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ABSTRACT Recently, deep learning has brought revolutions to many mobile and embedded systems that
interact with the physical world using continuous video streams. Although there have been significant efforts
to reduce the computational overheads of deep learning inference in such systems, previous approaches
have focused on delivering ‘best-effort’ performance, resulting in unpredictable performance under variable
environments. In this paper, we propose a runtime control method, called DMS (Dynamic Model Scaling),
that enables dynamic resource-accuracy trade-offs to support various QoS requirements of deep learning
applications. In DMS, the resource demands of deep learning inference can be controlled by adaptive pruning
of computation-intensive convolution filters. DMS avoids irregularity of pruned models by reorganizing
filters according to their importance so that varying number of filters can be applied efficiently. Since
DMS’s pruning method incurs no runtime overhead and preserves the full capacity of original deep learning
models, DMS can tailor the models at runtime for concurrent deep learning applications with their respective
resource-accuracy trade-offs. We demonstrate the viability of DMS by implementing a prototype. The
evaluation results demonstrate that, if properly coordinated with system level resource managers, DMS can
support highly robust and efficient inference performance against unpredictable workloads.

INDEX TERMS Deep learning, edge devices, embedded systems, energy efficiency, feedback control, filter
pruning, mobile devices, model compression, quality-of-service, QoS.

I. INTRODUCTION
In the past few years, deep learning has emerged as a state-
of-the-art approach that provides highly robust and accurate
inference capability for many intelligent systems and ser-
vices [1]. In particular, convolutional neural networks (CNNs
or ConvNets) [2]–[4] have brought revolutions to computer
vision applications [5]. Deep CNNs play as generic feature
extractors for various visual recognition tasks such as image
classification [3], object detection [6], semantic segmenta-
tion [7], and image retrieval [3]. Such visual recognition tasks
are essential for many intelligent systems interacting with the
physical world using continuous streaming of video inputs.
Some examples are augmented reality wearables [8], camera-
based surveillance, drones, autonomous vehicles [9], and live
video analytics [5], to name a few.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bhaskar Prasad Rimal.

However, the size and complexity of deep learning models
has been a major challenge for resource-constrained mobile
and embedded devices, and there have been significant
efforts to reduce the amount of computation of deep learning
models either by compressing deep learning models at a
modest loss of inference accuracy [10]–[13] or by offload-
ing inference workloads to custom accelerators [14]–[16].
Although these approaches have demonstrated significant
gains in performance and efficiency, their resource demands
are predetermined at development stages, incurring unpre-
dictable ‘best-effort’ performance in highly dynamic envi-
ronments. For instance, when a person with a wearable
cognitive-assistance device walks to a more crowded area,
more objects needs to be classified, resulting in sudden
increases of overall inference latency and energy consump-
tion [8]. In such highly dynamic environments, there should
be an effective and efficient method to manage the resource
consumption of deep learning applications on a per-task basis
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according to their respective QoS goals, such as inference
latency, energy consumption, and accuracy.

In this paper, we present DMS (Dynamic Model
Scaling), a runtime control method that enables dynamic
resource-accuracy trade-offs to support various QoS require-
ments of deep learning applications. With DMS, deep
learning applications can trade their inference accuracy
dynamically to accelerate inference speed or to reduce energy
consumption. If enough resource is available, applications
can also recover its maximum inference accuracy dynami-
cally. To achieve this, DMS controls the computational cost
of inference operations by scaling deep learning models
dynamically at runtime. The scaling of deep learning mod-
els is accomplished by pruning convolution filters [13]. This
is because the convolution layers of deep learning models
are the most computationally intensive layers. Unlike static
compression techniques, DMS does not prune filters of con-
volution layers at the development time. At off-line stages,
DMS only rearranges the convolution filters of off-the-shelf
CNN models according to their importance and preserves
the ability of original models. At runtime, DMS dynam-
ically adjusts the number of active convolution filters to
control the computational cost of convolution operations.
Since DMS’s convolution filters are rearranged to avoid
irregularities after pruning, DMS can exploit highly opti-
mized vectorized libraries such as BLAS [17] for efficient
convolution operations.

With this light-weight model scalingmechanism, DMS can
be combined with runtime feedback control mechanisms to
guarantee applications’ QoS goals. Since DMS scales the
computational cost of fully capable models without actu-
ally removing pruned filters, it can support different QoS
levels for concurrent inference tasks even if they share a
single deep learning model. Taking a traffic control system
as an example [5], license plate readers at toll routes require
high inference accuracy, but can tolerate several minutes of
latency. On the other hand, counting cars to control traffic
lights has stringent latency goals, but can tolerate a small
loss of accuracy. With DMS, both applications can make
systematic resource-accuracy trade-offs at runtime to support
their respective QoS goals.

To show the viability of the proposed approach, we have
implemented DMS by extending Caffe [18], an open-source
deep learning framework. Using this prototype, we evaluate
DMS for three representative deep learning models under
various workloads. Our evaluation results demonstrate that
DMS can control the resource consumption of deep learn-
ing applications at a modest loss of accuracy. For instance,
ResNet-50 [4]’s energy consumption and inference latency
can be reduced by 14.2% and 14.8%, respectively, at about
5% degradation of inference accuracy. Our evaluation results
also show that, if properly coordinated with system level
resource managers such as DVFS governors, DMS can sup-
port highly robust and efficient inference performance against
unpredictable workloads. To the authors’ best knowledge,
this paper presents the first attempt that supports various

FIGURE 1. The QoS management architecture using DMS.

QoS goals, such as energy consumption, in deep learning
inferences using dynamic scaling of deep learning models.
The remainder of this paper is organized as follows. Section II
gives an overview of DMS. Section III presents the details of
DMS’s model scaling mechanism and the QoS management
using DMS. Section IV describes our evaluation results. The
related work is discussed in Section V. Finally, Section VI
concludes this paper and discusses future work.

II. OVERVIEW OF DMS
Figure 1 illustrates the QoS management architecture with
DMS. As shown in Figure 1, the model scaling capability of
DMS can be implemented in a deep learning runtime, such
as Caffe and TensorRT [19], to support dynamic adaptation
of resource consumption of deep learning inference tasks.

Applications can request the DMS-enabled deep learn-
ing runtime to initiate inference tasks with a deep learning
model M . Model M is a preprocessed model at an off-line
stage by rearranging its convolution filters according to their
importance, but model M still maintains the full capacity
of the original deep learning model. The applications can
also specify desired QoS goals, such as the desired inference
latency and energy consumption. To support QoS goals, the
QoS manager in the deep learning runtime needs to coop-
erate with system-level resource managers, such as DVFS
managers. For instance, the QoS manager might request the
DVFS manager to set the clock frequency of device proces-
sors to the most energy efficient ones. If the QoS manager
of the deep learning runtime is not properly coordinated
with the system-level resource managers, the result might be
unpredictable.

Inference tasks are usually periodic because they need to
process incoming video streams continuously. For example,
wearable cognitive-assistance devices need to analyze their
surrounding environments at least with 5Hz frequency [20].
To meet such target frame rates, performance, such as
inference latency, is continuously monitored and reported
to the QoS manager. According to the gap between the
QoS objectives and the monitored performance, the QoS
manager requests the DMS manager to adjust the work-
load of inference tasks by 1W s. If the system has high
resource contention among tasks, the greater amount of
workload adaptation 1W s is required to support the QoS
goals of the inference tasks. The DMS manager is respon-
sible for controlling the resource demands of inference
tasks by dynamically pruning convolution filters at runtime.
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FIGURE 2. Pruning a 3D filter from the i -th convolution layer [13]. It also
affects (i + 1)-th convolution layer’s filters and feature maps.

Therefore, as shown in Figure 1, the DMSmanager translates
the requested workload changes 1W s to the model scal-
ing levels 1DMS_levels. For per-task QoS guarantees, each
inference task maintains its own model scaling level. As will
be discussed in Section III-B, the DMS manager adjusts the
number of active convolution filters to achieve1DMS_levels
without actually pruning filters.

III. DYNAMIC MODEL SCALING
A. ConvNets AND FILTER PRUNING
1) CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (ConvNets or CNNs) are spe-
cial kind of deep learning models designed to extract visual
features or patterns from input images with minimal prepro-
cessing [2]–[4]. A CNN architecture consists of several types
of layers, such as convolution layers, pooling layers, ReLU
non-linearity layers, fully connected layers, etc.When a CNN
model is used for inference, a cascade of such layers are
applied to input images to transform them to higher-level fea-
tures. Convolution layers are used as a feature extractor and
are the most computation-intensive and frequent operations
in CNN models.

Figure 2 illustrates two consecutive convolution layers.
Let Xi denote the feature maps, or channels, for the i-th
convolution layer and hi and wi are the height and the width
of each feature map. The i-th convolution layer transforms
feature maps Xi ∈ Rwi×hi×ni−1 into another set of of feature
maps Xi+1 ∈ Rwi+1×hi+1×ni for the (i+1)th convolution layer.
This transformation is performed by applying ni 3D filters to
the feature maps Xi. Each 3D filter has ni−1 2D filters whose
spatial size is k × k . In this settings, the time complexity of
convolution operations at i-th layer is as follows:

O{ni−1 × k2 × ni × (wi+1 × hi+1)}. (1)

2) FILTER PRUNING
Pruning filters of convolution layers is a very effective
method to scale the computational cost of deep learning infer-
ence [13]. If one 3D filter is pruned at the i-th convolution
layer, the computation of O{ni−1 × k2 × (wi+1 × hi+1)} is
saved. Unlike othermodel compression techniques [21]–[24],
filter-pruning does not incur severe model restructuring and
sparsity. For instance, if the j-th 3D filter in the i-th convolu-
tion layer is pruned, only the j-th feature map of Xi+1 needs
to be removed to match inter-layer dimensions. This subse-
quent pruning of the feature map of Xi+1 renders additional
computational reduction of O{k2 × ni+1 × (wi+2 × hi+2)} at

TABLE 1. Deep learning models.

the (i+1)-th convolution layer. For example, if 50% of feature
maps and 50% of filters are pruned respectively from feature
maps Xi and the filters of the i-th convolution layer, the total
computational cost at the i-th convolution layer is reduced
by 75%.

3) ConvNet MODELS AND DATASETS
To present the details of DMS, in this work, two representa-
tive, but very contrasting, CNN models shown in Table 1 are
considered. VGG-16 represents relatively shallow deep learn-
ing models that have a large number of parameters [25]. Even
though VGG-16 has only 16 layers, its three fully-connected
layers occupy 90% of its 138 million parameters. In con-
trast, ResNet-50 represents deep and highly computation-
intensive deep learning models [4]. Even though ResNet-50
has deep 50 layers, it requires only 25 million parame-
ters and takes up 25.5 MBytes of storage. Both VGG-16
and ResNet-50 use 224 × 224 images as input and clas-
sify them into 1000 classes. These models are trained with
the ImageNet 2012 classification dataset [26] that consists
of 1.28 million training images and 50k validation images.
In this paper, the accuracy of pruned models is the mean
accuracy on the 50k images of the ImageNet 2012 vali-
dation dataset. The performance is evaluated on a Nvidia
Jetson TX2 embedded board 1. In Section IV-D.1, we extend
this evaluation to a smaller-scale classification task with the
CIFAR-10 dataset [27], the ResNet-32 model [4], and a more
resource-constrained device.

B. DYNAMIC MODEL SCALING
1) IMPACT OF MODEL SCALING ON
ACCURACY AND PERFORMANCE
Since DMS prunes filters dynamically at runtime, it cannot
recover original accuracy through retraining and it needs to
minimize the loss of accuracy by carefully selecting filters to
be pruned both within a single layer and across layers.

Within a single layer, the importance of filters in a convolu-
tion layer can bemeasured by their `1-norm, which is the sum
of absolute weights [13]. Figure 3 shows the inference accu-
racy as varying percentages of filters are pruned in individual
layers in the smallest `1-norm order. In both VGG-16 and
ResNet-50, the results show that the accuracy is decreased
monotonically as the higher pruning ratio is applied. How-
ever, the effect of pruning is quite different for different
models and their respective layers. ResNet-50’s layers are less
sensitive to the filter pruning than VGG-16’s. For example,
when 50% of filters of a layer are pruned, the accuracy of
VGG-16 and ResNet-50 are decreased, respectively, by about
22% and 6% on average.

1Details of the experiment setup are in Section IV.
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FIGURE 3. Accuracy with varying pruning ratios when the filters are
pruned in the smallest `1-norm order.

FIGURE 4. Accuracy while increasing number of layers are pruned with
different ordering methods.

Since pruning filters across a network has multiplicative
effect on final inference accuracy, the order of pruning across
layers has a significant impact on the final inference accuracy.
As shown in Figure 3, each convolution layer has very dif-
ferent sensitivity to pruning filters. Therefore, when pruning
filters across the network, it is desirable to prune the layer
first that incurs less accuracy loss. The experimental results
in Figure 4 supports this claim. Figure 4 shows the inference
accuracies when the varying number of convolution layers are
pruned by 30% in two different orders. In Empirical order,
each layer’s pruning sensitivity on accuracy is considered and
the layers are pruned in the order of minimal sensitivity to
pruning. In Serial order, the convolution layers are pruned in
the order that appears in the original CNN model, without
considering pruning sensitivities. As expected, in Figure 4,
the slope of accuracy loss is more gradual in Empirical order.
It should also be noted that the two CNN models show

very different performance when the filters are pruned across
the network. For example, the accuracy of VGG-16 drops
to 0.6 when only 4 layers are pruned by 30%. In contrast,
ResNet-50 maintains its accuracy over 0.6 until 30 layers are
pruned by 30%. This result shows that CNN models with a
small number of convolution layers, such as VGG-16, are
less appropriate for DMS because pruning filters can incur
significant loss of accuracy.

When k layers out of total d convolution layers are pruned,
the expected computational cost, Cscaled , of convolution lay-
ers can be estimated as follows:

Cscaled =
k∑
i=1

si−1 × si × Ci +
d∑

i=k+1

Ci, (2)

where Ci is the computation cost of the i-th layer without
pruning, and si is the scaling factor for pruning filters. Since
pruning filters reduces the feature maps in the next layer,

FIGURE 5. Performance while varying number of layers are pruned.

Ci is also scaled by the previous convolution layer’s scal-
ing factor si−1. As shown in Figure 3, convolution layers
have different sensitivities to pruning, and, hence, we might
consider applying different scaling factors in per-layer basis.
For instance, He et al. proposed to learn optimal scaling fac-
tors via reinforcement learning [28]. However, in this paper,
we apply fixed scaling factors for all target convolution layers
for simplicity. In DMS, a scaling factor is chosen at a knee
point where high pruning ratio can be achieved without too
much loss of accuracy. For instance, in both VGG-16 and
ResNet-50, scaling factors are set to 0.7 because both models
maintain relatively high accuracy until 30% of filters of each
layer are pruned, as shown in Figure 3.

Figure 5 shows the inference latency and energy consump-
tion while varying number of layers are pruned by 30%.
In both models, the inference latency and energy consump-
tion are inversely proportional to the number of pruned layers.
This experimental result is consistent with the analytic esti-
mation in Equation 2. These linear relationships are highly
desirable for DMS to make systematic resource-accuracy
trade-offs. The resource demands of an inference task can
be controlled by adjusting the number of pruned layers k in
Equation 2.

2) EFFICIENT IMPLEMENTATION OF
DYNAMIC FILTER PRUNING
In DMS, the effect of filter pruning is achieved by applying
filters in the order of higher importance and by skipping
less important filters when the computation cost needs to
be reduced. For runtime efficiency of selecting important
filters, DMS preprocesses a CNN model at an off-line stage
by reordering its convolution filters in decreasing order of
`1-norm. For the preprocessed model, DMS can scale a con-
volution layer at runtime by adjusting the number of active
filters and feature maps. For instance, Algorithm 1 shows
the convolution operation at the i-th layer, and the number
of active filters and feature maps (or channels) in the layer
are scaled by adjusting two outermost loops by si and si−1,
respectively. Since filters are ordered in the order of impor-
tance, less important filters are skipped.

In practice, however, convolution operations in deep
learning frameworks are never implemented using nested
for loops as in Algorithm 1. Instead, convolution opera-
tions are implemented to exploit vectorized operations of
highly optimized libraries such as BLAS [17]. In most deep
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Algorithm 1 Scaling convolution operations at i-th layer
Input: feature maps Xi with ni−1 channels
Input: ni 3D convolution filters
Input: scaling factor si for filters (0 ≤ si ≤ 1.0)
Input: scaling factor si−1 for input feature maps
Output: feature maps Xi+1 with si × ni channels
num_active_filters = si × ni ;
num_active_feature_maps = si−1 × ni−1;
for m=1 to num_active_filters do

for n=1 to num_active_feature_maps do
convolve (m, n)-th 2D filter with n-th channel of
Xi;

end
end

FIGURE 6. Efficient implementation of scaled convolution using a
multiplication of dense sub-matrices.

learning frameworks, im2col (image to columns) is used to
vectorize the convolution operations. Figure 6 shows the
input feature maps transformed by im2col that expands the
elements of individual convolution into columns in matrix B.
Since 3D convolution filters are stored linearly in contiguous
memory, they only need to be reshaped to a matrix, e.g., A,
that matches the columnized input feature maps. Once feature
maps are columnized by im2col, all convolution operations
of the layer can be performed in a single general matrix to
matrix multiplication (GEMM). The pruning operation of
DMS can be efficiently performed in such vectorized con-
volution operations, as shown in Figure 6. Since the filters
are rearranged in order of importance, important filters and
corresponding feature maps are simply selected by accessing
the sub-matrices of A and B. For example, if we want to
apply 0.75 scaling factor to 4 3D filters in A, only first
3(= 4 ∗ 0.75) rows of A are used for matrix multiplication,
and this generates only 3 output feature maps inC. Similarly,
the number of active input channels in the columnized feature
mapsB can be simply adjusted by selecting submatrices ofB.
This scaling mechanism does not incur runtime overhead
because the sub-matrices can be accessed simply by changing
the strides in memory accesses.

C. QoS MANAGEMENT USING DMS
1) DMS MANAGER
As shown in Section III-B, the computational cost at each
convolution layer can be scaled simply by changing the num-
ber of active filters and feature maps, and, hence, DMS can
control the computational cost of each individual inference

FIGURE 7. Data structures for the DMS manager.

task without extra overhead. For per-task QoS management,
the DMS manager maintains two data structures shown
in Figure 7. In DMS_Table, the convolution layers in the
model are sorted in ascending order of sensitivity to pruning
filters. Each layer in the table specifies the DMS scaling
factor si, which is the ratio of active filters when the pruning
is applied to the layer. The scaling factor is determined so
that each layer in the table yields equal amount of savings
via pruning. In Task_Table, each task maintains its own DMS
level as an index to DMS_Table. The DMS_level indicates
howmany convolution layers will be pruned during the task’s
inference. When inference tasks are executed, Task_Table
and DMS_Table are used by a deep learning runtime to
apply proper scaling factors for chosen convolution layers.
For example, in Figure 7, when task #3’s DMS level is 2,
two convolution layers (conv_5 and conv_4) in Task_Table
are pruned with their respective scaling factors. If the task
wants to decrease the computation cost either for further
energy saving or for reducing the latency, it might increase
its DMS_level at runtime. Conversely, if the task needs full
inference accuracy, its DMS_level can be set to 0, as task #2.

2) QoS MANAGEMENT USING DMS
As shown in Figures 4 and 5, the scaling of convolution
layers manifests highly predictable resource-accuracy trade-
offs. These relationships can be exploited by DMS to support
QoS at runtime. For instance, Figure 8 shows a feedback
control loop to support a desired inference latency as a
QoS goal. In the feedback control loop, the QoS manager
requests the DMS manager to adapt the workload of the
inference task by 1W according to the gap between the
target latency and the monitored latency. The DMS manager
translates 1W to 1DMS_level to scale the CNN model.
Since each inference task maintains its own DMS_level in
Task_Table, this feedback control loop can be executed con-
currently on a shared CNN model to provide per-task QoS
guarantees.

In our prototype implementation, we use a PI (proportional
integral) controller that relates the error in latency directly
to 1DMS_level. In Section IV, we demonstrate the effec-
tiveness of DMS for QoS management with this prototype
implementation. The feedback control loop using the target
latency as a QoS metric in Figure 8 is proposed only to
demonstrate the usability of DMS for QoS management.
Other control architectures (e.g., Multiple Inputs/Multiple
Outputs control [29]) andQoSmetrics (e.g., energy consump-
tion) can also be considered for QoSmanagement. The details
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FIGURE 8. Feedback control of QoS using DMS.

of system modeling and controller design are out of scope of
this paper, and readers are referred to [29]–[31].

IV. EVALUATION
In this section, we evaluate DMS and compare it with a state-
of-the-art deep learning inference runtime. The objectives
of the performance evaluation are 1) to test the effects of
uncoordinated interactions between DMS and system-wide
resource managers, 2) to investigate if DMS can support QoS
under unpredictable conditions, 3) to test the effectiveness of
DMS in supporting concurrent inference tasks, and finally
4) to investigate if DMS can be applied to other models,
platforms, and datasets.

A. EXPERIMENT SETUP
We have implemented DMS by extending Caffe [18], an
open source deep learning framework. Most deep learning
frameworks, such as Caffe, provide runtime environments for
efficient inference, but they do not support QoS. Though our
implementation of DMS is based on Caffe, QoS management
using DMS is framework-neutral and applicable to any deep
learning frameworks such as TensorFlow [32].

In our testbed, DMS-enabled Caffe runs on a NVIDIA
Jetson TX2 mobile platform. The operating system of Jetson
TX2 is Ubuntu 18.04 Linux, and it supports several CPU
frequency scaling policies through DVFS governors [33]. For
example, the on-demand DVFS governor adjusts the CPU
clock frequency according to CPU utilization. For experi-
ments, we use CPU processors to investigate the interac-
tion between DMS and the system-wide resource managers
such as DVFS governors. Unlike CPUs, Jetson TX2 does
not provide DVFS governors for GPUs, and, hence, their
clock frequency must be set manually by users. During the
evaluation, the power/energy consumption of the Jetson TX2
is monitored by a Yokogawa WT310E power meter. Real-
time energy measurements are reported to the Jetson TX2 via
the USBTMC protocol.

For the evaluation, we use only ResNet-50 since, as dis-
cussed in Section III-B.1, shallow models such as VGG-
16 suffer from drastic degradation of accuracy for pruning
filters. We believe that such drastic degradation of accuracy is
not acceptable for most deep learning applications. Although
pruned VGG-16 models can recover some accuracy through
off-line retraining [13], it is not applicable at runtime due to
the high cost of retraining.

B. UNCOORDINATED INTERACTION WITH
SYSTEM-LEVEL RESOURCE ADAPTERS
Modern mobile and embedded devices provide vari-
ous system-level adaptive resource managers, such as

FIGURE 9. Uncoordinated interaction of DMS with the system’s
on-demand DVFS governor.

DVFS governors, to efficiently use shared resources such as
energy. For instance, the on-demandDVFS governor of Linux
systems automatically controls the frequency and voltage
of processors according to the processor utilization [33].
However, these system level approaches cannot support
per-task QoS goals such as inference latency because they
are oblivious to application-level QoS goals.

To show the effect of uncoordinated interactions between
DMS and system-wide resource managers, the same experi-
ment, as in Section III-B.1, is performed, while varying num-
ber of layers are pruned by 30%. The result in Section III-B.1
was obtained while the system-level DVFS governor was
disabled. In contrast, in this evaluation, the on-demand DVFS
governor is activated during the experiment.

The results in Figure 9 show that uncoordinated inter-
actions between the adaptive systems manifest unstable
and unpredictable behavior, particularly in ResNet-50. Even
though computational costs of inference is decreased steadily
by the incremental pruning across layers, the energy con-
sumption and inference latency change in an unpredictable
manner, as shown in Figure 9-(b). With this unpredictable
behavior, DMS cannot support the desired QoS, as will be
shown in the following experiments.

The coordination between DMS and the system-wide
resource managers is an interesting research problem. Prior
studies demonstrated that uncoordinated interaction between
adaptive systems can lead to unstable and oscillatory behavior
evenwhen individual adaptive components are provablywell-
behaved [34]. However, our goal, in this work, is not to
fully explore the spectrum of available solutions. We leave
this problem as our future work, and, in this work, we limit
the role of system-wide resource managers to determine the
optimal system configuration to achieve system-wide goals,
such as energy efficiency. The energy efficiency (EE) of
inference tasks is defined as follows:

EE =
inference performance

power(W)
=

images
time(sec)

power(W)
=

images
energy(J)

(3)

Figure 10 shows the energy efficiency while clock fre-
quency is varied. The result shows that the higher energy
efficiency is achieved at the higher clock frequencies. This
result is consistent with previous empirical studies showing
that race-to-idle is often the most energy efficient resource
allocation strategy in practice [35] [36]. Therefore, in the
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FIGURE 10. Energy efficiency of inference tasks while clock frequencies
of processors are varied.

following experiments, we set the the processor clock fre-
quency to the maximum. Once an optimal system-wide
configuration is fixed by a system-level manager, the QoS
manager for DMS dynamically scales CNN models to sup-
port per-task QoS goals.

C. SUPPORTING QoS WITH DMS
In this set of experiments, we test if DMS is effective in sup-
porting QoS goals under varying environments. We choose
to use ResNet-50 for these experiments because, as shown
in Section III-B.1, the accuracy loss of ResNet-50 for model
scaling is much less than VGG-16’s. Further, since ResNet-
50 has 53 convolution layers, it is easier to select less sensitive
convolution layers across multiple layers.

1) SUPPORTING QoS UNDER
UNPREDICTABLE WORKLOADS
In this experiment, we test if DMS can support QoS
goals against unpredictable workloads. For this experiment,
an inference task runs continuously to process input images,
and the target inference latency is set to 3.0 seconds as a QoS
goal. Performance is monitored as the inference task runs
continuously over 150 monitoring periods.2 At 50th moni-
toring instant, a disturbance thread is activated and continues
until the 100th monitoring instant. The disturbance thread
performs matrix multiplications of random sizes to interfere
with the inference task. The accuracy of a model is plotted
by relating the number of pruned layers monitored during the
experiment to the validation accuracy in Figure 4.

Experiments are performed with 4 different versions of
Caffe runtime. First, DMS(coord) is the DMS-enabled Caffe
runtime that supports QoS goals using dynamic model scal-
ing. In DMS(coord), clock frequency is set to the maximum.
DMS(uncoord) is the same as DMS(coord), but on-demand
governor is activated for system-wide power management.
The on-demand governor and the DMS manager are not
aware of each other, and, hence, they make control deci-
sions independently. In Sys_only, the inference task runs
on the vanilla Caffe runtime without QoS support, and the
on-demand governor runs during the experiment. MaxFreq
also runs the inference task on the vanilla Caffe runtime,
but the CPU clock frequency is set to the maximum. Both
Sys_only and MaxFreq are not aware of task’s QoS goal.

2One monitoring period is the time to complete a single inference.

FIGURE 11. Transient behavior of DMS and baselines.

FIGURE 12. Average performance of DMS and baselines with and without
disturbance.

Figure 11 shows the transient behavior during the experi-
ment, and Figure 12 shows the average of the performance.
The results demonstrate that DMS(coord) supports the tar-
get latency with the highest energy efficiency. For instance,
Figure 12-(a) shows that DMS(coord) consumes at least 6%
less energy than other baseline approaches when there is
no disturbance. Although MaxFreq runs the inference task
at maximum processor speed, its latency is longer than
DMS(coord) and it cannot support the target latency. In con-
trast, DMS(coord) can do additional acceleration to meet the
target latency at modest accuracy loss. For example, in the
absence of disturbance, the accuracy ofDMS(coord) is 0.865,
which is about 4% less than the original inference accu-
racy of 0.907. This result shows that DMS is very effective
in achieving additional performance gains, such as energy
savings and reduced latency, while minimizing the loss of
accuracy.

When the disturbance thread is active between the 50th
and the 100th monitoring periods, additional performance
degradation is observed in Sys_only and MaxFreq. For
instance, the energy consumption and the latency ofMaxFreq
are increased by 5% and 7%, respectively. In contrast,
DMS(coord) closely supports the target latency despite this
disturbance. DMS(coord) makes further resource-accuracy
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trade-offs to support the target latency. For example,
Figure 12-(b) shows that the accuracy of DMS(coord) is
decreased to 0.818 while the disturbance is active. The
energy consumption of DMS(coord) does not change much
despite the disturbance because the scaled model reduces the
resource demand.

The last thing to note in this experiment is the unpredictable
behavior of DMS(uncoord). Although DMS(uncoord) seems
to support the target inference latency throughout the experi-
ment, it manifests unpredictable changes in inference accu-
racy, especially when the disturbance thread is active.
As shown in Figure 11, when the disturbance is present,
the accuracy drops slowly from 0.75 to 0.47. Since the QoS
support via DMS is not coordinated with the on-demand
DVFS governor, these two adapters interact with each other
in an uncontrolled manner. For example, if the DMSmanager
scales down the model to reduce computational costs, the
on-demand governor might reduce the processor speed due
to the decreased processor utilization, and this, in turn, leads
to further model scaling by the DMS manager, to accel-
erate the inference task again. However, these interactions
are not predictable, if not coordinated. As this result shows,
the QoS support using DMS needs careful coordination with
system-wide resource managers to avoid unnecessary loss of
accuracy.

2) SUPPORTING QoS FOR CONCURRENT INFERENCE TASKS
Another advantage of DMS is that multiple concurrent infer-
ence tasks with their respective QoS goals can share a CNN
model. To demonstrate this advantage, we run three inference
tasks concurrently for 150 monitoring periods.3 The target
inference latency of Task A, B, and C are set to 2.9, 3.2,
and 3.5 seconds, respectively. These 3 tasks share a single
ResNet-50 model, and they are scheduled continuously by
DMS-enabled Caffe runtime on a CPU core in a round-robin
fashion; for example, if one task completes an inference,
the next task immediately starts its inference. As previous
experiments, a disturbance thread is activated between the
50th and the 100th monitoring periods. During the experi-
ment, the CPU clock frequency is set to the maximum for
energy efficiency.

Figures 13 and 14 show the results. In Figure 13, all three
inference tasks satisfy closely their respective latency goals.
However, Figure 14-(a) shows that these 3 tasks manifest
different resource-demands to satisfy their respective latency
goals. For example, Task A has the shortest latency goal, and
it reduces the computational cost of the inference by scaling
down the model until about 20% accuracy loss is incurred.
Task C, in contrast, has the longest latency goal, and it needs
only 0.1% accuracy loss to meet the target latency.

Figure 13 shows that all three tasks react promptly to
the disturbance to support the target latency. As shown in
Figure 14-(b), all three tasks satisfy the target latency despite

3One monitoring period is the time for the three tasks to complete their
inference once.

FIGURE 13. Transient behavior of concurrent tasks.

FIGURE 14. Average performance of concurrent inference tasks with and
without disturbance.

TABLE 2. ResNet-32 model for CIFAR-10 dataset.

the disturbance. They make additional resource-accuracy
trade-offs to handle the disturbance. For instance, the accu-
racies of Task A, B, and C are decreased to 0.41, 0.65, and
0.78, respectively.

D. SMALL SCALE CLASSIFICATION TASKS USING
CIFAR-10 DATASET AND ResNet-32
1) CIFAR-10 DATASET AND ResNet-32 MODEL
To demonstrate the generality of our approach, we con-
duct further studies on small scale classification tasks using
the CIFAR-10 dataset [27], the ResNet-32 deep learning
model [4], and a Jetson TK1 embedded board. The ResNet-32
model, shown in Table 2, is a tiny CNN model adapted from
the original ResNet models to process small input images of
32× 32 sizes. The ResNet-32 model has only 0.46M param-
eters, which is about 1/55 of original ResNet-50 models, and,
hence, has far less resource demands. TheResNet-32model is
trained and tested with CIFAR-10 dataset that consists of 50k
training images and 10k test images in 10 classes. For DMS,
the filters of the trained ResNet-32 model is reorganized in
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FIGURE 15. Accuracy and performance while varying pruning ratios are applied to the layers of ResNet-32 (CIFAR-10) running on an
Nvidia Jetson TK1 device.

FIGURE 16. Accuracy and performance while varying number of layers of
ResNet-32 (CIFAR-10) are pruned with scaling factor si .

the smallest `1-norm order in the off-line phase. For this set
of experiments, we choose to use a Jetson TK1 embedded
board that has less computing power than the Jetson TX2.
The main memory of the Jetson TK1 is 2GB, which cannot
accommodate large models such as VGG-16, but is enough
for tiny models like ResNet-32.

2) SCALING WITHIN AND ACROSS ConvNet LAYERS
Figure 15 shows the accuracy and performance while a
few chosen layers of ResNet-32 are pruned with varying
ratios. As shown in Figure 15-(a), the accuracy of ResNet-32
decreases monotonically when the higher pruning ratios
are applied. Most layers of ResNet-32 are robust against
the filter pruning. For example, pruning 90% of the filters
results in less than 9% accuracy degradation in most lay-
ers. An exception is the grp2blk4_conv0 layer that has an
accuracy of 0.335 after pruning 90% of the filters. This is
because grp2blk4_conv0 is the closest layer to the output
layer, so pruning filters of the layer directly affects the final
output. Figures 15-(b) and -(c), respectively, show the infer-
ence latency and energy consumption in the same experiment.
As with large models, we can observe gradual and mono-
tonic decreases of both latency and energy consumption.
For instance, ResNet-32 can achieve approximately 5-9%
acceleration and energy savings by pruning 90% of the filters
of a layer.

Figure 16 shows the inference accuracy and performance
when filters are pruned across the layers with 2 different
scaling factors, 0.7 and 0.5. Pruning filters across a network
has a multiplicative effect both in accuracy and performance.
Therefore, some sensitive layers such as grp2blk4_conv0

FIGURE 17. Transient behavior of DMS and baselines with ResNet-32 on
the Jetson TK1 device.

should be excluded from the candidate layers of pruning
to prevent drastic degradation of accuracy. As shown in
Figure 16-(b), ResNet-32 also achieves linear performance
gains as the number of pruned layers increases. These results
are consistent with the results from the large models. The
higher gain in power consumption and inference acceleration
can be achieved with greater accuracy loss. For example,
when the scaling factor is 0.5, it can achieve further 8.2%
energy saving and 6.6% latency reduction compared to the
scaling factor 0.7.

3) QoS MANAGEMENT ON A JETSON TK1 DEVICE
In this experiment, we test the effectiveness of DMS’s QoS
support on a more resource-constrained Jetson TK1 device.
As in Section IV-C, an inference task runs continuously to
process input images, and the target latency is set to 90 msec
as a QoS goal. At the 50th monitoring instant, a disturbance
thread is activated and continues until the 100th monitoring
instant.

Figure 17 shows the transient behavior of DMS and
baseline approaches. The result shows that DMS supports
the target latency with the highest energy efficiency. For
instance, in the absence of disturbance, DMS closely supports
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the target latency while consuming about 4.9% less energy
than Sys_only. When there is disturbance, this gap widens
to about 14.0%. MaxFreq runs the inference task at the
most energy-efficient CPU frequency, and, hence, its energy
consumption is similar to DMS’s when there is no distur-
bance. However, while the disturbance thread is activated,
its latency and energy consumption are increased due to
resource contention. For example, MaxFreq’s latency and
energy consumption increase by about 10% during the pres-
ence of disturbance. Unlike these baseline approaches, DMS
maintains the target latency with a modest loss of accuracy
despite the disturbance. For example, during the presence
of disturbance, DMS’s inference accuracy drops from about
0.909 to 0.801.

V. RELATED WORKS
The computational complexity and size of deep learn-
ing models continues to increase in order to achieve
higher inference accuracy, and this poses a major challenge
for resource-constrained mobile and embedded devices.
To address this problem, there has been significant effort
to develop efficient and light-weight deep learning mod-
els, methods, and runtime environments for mobile and
embedded devices.

Some small footprint deep learning models have been
designed for resource-constrained mobile devices [37], [38].
However, handcrafting a small footprint network from scratch
requires enormous development time and efforts. Further,
the fixed computation cost of such models cannot meet
the wide and varying resource requirements of mobile and
embedded applications.

Inspired by early work of LeCun et al. [39], there have been
several works focusing on pruning deep learning models to
reduce their complexity [13], [21], [22]. Anwar et al. [22]
proposed to use particle filters to measure the importance of
connections and paths. Han et al. [21] iteratively removes
weights having small magnitudes to obtain a pruned model
without loss of accuracy. After pruning, these approaches
perform a large amount of retraining to recover the original
accuracy. Most of these pruning methods generate irregular
network structures after pruning, rendering little saving of
actual computation costs. Han et al. [14] proposed a spe-
cialized hardware accelerator for efficient processing of such
irregular network structures.

Filter-based pruning of CNN models was proposed by
Li et al. [13]. Unlike weight-based pruning approaches,
filter-based pruning does not produce irregular network struc-
ture after pruning. In network slimming scheme [40], the
importance of convolution filters and channels are automati-
cally identified during training by imposing sparsity-induced
regularization on the scaling factors in batch normaliza-
tion layers. The filters are pruned according to the learned
importance. AMC [28] exploits reinforcement learning to
learn proper pruning ratios in a layer-by-layer manner. Both
network slimming and AMC are complementary to DMS,

and they can be used byDMS to learn the importance of filters
and optimal per-layer scaling factors.

Another line of work explored dynamically scaling com-
putation of CNN models either through early termina-
tion [41]–[43] or conditional execution [44]–[46]. For
instance, in [42], a cascade of intermediate classifiers are
used to allow early termination when samples can already
be inferred with high confidence. In [46], gating modules
are added to backbone networks to regulate skipping convo-
lution layers on a per-input basis. Lin et al. [45] proposed
to use a RNN-based decision network that decides how to
prune convolution kernels conditioned on the input image
and current feature maps. These dynamic scaling approaches
demonstrated high accuracy comparable to the original net-
work since they skip some computation on easy input images.
However, their pruning decisions are based on input images,
not on the QoS goals and resource-demands of applications.
We believe that these conditional execution mechanisms can
be combined with the QoS management architecture of this
work to support QoS goals while maintaining high accuracy.

Several runtime environments have been proposed for effi-
cient and QoS-aware deep learning inference in mobile and
embedded devices [10], [19], [29], [31], [47]. DeepX, for
example, is a software accelerator that decomposes a deep
learning model into unit-blocks for efficient execution on
heterogeneous local device processors [10]. NestDNN [47]
provides flexible resource-accuracy trade-offs by nesting a
few models having different resource-accuracy trade-offs in
a single model and selecting an optimal model at runtime.
Kang and Chung [29], [31] proposed a deep learning runtime,
called DeepRT, that provides predictable inference latency
and power consumption by controlling the speeds of CPUs
and GPUs simultaneously. Kang et al.’s work has a simi-
lar goal to ours. However, they only consider system-level
resource management issues to support predictable inference,
not exploiting the characteristics of deep learning models.

DMS’s resource-accuracy trade-off follows the principle
of approximate computing [48], in which applications trade
accuracy for reduced resource usage, which, in turn, con-
tributes to the benefits in power, energy, execution time, etc.
For instance, Hoffman [34] proposed a runtime optimization
systems, called JouleGuard, that takes an energy goal and
dynamically configures both application and system to ensure
the goal is met and application accuracy is near optimal. Chen
et al. [49] proposed several approximate computing tech-
niques for deep neural networks (DNNs), such as quantiza-
tion and gradient compression, and demonstrated that DNNs
are resilient to numerical errors from approximate computing.
DMS’s pruning-based approach to approximate computing is
orthogonal to such previous techniques, and can be combined
with them for further benefits.

VI. CONCLUSION
In this paper, we presented DMS, a runtime control mech-
anism that supports QoS for deep learning applications.
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In order to control the resource demands of deep learning
applications, DMS scales deep learning models at runtime
by adaptive pruning of convolution filters. Since the model
scaling mechanism of DMS does not incur runtime over-
head, it can be combined with runtime feedback control
mechanisms to guarantee QoS goals. We presented perfor-
mance evaluation using experimental prototypes. The results
are very encouraging in that DMS can control the resource
consumption of concurrent deep learning applications at a
modest loss of accuracy. Our evaluation results also show
that, if properly coordinated with system level resource man-
agers, DMS can support highly robust and efficient inference
performance against unpredictable workloads.

While we believe that this work is a significant step
towards QoS-aware deep learning for mobile and embed-
ded devices, further study is needed in several directions.
First, DMS needs to be expanded to support more diverse
deep learning models such as DNNs and recurrent neural
networks (RNNs). Second, the coordination between DMS
and system-wide resource managers deserves more in-depth
exploration. In particular, our result shows that pruning fil-
ters of relatively shallow CNN models such as VGG-16 can
significantly degrade the inference accuracy. For such shal-
low models, we plan to investigate methods that combine
system-level resource management techniques with DMS to
minimize the loss of accuracy. Finally, we are interested in
combining input-dependent dynamic network structures to
DMS. We believe that the conditional execution mechanisms
of input-dependent dynamic networks can be exploited by
the QoS management architecture of DMS to support various
QoS goals with minimal loss of accuracy.
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