm(t),Rn(t)) gives a lower bound of
D(Rm(t),Rn(t)) from the point of view of network distance,

167964 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

and can be computed by the following Equation:

Dmin(Rm(t),Rn(t)) = min
1≤i≤p,1≤j≤q

D(Ai,Bj) (7)

where, (A1,A2, . . . ,Ap) are vertices of Rm(t), and
(B1,B2, . . . ,Bq) are vertices of Rn(t). ♠

Following our previous work on proximity detection in static
road networks [48], Theorem 1 and 2 hold obviously (the
proof can be found in [48]). Theorem 1 and 2 give two lower
bounds of the distance between two mobile regions.

However, note that in this paper, the metric to measure
proximity is the time distance. Hence we must compute
the lower bounds of the time distance between two mobile
regions.
Theorem 3: Given two moving objects Om and On, and

their mobile regions Rm(t) and Rn(t), as depicted in Fig. 5,
the lower bound of the time distance between them based on
dmin(Rm(t),Rn(t)) can be given as the following formula.

tmin(Rm(t),Rn(t)) =
dmin(Rm(t),Rn(t))

vmax(Om)+ vmax(On)
(8)

where, dmin(Rm(t),Rn(t)) can be obtained by Eq. 5; vmax(Om)
and vmax(On) represent the maximum speed of Om and On,
respectively. ♠

Theorem 4: Given two moving objects Om and On, and
their mobile regions Rm(t) and Rn(t), as depicted in Fig. 5,
the lower bound of the time distance between them based on
Dmin(Rm(t),Rn(t)) can be given as the following formula.

Tmin(Rm(t),Rn(t)) =
Dmin(Rm(t),Rn(t))

vmax(Om)+ vmax(On)
(9)

where,Dmin(Rm(t),Rn(t)) can be obtained by Eq. 7; vmax(Om)
and vmax(On) represent the maximum speed of Om and On,
respectively. ♠

Lemma 1 Unqualified Pair Pruning I: For objects Om and
On, if tmin(Rm(t),Rn(t)) is larger than the time threshold Tε ,
then the time distance between this friend pair must be larger
than Tε , thus this friend pair should be pruned. ♣

Proof: The proof of Lemma V-B.1 is straightforward.
Lemma 2 Unqualified Pair Pruning II: For objects Om and

On, if Tmin(Rm(t),Rn(t)) is larger than the time threshold Tε ,
then the time distance between this friend pair must be larger
than Tε , thus this friend pair should be pruned. ♣

Proof: The proof of Lemma V-B.1 is straightforward.
According to Lemma V-B.1 and V-B.1, the server can prune
those friend pairs whose time distance is surely larger than the
proximity threshold. Hence the server does not need to probe
these friend pairs and thus lots of probing messages can be
saved.

2) QUALIFIED FRIEND PAIRS PRUNING BASED ON UPPER
BOUND OF TIME DISTANCE
Theorem 5: Given two moving objectsOm andOn, as well

as their mobile regions Rm(t) and Rn(t), as depicted in Fig. 5,
then the following inequality holds.

D(Rm(t),Rn(t)) ≤ Dmax(Rm(t),Rn(t)) (10)

where

Dmax(Rm(t),Rn(t))

= max
1≤i≤p−1
1≤j≤q−1

{min{D(e(m)i .from, e(n)j .from),

D(e(m)i .from, e(n)j .to),

D(e(m)i .to, e(n)j .from),

D(e(m)i .to, e(n)j .to)} + |e
(m)
i | + |e

(n)
j |}. (11)

where, (A1,A2, . . . ,Ap) are vertices of Rm(t), and
(B1,B2, . . . ,Bq) are vertices of Rn(t); |e

(m)
i | and |e

(n)
j | rep-

resent the length of edge e(m)i and e(n)j , respectively; e(m)i =

e(m)i .from, e(m)i .to, and e(n)j = e(n)j .from, e
(n)
j .to. ♠

Following our previous work on proximity detection in static
road networks [48], Theorem 5 holds obviously (its proof
can be found in [48]). Theorem 5 gives the upper bound of
the network distance between two mobile regions. Next we
compute the upper bound of the time distance between two
mobile regions.
Theorem 6: Given two moving objects Om and On, and

their mobile regions Rm(t) and Rn(t), as depicted in Fig. 5,
the upper bound of the time distance between them can be
given as the following formula.

Tmax(Rm(t),Rn(t)) =
Dmax(Rm(t),Rn(t))
vmin(Om)+ vmin(On)

(12)

where, vmin(Om) and vmin(On) represent the minimum speed
of Om and On, respectively. ♠

Lemma 3 Qualified Pair Pruning: Given two moving
objects Om and On, as well as their mobile regions Rm(t) and
Rn(t), if Tmax(MRm(t),MRn(t)) is no larger than Tε , then this
friend pair must be within proximity and should be selected
into the proximity result set. ♣

According to Lemma V-B.2, the server can avoid probing
those friend pairs whose time distance is surely no larger than
the proximity threshold and thereforemany probingmessages
can be saved.

3) TIME STAMPS PRUNING BASED ON LOWER
BOUND OF TIME DISTANCE
Lemma 4 Unqualified Time Stamps Pruning:Given twomov-
ing objects Om and On, as well as their mobile regions Rm(t)
and Rn(t), if the lower bound of the time distance between
their mobile regions is still larger than Tε+1T ∗a, then from
the current time epoch until the next a time epoch, the two
moving clients are surely not within proximity, and therefore
these time stamps should be pruned. ♣

According to Lemma V-B.3, the server can avoid com-
puting the lower bound or upper bound of time distance of
each friend pair whose time distance is surely larger than the
proximity threshold within time period [tcur , tcur +1T ∗ a],
and thus avoid probing those friend pairs. Therefore, many
probing messages can be saved.

VOLUME 7, 2019 167965

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

C. CLIENT-SIDE AND SERVER-SIDE ALGORITHMS
Based on the definition of mobile regions and the four
pruning lemmas proposed above, we present our client-side
and server-side algorithms of our TMRBD method in this
subsection.

The client-side algorithm is described in Algorithm 3,
which mainly aims to reduce the number of update messages
sent by the client. When the client moves outside its mobile
region (Line 1), the client sends an updatemessage containing
its speed speed and location location to the server (Line
2); When the client receives a probing message from the
server (Line 4), it will also send an update message to the
server (Line 5). Otherwise, the client will not send update
messages.

Algorithm 3 Client-Side Algorithm of TMRBD

1 if Client O moves beyond its mobile region then
2 O.UpdateToServer(speed , location);
3 end
4 if Client O receives a probing message from the server
then

5 O.UpdateToServer(speed , location);
6 end

The server-side algorithm is described in Algorithm 4,
which mainly aims to reduce the probing messages sent
by the server. The time epoch starts from the initial time
stamp initTS and the server checks the proximity every 1T
time units (Line 1). At each time stamp t , the server first
receives the update messages sent by the clients (Line 2);
Then, the server checks whether each pair of moving friends
is within proximity or not. We use the variable nextTS[i] to
denote the ‘next’ time stamp at which the server needs to
check for the next time whether the i-th friend pair is within
proximity. Note that the ‘next’ time stamp nextTS[i], does not
mean t+1T , as the servermay not need to check proximity of
this friend pair for several continuous time epochs. Initially,
set all nextTS[i] to be the current time stamp t (Lines 3-5).
For each pair of friends, (i) if the current time stamp is less
than nextTS[i] (Line 8), then at the current time stamp the
server does not need to check the i-th friend pair (Line 9);
(ii) if Lemma V-B.1 is satisfied (Line 11), then Lemma V-B.3
is also satisfied, so the server calculates the value of vari-
able a in Lemma V-B.3, and in the next a time stamps the
server does not need to check their proximity, so we use a
to update nextTS[i], and this pair of friends is surely not in
proximity so they do not need to be checked (Lines 12-14);
(iii) if Lemma V-B.1 is satisfied (Line 16), which means
Lemma V-B.3 can be also satisfied, so the server calculates
the value of variable a in Lemma V-B.3, and in the next a
time stamps the server does not need to check their proximity,
so we use the value of a to update nextTS[i], and this pair
of friends is surely not in proximity so they do not need to
be checked (Lines 17-19); (iv) if Lemma V-B.2 is satisfied
(Line 21), which means this pair of friends is surely within

proximity, so the server needs to notify the two friends about
their proximity (Line 22) and we update nextTS[i] to be the
next time stamp (Line 23); (v) otherwise (Line 25), the server
probes the client that has not updated to the server at the
current epoch (Lines 26-28, 29-31), then computes the time
distance between them (line 32), notifies them about their
proximity if the time distance is no larger than Tε (Lines 33),
and finally updates nextTS[i] (Line 35).

Algorithm 4 Server-Side Algorithms of TMRBD

1 for (t = initTS; t ≤ MaxTS; t+ = 1T) do
2 server.receiveUpdateFromClients(speed , location);
3 for (i = 0; i ≤ FriendPairs.size(); i++) do
4 nextTS[i] = t;
5 end
6 for (i = 0; i ≤ FriendPairs.size(); i++) do
7 〈Om, On〉 is the i-th friend pair;
8 if t < nextTS[i] then
9 continue;

10 end
11 if tmin(Rm(t),Rn(t)) > Tεm,n then
12 a = (int)

Tmin(Rm(t),Rn(t))−Tεm,n
1T ;

13 nextTS[i] = t + (a+ 1) * 1T + 1;
14 continue;
15 end
16 if Tmin(Rm(t),Rn(t)) > Tεm,n then
17 a = (int)

Tmin(Rm(t),Rn(t))−Tεm,n
1T ;

18 nextTS[i] = t + (a+ 1) * 1T ;
19 continue;
20 end
21 if Tmax(Rm(t),Rn(t)) ≤ Tεm,n then
22 server.notify(Om, On);
23 nextTS[i] = t +1T ;
24 end
25 else
26 if ! client.update(Om) then
27 server.probe(Om);
28 end
29 if ! client.update(On) then
30 server.probe(On);
31 end
32 if T (Om,On) ≤ Tεm,n then
33 server.notify(Om, On);
34 end
35 nextTS[i] = t +1T ;
36 end
37 end
38 end

VI. SERVER-SIDE COMPUTATIONAL COST OPTIMIZATION
Another objective is to reduce the server-side computational
cost. To achieve this objective, we utilize two methods,
i.e., offline junction-to-junction network distance precompu-
tation, and parallel computing with OpenMP.

167966 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

A. OFFLINE JUNCTION-TO-JUNCTION NETWORK
DISTANCE PRECOMPUTATION
The calculation of time distance requires the lower bound and
upper bound of the network distance between the two mobile
regions, which should be calculated using the junction-to-
junction network distance, i.e., the shortest network distance
between two junctions. It is too time consuming if we com-
pute the junction-to-junction network distance online every
time. A promisingway is to precompute each pair of junction-
to-junction network distance offline. Therefore, we use the
APSP (all-pair shortest path) algorithm, namely, Floyd algo-
rithm, to precompute each pair of junction-to-junction net-
work distance in the road network.

B. PARALLEL COMPUTING WITH OpenMP
OpenMP2 is an industry-standard, platform-independent par-
allel programming library built into all modern C and C++
compilers. Unlike complex parallel platforms, OpenMP is
designed to make it relatively easy to add parallelism to
existing sequential programs.

In our proximity detection problem, there are so many
moving clients in the network and each moving client has
some certain number of friends. Therefore, there can be
millions of friend pairs which need to be checked to determine
whether they are within proximity or not. In this case, there
are millions of friend pairs in the loop. To meet the require-
ment of proximity detection for millions of friend pairs at
each server in each epoch, parallel computing with OpenMP
is adopted, which can run the loop in parallel using multiple
parallel threads according to the number of cores of the
multi-core CPU. Thus each parallel thread only takes charge
of a portion of the friend pairs so that the total computational
time can be reduced to a great extent.

VII. EXPERIMENTAL STUDY
We conduct experiments to evaluate the performance of the
proposed algorithms and techniques, including the communi-
cation cost of the proposed TMRBDmethod, the communica-
tion latency reduction by utilizing MEC, the communication
cost influenced by utilizing MEC, and the computational cost
of server-side computational cost optimization techniques.

A. EXPERIMENTAL SETUP
1) EXPERIMENTAL PREPARATION
Table 2 summarizes the default values and ranges of the
parameters used in our experiments. We use the framework
of network-based moving objects [50] to generate moving
objects on three different road networks (Oldenburg road
network, a part of New York city (NY) road network, called
pNY for short, and San Joaquin road network). The Olden-
burg road network‡ contains 6105 nodes and 7035 edges,
the pNY road network§ contains 500 nodes and 1155 edges,
and the San Joaquin road network¶ contains 18263 nodes and
23874 edges. In total, we generate N = 100, 200 moving

2https://www.openmp.org/

TABLE 2. Default values of parameters.

FIGURE 6. MEC server deployment scheme on the road network.

objects during 100 time stamps. We normalize the spatial
domain size of the road networks to [0, 1000]2. After nor-
malization, the average length of the edges of the three road
networks become 7.395, 35.873, and 3.54, respectively.

All experiments are implemented in Microsoft Visual Stu-
dio 2017 using C/C++ on a desktop with Inter(R) Core(TM)
i7-7820 CPU @2.90 GHz processor and 32.0 GB RAM,
running 64-bit Windows 10 operating system.

2) MEC SERVER DEPLOYMENT FOR EXPERIMENTS
In our experiments, we deploy MEC servers on the road net-
works according to the following strategy. As shown in Fig. 6,
we deploy four MEC servers uniformly on the road network.
Since the whole road network has already been normalized
to a square, it can be divided into four subsquares with equal
size, and the four MEC servers are located at the center of
each subsquare. Thus, the serving area of each MEC server
is a circle with the MEC server as its center and

√
2L
4 as the

radius, where L is the side length of the road network square.

B. EXPERIMENTS ON TMRBD
This subsection reports the results of performance evaluation
of our TMRBD method. Unless pointed out specifically,
the values of parameters are set as their default values given
in Table 2.

In addition to the proposed TMRBD algorithms, we also
simulate two baseline methods, i.e., PU (Periodic Update)
method, and MRWP (Mobile Region Without Pruning)
method. PU method does not involve a mobile region but
allows a client to periodically (e.g., every time epoch) send
update messages to the server. MRWP method sets mobile
regions for moving users, but it does not adopt pruning strate-
gies at the server side.

In order to compare the performance of the three
approaches on communication cost, we plot the communi-
cation cost incurred by the three approaches as a function of
the radius R of the mobile regions with respect to different
values of Tε (Tε = 3, 4) on the three road networks, as illus-
trated in Fig. 7. Observe that on all the three road networks,

VOLUME 7, 2019 167967

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

FIGURE 7. Communication cost comparison w.r.t. the mobile region
radius R.

no matter how R changes and no matter for Tε = 3 or Tε = 4,
(i) the PUmethod and theMRWPmethod always induce large
communication cost; and (ii) our proposed TMRBD method
incurs the least communication cost.

The reasons are as follows. (i) The PU method has no
mobile regions and requires every client to send update mes-
sages in every epoch, so that it induces large updating cost
and it shows straight lines in the figure as it has nothing

FIGURE 8. Communication latency of traditional client-server architecture
vs. latency of our MEC based architecture. ‘‘MEC server 1’’ ‘‘MEC server 2’’
and ‘‘MEC server 3’’ refer to the three MEC servers which are 35 km,
23.6 km, 17.7 km away, respectively.

to do with the radius R. (ii) Though the MRWP maintains
a mobile region for each client, it does not adopt pruning
strategies so that the server has to send probing messages to
the client if the client has not sent update messages to the
server at each epoch, which leads to large probing cost in
addition to the updating cost. (iii) Our proposed TMRBD
method adopts both the client-side updating strategy and
the server-side pruning strategies so that it reduces both the
client-side updating cost and the server-side probing cost.
These results demonstrate that our proposed TMRBDmethod
can reduce the communication cost effectively.

C. EXPERIMENTS ON LATENCY REDUCTION
BY UTILIZING MEC
In the real-world Oldenburg, NewYork, and San Joaquin road
networks, the side length can be more than 100 km. Thus,
in a traditional client-server architecture, the longest distance
from the traditional central server to a client may be at least
100
√
2 ≈ 141 km. While in our MEC based architecture,

as the MEC server is located at the center of each subregion
of the road network, the longest distance from theMEC server
to a client may be 25

√
2 ≈ 35 km if we deploy MEC server

according to Section VII-A.2. In fact, we can deploy more
(e.g., 9, 16) MEC servers to cover the road network, and thus
the longest distance from the MEC server to a client can be
smaller, e.g., 100

6

√
2 ≈ 23.6 km, 100

8

√
2 ≈ 17.7 km.

In order to compare the latency of adopting MEC
enhanced architecture with the latency of using the traditional
client-server architecture, we deployed one remote Ali cloud
server which is about 141 km away from the lab. we also
deployed three MEC servers which are 35 km, 23.6 km, and
17.7 km away, respectively. The MEC servers are connected
to users’ terminals through Fiber-Wireless network. We test
and plot the RTT (Round-Trip Time) latency of communicat-
ing with the traditional remote server and three MEC servers,
as shown in Fig. 8.

Observe that the latency of communicating with MEC
servers are conspicuously lower, i.e., less than 1 ms, while the
latency with respect to the remote central server can be up to

167968 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

FIGURE 9. Communication cost comparison: MEC central server vs. MEC
server.

6 times at least. Therefore, we can conclude that our proposed
MEC enhanced proximity detection architecture can reduce
the communication latency to a large extent and can satisfy
the low-latency requirement.

D. EXPERIMENTS ON COMMUNICATION COST
INFLUENCED BY MEC
In the traditional client-server architecture, each client com-
municates with the central server, so the central server is
involved in quite a large number of communicationmessages.

FIGURE 10. Communication cost comparison: traditional single central
server vs. MEC central server.

However, in our proposed proximity detection architecture
based on MEC, besides the existence of the central server,
MEC servers are deployed at multiple edge clouds. In this
regard, in the MEC enhanced architecture, both the central
server and the MEC servers are involved in the communica-
tion messages.

We compare the communication cost involved by cen-
tral server and each MEC server under our MEC enhanced
architecture, as shown in Fig. 9, where we plot the average
communication cost associated with each MEC server and
the communication cost associated with the MEC central
server as a function of the radius R, and ‘MEC central server’

VOLUME 7, 2019 167969

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

FIGURE 11. Running time comparison: Single-thread vs. multi-threading
processing.

refers to the central server in our MEC enhanced architecture.
Observe that each MEC server is involved in a large part of
communication cost whereas central server is only involved
in a small part of communication cost, which demonstrates
that MEC servers play a more primary role in our MEC
enhanced architecture.

We also implement our proximity detection algorithms
in the client-server architecture in addition to our proposed
MEC based architecture, to compare the communication cost
involved by the central server in our MEC architecture and
the central server in the traditional client-server architecture.

As shown in Fig. 10, observe that when we apply prox-
imity detection algorithms in the traditional client-server
architecture, the single central server is involved in very
large communication cost, whereas when we apply proximity
detection algorithms in our MEC enhanced architecture,
the central server in MEC architecture, i.e., MEC central
server, is involved in quite small communication cost. There-
fore, we can conclude that MEC architecture saves the com-
munication cost between the clients and the central server.

E. EXPERIMENTS ON SERVER-SIDE COMPUTATIONAL
COST OPTIMIZATION TECHNIQUES
By utilizing the server-side computational cost optimization
techniques such as parallel computing with OpenMP, we can
reduce much computational time at the server side.

As shown in Fig. 11, we compare the computational time
with respect to different mobile region radii Rwhen using one
single thread and multi-thread with OpenMP, respectively,
on the Oldenburg road network (Fig. 11(a)), the pNY road
network (Fig. 11(b)), and the San Joaquin road network
(Fig. 11(c)). Observe that no matter on Oldenburg road net-
work, or pNY road network, or San Joaquin road network,
the server-side computational time after using multithread
with OpenMP, is reduced to a great extent, which is less than
or around 1 second even when the mobile region radius R
is quite large. Therefore, we can conclude that our computa-
tional cost optimization techniques can reduce the computa-
tional cost effectively.

VIII. CONCLUSION
In this paper, we propose a proximity detection problem
in time-aware road networks and use time distance as the
metric of judging whether two objects are within proxim-
ity or not. To reduce the communication latency between
the server and the users, we propose a proximity detection
architecture based on MEC. To reduce the communication
cost (number of messages), we propose a mobile region
based proximity detection method, namely, TMRBD, with
client-side and server-side algorithms. To reduce the com-
putational cost, we propose server-side computational time
optimization techniques. Experimental results demonstrate
that (i) our MEC enhanced proximity detection architecture
can effectively reduce the communication latency, (ii) our
mobile region based detection methods can effectively reduce
the communication cost compared to some baseline meth-
ods, and (iii) our server-side computational time optimization
methods can reduce the computational running time to a great
extent.

REFERENCES
[1] A. Ahmed and E. Ahmed, ‘‘A survey on mobile edge computing,’’ in Proc.

10th IEEE Int. Conf. Intell. Syst. Control, Jan. 2016, pp. 1–8.
[2] M. T. Beck, S. Feld, U. Pützschler, and C. Linnhoff-Popien, ‘‘Mobile edge

computing,’’ Informatik-Spektrum, vol. 39, no. 2, pp. 108–114, Apr. 2016.
[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge

computing—A key technology towards 5G, ETSI White Paper,’’ vol. 11,
no. 11, pp. 1–6, Sep. 2015.

167970 VOLUME 7, 2019

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

[4] 5G Vision—The 5G Infrastructure Public Private Partnership:
The Next Generation of Communication Networks and Services.
Accessed: Feb. 2015. [Online]. Available: https://5g-ppp.eu/wp-
content/uploads/2015/02/5G-Vision-Brochure-v1.pdf

[5] P. K. Agarwal, L. Arge, and J. Erickson, ‘‘Indexing moving points
(extended abstract),’’ in Proc. 19th ACM SIGMOD-SIGACT-SIGART
Symp. Princ. Database Syst., New York, NY, USA, May 2000,
pp. 175–186. doi: 10.1145/335168.335220.

[6] X. Huang, C. S. Jensen, and S. Šaltenis, ‘‘Multiple k nearest neighbor query
processing in spatial network databases,’’ in Advances in Databases and
Information Systems. Berlin, Germany: Springer, 2006, pp. 266–281.

[7] C. S. Jensen J. Kolářvr, T. B. Pedersen, and I. Timko, ‘‘Nearest neighbor
queries in road networks,’’ in Proc. 11th ACM Int. Symp. Adv. Geographic
Inf. Syst., Nov. 2003, pp. 1–8.

[8] M. Kolahdouzan and C. Shahabi, ‘‘Voronoi-based K nearest neighbor
search for spatial network databases,’’ in Proc. 30th Int. Conf. Very Large
Data Bases, vol. 30, 2004, pp. 840–851.

[9] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, ‘‘Query processing in
spatial network databases,’’ in Proc. 29th Int. Conf. Very Large Data Bases,
vol. 29, Sep. 2003, pp. 802–813.

[10] S. Saltenis and C. S. Jensen, ‘‘Indexing of moving objects for location-
based services,’’ in Proc. 18th Int. Conf. Data Eng., Feb./Mar. 2002,
pp. 463–472.

[11] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, andM.A. Lopez, ‘‘Indexing the
positions of continuously moving objects,’’ SIGMOD Rec., vol. 29, no. 2,
pp. 331–342, May 2000.

[12] Y. Tao, D. Papadias, and J. Sun, ‘‘The tpr∗-tree: An optimized spatio-
temporal access method for predictive queries,’’ in Proc. 29th Int. Conf.
Very Large Data Bases (VLDB), Sep. 2003, pp. 790–801.

[13] J. Zhang,M. Zhu, D. Papadias, Y. Tao, andD. L. Lee, ‘‘Location-based spa-
tial queries,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2003,
pp. 443–454.

[14] C. S. Jensen, D. Lin, and B. C. Ooi, ‘‘Query and update efficient B+−tree
based indexing of moving objects,’’ in Proc. 13th Int. Conf. Very Large
Data Bases (VLDB), vol. 30, Sep. 2004, pp. 768–779.

[15] A. Amir, A. Efrat, J. Myllymaki, L. Palaniappan, and K.Wampler, ‘‘Buddy
tracking—Efficient proximity detection among mobile friends,’’ Pervas.
Mobile Comput., vol. 3, no. 5, pp. 489–511, Oct. 2007.

[16] A. Küpper and G. Treu, ‘‘Efficient proximity and separation detection
among mobile targets for supporting location-based community services,’’
ACMSIGMOBILEMobile Comput. Commun. Rev., vol. 10, no. 3, pp. 1–12,
Jul. 2006.

[17] Y. Cai, K. A. Hua, and G. Cao, ‘‘Processing range-monitoring queries
on heterogeneous mobile objects,’’ in Proc. IEEE Int. Conf. Mobile Data
Manage., Jan. 2004, pp. 27–38.

[18] B. Gedik and L. Liu, ‘‘MobiEyes: Distributed processing of continuously
moving queries on moving objects in a mobile system,’’ in Advances in
Database Technology—EDBT. Berlin, Germany: Springer, 2004, pp. 67–
87.

[19] H. Hu, J. Xu, and D. L. Lee, ‘‘A generic framework for monitoring
continuous spatial queries over moving objects,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2005, pp. 479–490.

[20] G. S. Iwerks, H. Samet, and K. Smith, ‘‘Continuous k-nearest neighbor
queries for continuously moving points with updates,’’ in Proc. 29th Int.
Conf. Very Large Data Bases (VLDB), vol. 29, Sep. 2003, pp. 512–523.

[21] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang, ‘‘Approximate NN queries
on streams with guaranteed error/performance bounds,’’ in Proc. 13th Int.
Conf. Very Large Data Bases (VLDB), vol. 30, Aug. 2004, pp. 804–815.

[22] M. F. Mokbel, X. Xiong, and W. G. Aref, ‘‘SINA: Scalable incremental
processing of continuous queries in spatio-temporal databases,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2004, pp. 623–634.

[23] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, ‘‘Conceptual parti-
tioning: An efficient method for continuous nearest neighbor monitoring,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2005, pp. 634–645.

[24] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch,
‘‘Query indexing and velocity constrained indexing: Scalable techniques
for continuous queries on moving objects,’’ IEEE Trans. Comput., vol. 51,
no. 10, pp. 1124–1140, Oct. 2002.

[25] X. Xiong,M. F.Mokbel, andW. G. Aref, ‘‘SEA-CNN: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,’’ in
Proc. 21st Int. Conf. Data Eng., Apr. 2005, pp. 643–654.

[26] X. Yu, K. Q. Pu, and N. Koudas, ‘‘Monitoring k-nearest neighbor queries
over moving objects,’’ in Proc. 21st Int. Conf. Data Eng., Apr. 2005,
pp. 631–642.

[27] M. R. Kolahdouzan and C. Shahabi, ‘‘Continuous K-nearest neighbor
queries in spatial network databases,’’ in Proc. 2nd Int. Workshop STDBM,
Toronto, ON, Canada, Aug. 2004, pp. 33–40.

[28] H.-J. Cho, R. Jin, and T.-S. Chung, ‘‘A collaborative approach to moving
k-nearest neighbor queries in directed and dynamic road networks,’’ Per-
vasive Mob. Comput., vol. 17, pp. 139–156, Feb. 2015.

[29] Y. Gao, B. Zheng, G. Chen, W. C. Lee, K. C. K. Lee, and Q. Li, ‘‘Visible
reverse k-nearest neighbor query processing in spatial databases,’’ IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1314–1327, Sep. 2009.

[30] H. J. Cho and C. W. Chung, ‘‘An efficient and scalable approach to CNN
queries in a road network,’’ in Proc. 31st Int. Conf. Very Large Data Bases,
K. Böhm, C. S. Jensen, L.M.Haas,M. L. Kersten, P. Larson, andB. C. Ooi,
Eds. Trondheim, Norway: ACM, 2005, pp. 865–876. [Online]. Available:
http://www.vldb2005.org/program/paper/fri/p865-cho.pdf

[31] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, ‘‘Contin-
uous nearest neighbor monitoring in road networks,’’ in Proc. 32nd
Int. Conf. Very Large Data Bases, U. Dayal, K. Whang, D. B. Lomet,
G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y. Kim, Eds.
Seoul, South Korea: ACM, Sep. 2006, pp. 43–54. [Online]. Available:
http://www.vldb.org/conf/2006/p43-mouratidis.pdf

[32] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, ‘‘Query processing
in spatial network databases,’’ in Proc. 29th Int. Conf. Very Large Data
Bases (VLDB), J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey,
P. G. Selinger, and A. Heuer, Eds. San Mateo, CA, USA: Morgan Kauf-
mann, Sep. 2003, pp. 802–813.

[33] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, ‘‘Efficient continuously
moving top-k spatial keyword query processing,’’ in Proc. IEEE 27th Int.
Conf. Data Eng., Apr. 2011, pp. 541–552.

[34] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, ‘‘Joint top-k spatial key-
word query processing,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 10,
pp. 1889–1903, Oct. 2012.

[35] Y. Gao, J. Zhao, B. Zheng, and G. Chen, ‘‘Efficient collective spatial
keyword query processing on road networks,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 2, pp. 469–480, Feb. 2016.

[36] B. Yao, X. Xiao, F. Li, and Y. Wu, ‘‘Dynamic monitoring of optimal loca-
tions in road network databases,’’ The VLDB J., vol. 23, no. 5, pp. 697–720,
Oct. 2014.

[37] L. Zhan, Y. Zhang, W. Zhang, and X. Lin, ‘‘Finding top k most influential
spatial facilities over uncertain objects,’’ IEEE Trans. Knowl. Data Eng.,
vol. 27, no. 12, pp. 3289–3303, Dec. 2015.

[38] G. Treu and A. Küpper, ‘‘Efficient proximity detection for location based
services,’’ in Proc. Workshop Positioning, Navigat. Commun. (WPNC),
Mar. 2005, pp. 165–173.

[39] G. Treu, T. Wilder, and A. Küpper, ‘‘Efficient proximity detection among
mobile targets with dead reckoning,’’ in Proc. 4th ACM Int. Workshop
Mobility Manage. Wireless Access, Oct. 2006, pp. 75–83.

[40] Z. Xu and A. Jacobsen, ‘‘Adaptive location constraint processing,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2007, pp. 581–592.

[41] M. L. Yiu, S. Šaltenis, and K. Tzoumas, ‘‘Efficient proximity detection
among mobile users via self-tuning policies,’’ in Proc. VLDB Endowment,
Sep. 2010, vol. 3, nos. 1–2, pp. 985–996.

[42] S. J. Kazemitabar, F. Banaei-Kashani, S. J. Kazemitabar, and D. McLeod,
‘‘Efficient batch processing of proximity queries by optimized probing,’’
in Proc. 21st ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst.,
New York, NY, USA, Nov. 2013, pp. 84–93.

[43] Y. Xu, D. Zhang, M. Zhang, D. Li, X. Wang, and H. T. Shen, ‘‘Continuous
proximity detection via predictive safe region construction,’’ in Proc. IEEE
34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 629–640.

[44] C. Zhang and J. Luo, ‘‘Track others if you can: Localized proximity detec-
tion for mobile networks,’’ Wireless Netw., vol. 20, no. 6, pp. 1477–1494,
Aug. 2014. doi: 10.1007/s11276-014-0690-5.

[45] H. Kriegel, P. Kröger, P. Kunath, M. Renz, and T. Schmidt, ‘‘Proximity
queries in large traffic networks,’’ in Proc. 15th Annu. ACM Int. Symp.
Adv. Geographic Inf. Syst., Nov. 2007, p. 21.

[46] H. Kriegel, P. Kröger, and M. Renz, ‘‘Continuous proximity monitoring
in road networks,’’ in Proc. 16th ACM SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst., Nov. 2008, p. 12.

[47] Z. Xu and H. A. Jacobsen, ‘‘Processing proximity relations in road net-
works,’’ in Proc. Int. Conf. Manage. Data, Jun. 2010, pp. 243–254.

[48] Y. Liu, H. S. Seah, and G. Cong, ‘‘Efficient proximity detection among
mobile objects in road networks with self-adjustment methods,’’ in Proc.
21st ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., Nov. 2013,
pp. 124–133.

VOLUME 7, 2019 167971

http://dx.doi.org/10.1145/335168.335220
http://dx.doi.org/10.1007/s11276-014-0690-5

Y. Liu et al.: MEC-Enhanced Proximity Detection in Time-Aware Road Networks

[49] H.-P. Kriegel, P. Kröger, M. Renz, and F. D. Winter, ‘‘Proximity queries
in time-dependent traffic networks using graph embeddings,’’ in Proc.
4th ACM SIGSPATIAL Int. Workshop Comput. Transp. Sci., Nov. 2011,
pp. 45–54.

[50] T. Brinkhoff, ‘‘A framework for generating network-based moving
objects,’’ GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

YAQIONG LIU received the bachelor’s degree in
computer science and technology and the second
bachelor’s degree in financial management from
Tianjin University, China, and the Ph.D. degree in
computer science and engineering from Nanyang
Technological University, Singapore. She is cur-
rently a Lecturer with the School of Information
and Communication Engineering, Beijing Univer-
sity of Posts and Telecommunications, China. Her
research interests include edge computing, the IoT,

spatial query processing, GIS, data mining, and image animation.

MUGEN PENG received the B.E. degree in electronics engineering from
the Nanjing University of Posts and Telecommunications, China, in 2000,
and the Ph.D. degree in communication and information system from
the Beijing University of Posts and Telecommunications (BUPT), China,
in 2005. In 2014, he was also an Academic Visiting Fellow with Princeton
University, USA. He is currently a Full Professor with BUPT. He has
authored/coauthored over 70 refereed IEEE journal articles and over 200 con-
ference proceeding articles. His main research interests include wireless
communication theory, radio signal processing, and convex optimizations,
with particular interests in cooperative communication, radio network cod-
ing, self-organizing networks, heterogeneous networks, and cloud commu-
nication.

GUOCHU SHOU is currently a Professor with the School of Information and
Communication Engineering, Beijing University of Posts and Telecommuni-
cations. His research interests include access network and edge computing,
fiber and wireless network virtualization, network construction and routing,
and the mobile Internet and applications.

167972 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	SPATIAL QUERY PROCESSING
	PROXIMITY DETECTION IN EUCLIDEAN SPACE
	PROXIMITY DETECTION IN ROAD NETWORKS

	PROBLEM STATEMENT
	DEFINITIONS AND NOTATIONS
	PROBLEM SETTING

	MEC ENHANCED PROXIMITY DETECTION ARCHITECTURE
	ARCHITECTURE
	FLOW DIAGRAM

	ALGORITHMS: TIME-AWARE MOBILE REGION BASED DETECTION METHOD
	MOBILE REGION IN TIME-AWARE ROAD NETWORKS
	ALGORITHMS FOR COMPUTING MOBILE REGIONS
	A RUNNING EXAMPLE OF MOBILE REGIONS

	PRUNING LEMMAS
	UNQUALIFIED FRIEND PAIRS PRUNING BASED ON LOWER BOUND OF TIME DISTANCE
	QUALIFIED FRIEND PAIRS PRUNING BASED ON UPPER BOUND OF TIME DISTANCE
	TIME STAMPS PRUNING BASED ON LOWER BOUND OF TIME DISTANCE

	CLIENT-SIDE AND SERVER-SIDE ALGORITHMS

	SERVER-SIDE COMPUTATIONAL COST OPTIMIZATION
	OFFLINE JUNCTION-TO-JUNCTION NETWORK DISTANCE PRECOMPUTATION
	PARALLEL COMPUTING WITH OpenMP

	EXPERIMENTAL STUDY
	EXPERIMENTAL SETUP
	EXPERIMENTAL PREPARATION
	MEC SERVER DEPLOYMENT FOR EXPERIMENTS

	EXPERIMENTS ON TMRBD
	EXPERIMENTS ON LATENCY REDUCTION BY UTILIZING MEC
	EXPERIMENTS ON COMMUNICATION COST INFLUENCED BY MEC
	EXPERIMENTS ON SERVER-SIDE COMPUTATIONAL COST OPTIMIZATION TECHNIQUES

	CONCLUSION
	REFERENCES
	Biographies
	YAQIONG LIU
	MUGEN PENG
	GUOCHU SHOU

