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ABSTRACT Nowadays, the management and analyses of ‘big data’ are becoming indispensable for numer-
ous organizations all over the world. In many cases, multiple organizations want to perform data analyses
on their combined databases. Skyline query is one of the popular operations for selecting representative
objects from a large database, where any other object within the database does not dominate each of the
representative objects, called ‘skyline’. Like other data analytics operations, the multi-party skyline query
can provide benefits to the participating organizations by retrieving the skyline objects from their combined
databases. Such a multi-party skyline query demands the disclosure of individual parties’ objects to others
during the computation. But, owing to the data privacy and security concern of the present IT era, such
disclosure of the individual parties’ databases is strictly prohibited. Considering this issue, we are proposing
a new framework for the privacy-preserving multi-party skyline query, exploiting additive homomorphic
encryption along with data anonymization, perturbation, and randomization techniques. The underlying
protocols within our proposed framework ensure that every participating party can identify its multi-party
skyline objects without revealing the objects to others during the multi-party skyline query. The detailed
privacy and security analyses show that the proposed framework can achieve the desired computation
goal without privacy leakage. Besides, the performance evaluation through complexity analyses, extensive
simulations, and comprehensive comparison also demonstrate the utility and the efficiency of the proposed
framework.

INDEX TERMS Data mining, skyline query, multi-party computation, data privacy, Paillier cryptosystem,
homomorphic encryption.

I. INTRODUCTION
Organizations throughout the world are producing a vast
amount of data, known as ‘big data’. Consequently,
the demand for big data analytics tools is growing rapidly.
These tools have attracted massive attention to organizations
and researchers for making strategic decisions and for new
knowledge acquisitions. Open market product pricing, risk
management in investment, consumer buying pattern analy-
sis, financial transaction analysis, health data analysis, etc.
are remarkable examples of big data analyses. Still, big data
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is introducing new challenges for collection, storage, process,
analyze, etc.

In the current trend of IT, multiple organizations dealing
with similar kind of services are collecting compatible big
data, and have noticed the importance of analytical results
that can be found from the union of their databases. Such
sort of joint data analyses requires multi-party computation
over the combined databases of all organizations. Since many
organizational databases may contain various sensitive data
like personal or financial data, revealing these data can seri-
ously violate the individuals’ privacy and can be the reason of
significant financial and goodwill loss for the organizations.
As a result, when multiple organizations want to analyze
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FIGURE 1. A skyline example of real estate property records.

their data jointly, no organization is willing to disclose their
sensitive data. In this paper, we address this problem.

Already, the skyline query has gained popularity for select-
ing representative objects from a large database. It chooses
a set of representative objects in such a way, in which no
other object in the database dominates these representative
objects [1], [2]. For example, the table in Fig. 1 shows a
database of real estates, which contains records about real
estates’ price and its distance from the beach. From its cor-
responding plot diagram, points A, B, D, and G are not
dominated by any other point in the database, and therefore,
these are the skyline points. When a customer asks the agent
to recommend some real estates, the agent can suggest some
potential real estates from the skyline query.

Undoubtedly, the multi-party skyline query provides more
benefits to the organizations by selecting skyline objects
from the union of their databases. The organizations may
want to locate their skyline objects that are not dominated
by any other object of their combined databases. However,
such computation is very sensitive w.r.t. security and privacy
challenges. Let us assume that several agents have a collec-
tion of similar kind of real estate records. To provide better
and competitive suggestions for their customers, every agent
may also want to determine its real estates which are not
dominated by any real estate of other agents. In such a case, all
agents need to perform the multi-party skyline query on their
union databases. The agents may also utilize the multi-party
skyline query to assess their real estates. In conventional sky-
line query, it is not possible to obtain the multi-party skyline
result without disclosing the objects to others.

Unfortunately, very few existing works [3]–[7] addressed
the issues of data privacy and security for skyline query.
However, their secure computation circumstances are differ-
ent from our proposal. Besides, most of the existing works
incorporate one or more semi-honest third-parties to conduct
the privacy-preserving skyline query, where the privacy of
the individual party’s database profoundly depend on the
credibility of the third party(s). Since the third party(s) may

involve in the conspiracy, it is challenging to assume an
unbiased third-party(s) who will be trusted by all parties.

Therefore, we propose a new framework for privacy-
preserving multi-party skyline query in this paper. In the
proposed framework, individual parties/organizations do not
need to reveal their private databases to others. We design
three intra-dependent protocols to implement the frame-
work through which only the objects owner can identify its
multi-party skyline objects. Even, no party is able to know
the number of multi-party skyline objects of other parties.

The remaining part of this paper is organized as
follows: we review some existing works on skyline
query, privacy-preserving multi-party computation, and
privacy-preserving skyline query in Section II. In Section III,
we discuss the preliminaries of the skyline query and the
Paillier cryptosystem, as required to develop the framework.
Then, we explain the proposed system model with desired
privacy properties in Section IV. In Section V, we specify
the detail framework with brief explanations and examples.
Next, we explain the privacy and security analyses for the
proposed framework in Section VI. After that, we evaluate
its performance, and compare with other work in Section VII.
Finally, we conclude the paper in Section VIII.

II. RELATED WORKS
The works on skyline query processing, privacy-preserving
multi-party computation, and privacy-preserving skyline
query are related to this research work. Subsection II-A
focuses on the skyline query, subsection II-B discusses
about privacy-preserving multi-party computation, and sub-
section II-C highlights on privacy-preserving skyline query.

A. SKYLINE QUERY
Borzsonyi et al. [1], who are the introducer of the sky-
line operator, proposed three algorithms for computing
skyline: Block-Nested-Loops (BNL), Divide-and-Conquer
(D&C), andB-tree-based schemes. Later, Kossmann et al. [8]
improved the D&C algorithm and proposed the
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nearest-neighbor (NN) algorithm for efficiently pruning out
dominated objects by iteratively partitioning the data space
based on the nearest objects. Similarly, Chomicki et al. [9]
improved the BNL algorithm by presorting the objects. They
proposed Sort-Filter-Skyline (SFS) as a variant of BNL.
Another efficient algorithm for skyline query is Branch-and-
Bound Skyline (BBS), proposed by Papadias et al. [10], which
is a progressive algorithm based on the Best First Nearest
Neighbor (BF-NN) algorithm.

Besides, Balke et al. [11] introduced skyline queries in
distributed environments. They proposed various approaches
for computing distributed skyline efficiently from the verti-
cally partitioned web information. On the other hand, both
Wang et al. [12] and Chen et al. [13] proposed efficient sky-
line query processing frameworks in the structured P2P net-
works. Rocha et al. [14] also proposed a grid-based approach
for distributed skyline processing. This approach assumed
that each peer maintained a grid-based data summary struc-
ture for describing its data distribution.

B. PRIVACY-PRESERVING MULTI-PARTY COMPUTATION
Privacy-preserving multi-party computation is vital for mod-
ern business data processing. Yao [15] first introduced it
for two-party setting and then Goldreich et al. [16] extended
it for multi-party setting. According to [16], security in
multi-party computation means that the individual parties’
data remain secret during the computation and the parties
could only get the computed results. Generally, the secure
multi-party computation protocols are complicated than the
specific purpose protocols.

Privacy-preserving multi-party data-mining problem is
another example of secure multi-party computation. It is con-
sidered as one of the key research areas of ‘big data’. Lindell
and Pinkas [17] proposed the algorithm for performing the
data mining operation on the combined databases of two
parties, where one party does not disclose its database to
another party during computation. In Agrawal’s paper [18],
the privacy-preserving data mining problem is described con-
sidering two parties: Alice and Bob; where Alice is allowed
to conduct data mining operation on a private database
owned by Bob, but Bob wants to prevent Alice from access-
ing precise information in individual data records, allowing
Alice to conduct the data mining operations. Although these
two problems are quite similar, the approaches proposed
in [17] and [18] are different. Reference [17] used the secure
multi-party computation protocols; while [18] applied the
data perturbation method.

Most of the existing solutions for multi-party computa-
tion [19], [20] utilized homomorphic encryption for com-
paring the private data of the individual parties, although
these protocols are highly expensive w.r.t. computation and
communication complexity [21]. Lin and Tzeng [22] intro-
duced another secure comparison protocol based on homo-
morphic encryption known as the 0-encoding and 1-encoding
scheme. It is a two-party secure comparison protocol for
comparing two private data in two rounds of data exchange.

However, the complexity of the 0-encoding and 1-encoding
scheme also depends on the length of the integer attribute
value in the number of binary bits like secure compar-
ison protocol proposed by Lin and Jaromczyk [19] and
Veugen et al. [20].
The local differential privacy (LDP) schemes have been

proposed for privacy-preserving distributed data collec-
tion [23]–[26]. By using the LDP schemes, the database
owners can ensure the confidentiality of individual database
records shared with a collector, while the collector computes
on the differential private version of the database records to
publish the statistical aggregate results from the collected
databases. These schemes utilize various data anonymization
techniques to maintain data privacy and also estimates the
tradeoff between data utility and data privacy.

C. PRIVACY-PRESERVING SKYLINE QUERY
Like other privacy-preserving multi-party computation prob-
lems, the privacy-preserving multi-party skyline query is also
being researched considering various perspectives.

Concerning the privacy of user’s dynamic skyline query,
three different frameworks were proposed by Chen et al. [4],
Liu et al. [5], and Hua et al. [6]. Unfortunately, their secure
skyline computation objectives are different from our current
scenario. Within their frameworks, the data provider cannot
know the user’s dynamic skyline query. On the other hand,
the user cannot know the entire private database of the data
provider other than the skyline query result.

Liu et al. [7] proposed a skyline computation framework
for two parties, which can also be deployable in a multi-party
computation platform. They considered pruning out the dom-
inated objects iteratively by using secure dominance com-
parison between two individual parties’ objects. Although
their proposed Efficient Secure Vector Comparison (ESVC)
protocol between two parties does not disclose the object’s
attributes to one another, it reveals the dominance relation
between their two specific objects, to both parties.

The framework proposed by Zaman et al. [3] transforms
the multi-party objects’ attributes securely into the rank of the
attribute value on each dimension and then uses the attributes’
rank for computing the multi-party skyline. Although it
seemed to be efficient than relevant frameworks, still there
exists suspicion that whither the attributes’ rank of the objects
can ensure the privacy adequately, or not.

III. PRELIMINARIES
This section defines the essential preliminaries considered
for the proposed framework. Besides, the common notations
used in this paper are introduced in Table 1.

A. DOMINANCE AND SKYLINE
Given a dataset DS with D-dimensions {d1, d2, · · · , dD}
and N objects {O1,O2, · · · ,ON }, where Oi.dj denotes the
j-th dimension value of objectOi. We assume that the smaller
value in each dimension is better, without loss of generality.

VOLUME 7, 2019 167483



M. Qaosar et al.: Framework for Privacy-Preserving Multi-party Skyline Query

FIGURE 2. A skyline example with skyline additivity property.

TABLE 1. The summary of notations.

1) DOMINANCE
An object Oi ∈ DS is said to dominate another object
Oj ∈ DS, denoted as Oi ≺ Oj, if Oi.dk ≤ Oj.dk (1 ≤ k ≤ D)
for all dimensions and Oi.dl < Oj.dl (1 ≤ l ≤ D) for
at least one dimension. We call such Oi as dominant object
and such Oj as dominated object between Oi and Oj. For
example, in Fig. 2 object O2,2(10, 20) is dominated by object
O1,2(10, 16), since O1,2.d2(16) < O2,2.d2(20), although
O1,2.d1(10) = O2,2.d1(10).

2) SKYLINE
An object Oi ∈ DS is said to be a skyline object of DS,
if and only if there is no such object Oj ∈ DS (j 6= i)
that dominates Oi. The skyline of DS, denoted as Sky(DS),
is the set of skyline objects in DS. For the dataset plotted
in Fig. 2, objects O2,1,O3,1,O1,2,O1,4,O3,7,O2,6 are not
dominated by any other objects. Thus, skyline query retrieves
Sky(DS) = {O2,1,O3,1,O1,2,O1,4,O3,7,O2,6}.

3) ADDITIVITY OF SKYLINE COMPUTATION [27]
Given a dataset DS that is composed by union of K datasets
such that DS = DS1∪· · ·∪DSK , the following equation
holds:

Sky(DS) = Sky(Sky(DS1)∪· · ·∪Sky(DSK ))

This implies that each skyline object of DS must be a
skyline object ofDS’s subset. In Fig. 2, we denote that the red,
the green, and the blue points represent the objects of DS1,
DS2, and DS3, respectively. The skyline objects of DS1, DS2
and DS3 is given as Sky(DS1) = {O1,1,O1,2,O1,4,O1,7},
Sky(DS2) = {O2,1,O2,2,O2,4,O2,6}, and Sky(DS3) =
{O3,1,O3,3,O3,5,O3,7}. It is apparent that the common sky-
line objects is given as Sky(DS) = {O2,1,O3,1,O1,2,O1,4,

O3,7,O2,6}, where {O1,2,O1,4} ∈Sky(DS1), {O2,1,O2,6}

∈Sky(DS2), and {O3,1,O3,7} ∈Sky(DS3).
We also introduce and frequently used two common ter-

minologies throughout the paper: the local skyline object
and the global skyline object. Here the local skyline object
denotes the non-dominated skyline object of a sub-dataset,
i.e., an object of Sky(DS1), while the global skyline object
denotes the skyline object computed from the union of sub-
datasets, i.e., an object of Sky(DS).

B. PAILLIER CRYPTOSYSTEM
Paillier cryptosystem [28] is a probabilistic asymmetric
encryption scheme that possesses additive homomorphic
property. Consider pk and sk be the Paillier public encryption
key and the private decryption key, respectively. Also assume
m1 and m2 be two distinct plaintext integers while [m1]pk
and [m2]pk represent their ciphertext, respectively. Based on
this scenario, Paillier cryptosystem has the following additive
homomorphic properties:
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TABLE 2. Local datasets of the individual parties.

TABLE 3. Local skyline objects of the individual parties.

TABLE 4. Global skyline objects (GSO) of the individual parties.

• Homomorphic Addition

[m1 + m2]pk :=
(
[m1]pk × [m2]pk

)
mod n2

• Homomorphic Multiplication

[k × m1]pk :=
(
[m1]pk

)k mod n2

where n is the part of Paillier public key and k is a constant
integer.

IV. SYSTEM MODEL AND DESIRED PRIVACY PROPERTIES
In this section, we formalize the system model, and the
desired privacy for our proposed framework.

A. SYSTEM MODEL
During the system design phase, we mainly concentrate
on the privacy-aware multi-party skyline. We consider each
party has a private dataset, where all parties are connected
with each other. Without revealing the dataset to others,
each party wants to identify the global skyline objects from
their datasets that are not dominated by any object of their
combined datasets. Here, we adopt the semi-honest adversary
model and assume that all parties are honest-but-curious,
i.e., all parties strictly follow the protocol but intend to extract
the private data of other parties from the computation.

Due to the additivity property of skyline computation,
we can say that each object of the global skyline must be an
object of any of the local skyline of the parties. Therefore, we

assume that, before computing the global skyline securely,
every party computes its local skyline objects. The local
skyline computation can reduce the complexity of the global
skyline computation significantly by pruning out the domi-
nated objects from the local databases, and thus improve the
computation efficiency.

Assume, Table 2 represents the private datasets of three
individual parties, while Table 3 shows their local skyline
objects. After computing the local skyline, each party wants
to identify their global skyline objects without revealing their
local skyline objects to others. Based on Table 3, Table 4
derives the global skyline objects owned by individual parties.

B. DESIRED PRIVACY
Our framework implicitly assumes that all participating par-
ties do not collude with each other. It does not create any
significant security threat for the honest parties even if some
dishonest parties make any conspiracy. The proposed frame-
work will possess the following privacy requirements:
• Any party does not expose its private objects directly

to others during the computation. The parties either
encrypt or anonymize the data before sharing it to
others.

• Each party can only identify its own global skyline
objects. No party is able to locate the global skyline
objects of other parties; even a party cannot know how
many global skyline objects are owned by other parties.
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For example, after secure comparison between the local
skyline objects of Table 3, Party1 has no information
about a global skyline object that is owned by Party2
or Party3. Also, Party1 cannot know how many global
objects Party2 and Party3 have owned.

• Any party cannot know whether its global skyline
object dominates any object of others or not. After
computation, each party can locate its own global sky-
line objects, but any party cannot know whether its
global skyline objects dominate any objects or not.
According to Table 4, after secure computation, Party1
can identify that O1,2 is a global skyline object, but
Party1 cannot know whether O1,2 dominates any local
skyline object of others, or not.

• Any party cannot know how many objects of others
dominate its dominated objects. If a local skyline object
is not a global skyline object, it is evident that at least
an object of other parties dominates a specific domi-
nated object, but any party cannot know the number
of dominant objects for a specific dominated object
precisely. According to Table 3 and Table 4, Party2
can determine O2,4 is not a global skyline object, but
Party2 cannot know how many local skyline objects of
Party1 or Party3 dominates O2,4.

• When the number of parties is more than two, no party
can identify any particular party, whose object(s) dom-
inates its specific dominated object. Using secure com-
putation with Party1 and Party2, Party3 can find that
O3,3 is dominated by other parties’ object(s). How-
ever, Party3 is unable to know: O3,3 is dominated by
Party1’s object(s), orParty2’s object(s), or both parties’
objects.

V. PROPOSED FRAMEWORK
Initially, each party computes its local skyline objects, gen-
erates the key pair of Paillier cryptosystem, and distributes
the public encryption key to others prior to multi-party sky-
line computation. The detail of Paillier cryptosystem and its
homomorphic properties are available in [28]. We design
three intra-dependent protocols to build our proposed frame-
work. These are: the Multi-Party Skyline (MPS) proto-
col, the Dominant Objects Counter (DOC) protocol, and
the Secure Dominance Comparison (SDC) protocol. In our
framework, the MPS protocol applies the DOC protocol
among every pair of parties; whereas the DOC protocol uti-
lizes the SDC protocol to compare the dominance relation-
ships among every pair of individual parties’ two local skyline
objects. Now, we describe the DOC, the SDC, and the MPS
protocols in subsections V-A, V-B, and V-C, respectively.

A. DOMINANT OBJECTS COUNTER (DOC) PROTOCOL
The DOC protocol is a two-party protocol. For each local
skyline object of both parties, the DOC protocol securely
counts the dominant objects within the opposite party’s local
skyline objects. Suppose, PartyA and PartyB are two parties.
PartyA has Sky (DSA), and PartyB has Sky (DSB) as their

FIGURE 3. Data-flow diagram of the DOC protocol.

local skyline objects. Furthermore, PartyA has (pkA, skA), and
PartyB has (pkB, skB) as their key pairs. Algorithm 1 briefly
describes the DOC protocol, and Fig. 3 depicts its data-flow
diagram.

At the beginning of this protocol, PartyA encrypts
Sky (DSA) using pkA and sends [Sky (DSA)]A to PartyB.
PartyB also encrypts Sky (DSB) using pkA. After that,
PartyB creates the encrypted dominant objects counter field[
dcountBA,i

]
A
and

[
dcountAB,j

]
A
for each object Ai∈Sky(DSA)

and Bj∈Sky(DSB), and assigns [0]A as the initial value of
each dominant objects counter. Here dcountBA,i counts the
objects in Sky (DSB), which dominatesAi∈Sky(DSA). Similarly,
dcountAB,j counts the objects in Sky (DSA), which dominates
Bj∈Sky(DSB).

Next, PartyB creates an object pair list from the Cartesian
product of Sky (DSA) and Sky (DSB), i.e., Sky (DSA) ×
Sky (DSB) = {

(
Ai,Bj

)
|Ai∈ Sky (DSA) and Bj∈ Sky (DSB)}.

Then shuffle the object pair list randomly so that the list does
not follow any chronological sequence. After that, PartyB
uses the SDC protocol to compare the dominance relation
between each pair of objects from the shuffled list. PartyB
also randomizes the parameter order of the SDC protocol
according to Step 6 of Algorithm 1. Because of the ran-
dom shuffling of the object pair list and the parameter order
randomization, PartyA cannot distinguish the objects (even
PartyA’s own local skyline objects), which are being com-
pared through the SDC protocol.

The two output values of the SDC protocol obtained by
PartyB denote the dominance relation between the compared
objects. Among these two objects, if an object dominates
another object, the output of the SDC protocol for the domi-
nated object will be 1, whereas it will be 0 for the dominant
object. But, both outputs will be 0 if the compared objects
do not dominate each other. Since PartyA encrypts the out-
puts of the SDC protocol by pkA, PartyB cannot know the
dominance relation between two specific objects. However,
using homomorphic addition, PartyB can add the encrypted
outputs of the SDC protocol with the associated encrypted
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Algorithm 1 Dominant Objects Counter (DOC) protocol
Input:

PartyA has Sky (DSA), pkA, skA and pkB;

PartyB has Sky (DSB), pkB, skB, and pkA;

Output:

PartyA gets
[
dcountAB

]
B for Sky (DSB);

PartyB gets
[
dcountBA

]
A for Sky (DSA);

PartyA:

1: Encrypts Sky (DSA) using pkA and sends [Sky (DSA)]A to PartyB;

PartyB:

2: Encrypts Sky (DSB) using pkA;

3: Creates dominant objects counter array
[
dcountBA

]
A and

[
dcountAB

]
A and assign [0]A as initial value;

4: Creates an object pair list from the Cartesian product Sky (DSA)× Sky (DSB), and randomly shuffle the object pair list;

5: for all pair
([
Ai∈Sky(DSA)

]
A ,
[
Bj∈Sky(DSB)

]
A

)
do

6: Randomly computes either

i.
([
domAi

]
A ,
[
domBj

]
A

)
← SDC

(
[Ai]A ,

[
Bj
]
A

)
or

ii.
([
domBj

]
A ,
[
domAi

]
A

)
← SDC

([
Bj
]
A , [Ai]A

)
;

7: Computes
[
dcountBA,i

]
A
:=

[
dcountBA,i

]
A
+̂
[
domAi

]
A;

8: Computes
[
dcountAB,j

]
A
:=

[
dcountAB,j

]
A
+̂
[
domBj

]
A;

9: end for

F
[
dcountBA

]
A and

[
dcountAB

]
A contain the number of dominant objects for Sky (DSA) and Sky (DSB)

10: For dcountAB, generates random integer array r
∈Z>0 , computes

[
eAB
]
A :=

[
dcountAB

]
A+̂[r]A,

and encrypts r using pkB to obtain [r]B;

11: Sends
[
eBB
]
A and [r]B to PartyA;

PartyA:

12: Decrypts
[
eAB
]
A using skA and encrypts eAB using pkB to obtain

[
eAB
]
B;

13: Computes
[
dcountAB

]
B :=

[
eAB
]
B −̂[r]B;

dominant objects counters of the compared objects. In this
purpose, PartyB applies Step 7 and Step 8 of Algorithm 1.
After comparing all pairs of objects following Step 5 to

Step 9 of Algorithm 1,
[
dcountBA

]
A holds the number of

dominant objects in Sky (DSB) for each object of Sky (DSA).
Also,

[
dcountAB

]
A holds the number of dominant objects in

Sky (DSA) for each object of Sky (DSB). Table 5 and Table 6
are considered as the examples of the 2-dimensional local
skyline objects of PartyA and PartyB, respectively, and from
these we can compare between their local skyline objects.
Here we can observe that A1 and A4 are not dominated by
any local skyline object of PartyB. Similarly, B2 and B3
are not dominated by any local skyline object of PartyA.
On the other hand, A2, A3, B1, and B4 are dominated
objects, since (A1 ≺ B1), ({B2,B3} ≺ A2), (B3 ≺ A3), and
(A4 ≺ B4). Therefore, after secure computation following

TABLE 5. Sky
(
DSA

)
.

Step 5 to Step 9 of Algorithm 1, PartyB gets
[
dcountBA

]
A and[

dcountAB
]
A as shown in Table 7.

Since the skyline objects are not dominated by any object,
the number of dominant objects of a skyline object is zero.
However, PartyB is unable to differentiate the non-dominated
objects since dcountBA, and dcountAB are encrypted by pkA.
In contrast, PartyA also cannot determine the global skyline
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TABLE 6. Sky
(
DSB

)
.

objects, since PartyA does not have the dominant objects
counter.

Now, PartyA has to get the number of its dominant objects
for each local skyline objects of PartyB in encrypted form.
Therefore, PartyB first generates random positive integer
array r

∈Z>0 and computes
[
eAB
]
A :=

[
dcountAB

]
A+̂[r]A

through homomorphic addition. PartyB also encrypts r using
pkB to obtain [r]B. After that, PartyB sends

[
eAB
]
A and [r]B

to PartyA.

TABLE 7. Content of encrypted dominant objects counters obtained
through Step 5 to Step 9 of Algorithm 1.

Although PartyA can decrypt
[
eAB
]
A using skA, it cannot

know anything about the local skyline objects of PartyB from
the decrypted value. However, PartyA can obtain

[
dcountAB

]
B

for Sky (DSB) by computing through Step 12 and Step 13
of Algorithm 1. Using the column

[
dcountAB

]
A of Table 7,

Table 8 presents the computation results of Step 10 to Step 13
of Algorithm 1.

TABLE 8. Example of Step 10 to Step 13 of Algorithm 1.

Within the MPS protocol, the encrypted dominant objects
counter obtained by one party for each local skyline object of
another party will be used for computing multi-party skyline,
from which only the individual party can identify its global
skyline objects.

B. SECURE DOMINANCE COMPARISON (SDC) PROTOCOL
The SDC protocol is a sub-protocol of the DOC protocol, and
it is designed to compare the dominance relation between two
parties’ encrypted objects. It is the principal component of the

FIGURE 4. Data-flow diagram of the SDC protocol.

proposed framework. Same as the DOC protocol, we explain
the SDC protocol considering two parties: PartyA and PartyB,
where PartyA has the key pair (pkA, skA), and PartyB has the
public key pkA and two encrypted objects [P]A and [Q]A.
Among these two encrypted objects, one object is owned
by PartyA, and another one is owned by PartyB. As already
described within the DOC protocol, PartyA can not know
its particular object, which is compared through the SDC
protocol.

The SDC protocol assures that PartyA cannot know
PartyB’s object, whereas PartyB is unable to know the
dominance relation between two specific objects. We design
the SDC protocol obeying the basic principle of the ESVC
Protocol [7]. However, to improve the computation effi-
ciency, we ignore the 0-encoding and 1-encoding scheme
based secure integer comparison protocol [22] used in the
ESVC protocol. Instead, we adopt the data anonymization,
perturbation, and randomization techniques. Furthermore,
to maintain the desired privacy, we encrypt the dominance
relation between two objects. Algorithm 2 describes the SDC
protocol and Fig. 4 depicts its data-flow diagram.
We acknowledge three types of dominance relations

between two objects P andQ: either (1) P ≺ Q, or (2)Q ≺ P,
or (3) P and Q do not dominate each other. To achieve
the dominance relation between two objects, at first, PartyB
expands D-dimensional encrypted objects [P (p1, · · · , pD)]A
and [Q (q1, · · · , qD)]A into four 2D length encrypted vectors
[X]A,

[
X ′]

A, [Y ]A and
[
Y ′]

A. In this regard, PartyB gen-
erates four 2D length random integer array to anonymize
the vector elements using arbitrary transformation. These
are M = (m1, . . . ,m2D)∈Z>1 , M ′

= (m′1, . . . ,m
′

2D)∈Z>1 ,
K = (k1, . . . , k2D)∈Z>0 , and K

′
= (k ′1, . . . , k

′

2D)∈Z>0 .
Then, by applying the homomorphic addition and multi-

plication properties of Paillier cryptosystem, PartyB expands
[P]A and [Q]A into [X]A,

[
X ′]

A, [Y ]A, and
[
Y ′]

A using the
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Algorithm 2 Secure Dominance Comparison (SDC) Protocol
Input: PartyB has [P]A, [Q]A and pkA; PartyA has skA and pkA;

Output: PartyB gets [domP]A and
[
domQ

]
A

PartyB:

1: Expands [P]A and [Q]A into four 2D length vector: [X]A,
[
X ′]

A, [Y ]A and
[
Y ′]

A;

2: Constructs two 2D length binary vector: V = (11, ..., 1D, 0D+1, ..., 02D) and V ′
= (11, ..., 1D, 0D+1, ..., 02D);

3: Generates two 2D length random binary vector: σ = (σ1, ..., σ2D)σi∈0,1 and σ
′
= (σ ′1, ..., σ

′

2D)σ ′i ∈0,1;

i. Swaps each element
[
xi∈X

]
A and

[
yi∈Y

]
A if σi = 1;

ii. Swaps each element
[
x ′i
∈X′

]
A
and

[
y′i
∈Y′

]
A
if σ ′i = 1;

iii. ComputesW := V
⊕
σ andW ′

:= V ′⊕ σ ′;

4: i. Generates four D length random positive integer vector: α, β, α′, and β′;

ii. Creates D length binary vector ρ and set ρi∈ρ = 1 if αi∈α > βi∈β else set ρi∈ρ = 0;

iii. Creates D length binary vector ρ′ and set ρ′i
∈ρ′
= 1 if α′i

∈α′
< β ′i

∈β′
else set ρ′i

∈ρ′
= 0;

iv. Encrypts α, β, α′, and β′ using pkA;

5: i. Computes [S]A← π
([
X|α

]
A

)
, [T ]A← π

([
Y |β

]
A

)
, and G← π

(
W |ρ

)
;

ii. Computes
[
S′
]
A← π ′

([
X ′|α′

]
A

)
,
[
T ′]

A← π ′
([
Y ′|β′

]
A

)
, and G′

← π ′
(
W ′|ρ′

)
;;

6: Uses hash function to compute h := H (G) and h′ := H (G′);

7: Sends [S]A, [T ]A, h,
[
S′
]
A,
[
T ′]

A, and h
′ to PartyA;

PartyA:

8: Decrypts [S]A, [T ]A,
[
S′
]
A, and

[
T ′]

A using private decryption key skA;

9: Constructs two 3D length binary vector U = (u1, ..., u3D) and U′
= (u′1, ..., u

′

3D);

i. if ti∈T > si∈S then set ui := 1 else set ui := 0;

ii. if t ′i
∈T′

< s′i
∈S′

then set u′i := 1 else set u′i := 0;

10: if H (U) = h and H (U′) 6= h′ then set domS := 1, domT := 0; F [T ≺ S]

11: else if H (U) 6= h and H (U′) = h′ then set domS := 0, domT := 1; F [S ≺ T ]

12: else set domS := 0, domT := 0; F [S and T do not dominate each other]

13: end if

14: Sends [domS ]A and [domT ]A to PartyB;

PartyB:

15: Assigns [domP]A := [domS ]A and
[
domQ

]
A := [domT ]A;

following equations:

• [xi]A := (2mi×̂ [pi]A)+̂ [ki + mi]A;
• [xD+i]A := (−2mD+i×̂ [pi]A)+̂ [kD+i − mD+i]A;
•
[
x ′i
]
A := (2m′i×̂ [pi]A)+̂

[
k ′i
]
A;

•
[
x ′D+i

]
A := (−2m′D+i×̂ [pi]A)+̂

[
k ′D+i

]
A;

• [yi]A := (2mi×̂ [qi]A)+̂ [ki]A;
• [yD+i]A := (−2mD+i×̂ [qi]A)+̂ [kD+i]A;
•
[
y′i
]
A := (2m′i×̂ [qi]A)+̂

[
k ′i + m

′
i

]
A;

•
[
y′D+i

]
A := (−2m′D+i×̂ [qi]A)+̂

[
k ′D+i − m

′
D+i

]
A;

Since the Paillier cryptosystem cannot decrypt negative
values directly, we consider that each kD+i∈K , k

′
D+i

∈K′
,

mD+i∈M , and m
′
D+i

∈M′ must satisfy the conditions (kD+i >
2mD+i × Maxi) and (k ′D+i > 2m′D+i × Maxi) for (i =
1, · · · ,D), during their generation process. Here Maxi indi-
cates the maximum estimated ith dimension attribute value of
the objects. After expansion, the dominance relation between
two encrypted objects [P]A and [Q]A will be turned to two
vector comparison problems: (1) compare vector [X]A and
[Y ]A, and (2) compare vector

[
X ′]

A and
[
Y ′]

A.
PartyB also creates two 2D length binary vectors V and

V ′ to mark the expected comparison result between [X]A and
[Y ]A, and between

[
X ′]

A and
[
Y ′]

A. Particularly, vi = 1
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indicates PartyB’s expectation of xi > yi in position i, and
vi = 0 indicates PartyB’s expectation of xi < yi. On the other
hand, v′i = 1 represents PartyB’s expectation of x ′i < y′i in
position i, whereas v′i = 0 represents PartyB’s expectation of
x ′i > y′i.

Next, PartyB generates two 2D length random binary vec-
tor σ and σ ′ to swap the vector elements randomly and also
to compute W and W ′ according to Step 3 of Algorithm 2.
Considering two 2-dimensional encrypted object [P]A and
[Q]A of Table 9, Table 10 presents the computation results
of Step 1 to Step 3 of Algorithm 2.

TABLE 9. Encrypted object EA(P) and EA(Q).

TABLE 10. Example of Step 1 to Step 3 of Algorithm 2.

After that, to enhance the security through the data pertur-
bation,PartyB generates fourD length vectors of nonzero ran-
dom integer: α

∈Z>0 , β∈Z>0 , α
′
∈Z>0 , and β

′
∈Z>0 , s.t., αi∈α 6=

βi∈β and α′i∈α′ 6= β ′i∈β′ . PartyB also creates two binary
vector: ρ and ρ′, and set ρi∈ρ and ρ

′
i
∈ρ′

according to Step 4 of
Algorithm 2.

Then, PartyB concatenates α, β, ρ, α′, β′, and ρ′ with X ,
Y , W , X ′, Y ′, and W ′, respectively. PartyB also generates
random permutation functionπ andπ ′ to shuffle the elements
of concatenated vectors to obtain [S]A, [T ]A,G,

[
S′
]
A,
[
T ′]

A,
and G′ according to Step 5 of Algorithm 2. After shuffling
the vectors, PartyB uses a hash function to compute the hash
values h and h′ of binary vectors G and G′, and sends [S]A,
[T ]A, h,

[
S′
]
A,
[
T ′]

A, and h
′ to PartyA.

Following Table 10 and assuming α = (148, 165),
β = (172, 140), α′ = (118, 154), and β′ = (103, 136),
Table 11 and Table 12 present the computation results of
Step 4 to Step 6 of Algorithm 2. Here, we consider π =
(4, 6, 2, 5, 3, 1) and π ′ = (3, 5, 1, 6, 2, 4). According to the
equation [S]A ← π

([
X|α

]
A

)
of Step 5 and considering

the first element of π (i.e. 4) implies that after shuffling,
the first vector element of [S]A will be the fourth element of
concatenated vector

[
X|α

]
A.

TABLE 11. Example of Step 4 to Step 6 of Algorithm 2 (Part 1).

TABLE 12. Example of Step 4 to Step 6 of Algorithm 2 (Part 2).

After receiving the encrypted vectors along with the
expected hash values, PartyA decrypts the vectors using the
key skA and obtains the plaintexts of S, T , S′ and T ′.
Although PartyA can compare the elements of the decrypted
vectors, it will be quite impossible forPartyA to reproduce the
original objects due to the anonymization of the vector ele-
ments through arbitrary transformation and data perturbation.

From the decrypted vectors, PartyA constructs the binary
vectors U and U′ according to Step 9 of Algorithm 2. Then,
by comparing H (U) with h, and H (U′) with h′, PartyA com-
putes the dominance relation between two vectors S and T
according to Step 10 to Step 12 of Algorithm 2. Table 13
shows the construction of U and U′ from the decrypted
vectors for our running example.

TABLE 13. Example of Step 9 of Algorithm 2.

After comparing h with H (U), and h′ with H (U′), PartyA
can find h 6= H (U) but h′ = H (U′), which implies that
S ≺ T . Therefore, PartyA sets domS := 0 and domT := 1
according to Step 11 ofAlgorithm 2, which ultimately reflects
the dominance comparison result between two objects P
and Q. By examining the actual attributes of two encrypted
objects P and Q within Table 9, we can also affirm P ≺ Q.
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Algorithm 3Multi-party Skyline (MPS) protocol
Input: Each party has its local skyline objects, key pair, and public encryption keys of other parties;

• PartyA has Sky (DSA), (pkA, skA), and pkB, pkC , · · · ;

• PartyB has Sky (DSB), (pkB, skB), and pkA, pkC , · · · ;

• PartyC has Sky (DSC ), (pkC , skC ), and pkA, pkB, · · · ;

· · ·

Output: Each party identifies its global skyline objects;

1: Each party obtains its number of dominant objects in encrypted form for each local skyline object of other parties through

the DOC protocol;

• PartyA obtains
[
dcountAB

]
B,
[
dcountAC

]
C , · · · ;

• PartyB obtains
[
dcountBA

]
A,
[
dcountBC

]
C , · · · ;

• PartyC obtains
[
dcountCA

]
A,
[
dcountCB

]
B, · · · ;

· · ·

For Sky (DSA) of PartyA:

2: Each party generates random integer r
∈Z>1 . After that

PartyB computes
[
f BA
]
A :=

[
dcountBA

]
A ×̂r;

PartyC computes
[
f CA
]
A :=

[
dcountCA

]
A ×̂r;

· · ·

3: if Number of parties = 2 then F Only PartyA and PartyB are computing multi-party skyline

4: PartyB sends
[
f BA
]
A to PartyA;

5: PartyA decrypts
[
f BA
]
A using skA and identifies Ai∈Sky(DSA) as a global skyline object if f

B
A,i = 0;

6: else FMore than two parties are computing multi-party skyline

7: A party PartyZ
(
PartyZ 6= PartyA

)
collects

[
f BA
]
A from PartyB,

[
f CA
]
A from PartyC , · · · ;

8: PartyZ computes
[∑

f A
]
A :=

[
f BA
]
A +̂

[
f CA
]
A +̂ · · · +̂

[
f ZA
]
A;

9: PartyZ sends
[∑

f A
]
A to PartyA;

10: PartyA decrypts
[∑

f A
]
A using skA and identifies each Ai∈Sky(DSA) as the global skyline object, if

∑
fA,i = 0;

11: end if

In order to prevent PartyB to know the dominance relation
between two objects, PartyA also encrypts domS and domT
using pkA before sending them to PartyB. Finally, PartyB
assigns [domS ]A and [domT ]A to [domP]A and

[
domQ

]
A,

respectively.

C. MULTI-PARTY SKYLINE (MPS) PROTOCOL
The MPS protocol computes the global skyline from the
privacy-preserving multi-party datasets. Each party identifies
its global skyline objects through theMPS protocol described
in Algorithm 3. Here, we explain how a party, e.g., PartyA can
identify its own global skyline objects. In the same way, other
parties can also identify their global skyline objects.

At first, each party computes its number of dominant
objects in encrypted form for other parties’ local skyline
objects through the DOC protocol. After that, according to

Step 2 of Algorithm 3, each party multiplies a random integer
r
∈Z>1 with the encrypted dominant objects counter value
obtained for each local skyline objects of other parties. Thus
any party is unable to know precisely how many objects of
other parties dominate its dominated local skyline objects.
To explain our proposed framework, we denote this encrypted
value as the masked dominant objects counter. Based on the
number of participating parties, we design the rest of theMPS
protocol as follows:

When the number of parties is two: If two parties,
i.e., PartyA and PartyB are involved in the computation, then
PartyB sends the encrypted value of masked dominant objects
counter

[
f BA
]
A to PartyA. After receiving

[
f BA
]
A from PartyB,

PartyA decrypts
[
f BA
]
A using the key skA and identifies each

Ai∈Sky(DSA) as a global skyline object if f BA,i = 0. Consider-
ing column

[
dcountBA

]
A of Table 7, Table 14 represents the
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TABLE 14. Example of the MPS protocol for two parties.

computation results from which PartyA identifies its global
skyline objects.

When the number of parties is more than two:
We consider that one of the participating parties acts as the
coordinator in this scenario. The primary responsibility of this
coordinator is to select a collector who collects the encrypted
value of the masked dominant objects counters for one party’s
local skyline objects from other parties. The coordinator must
not select the owner of the local skyline objects as the col-
lector of the encrypted masked dominant objects counters of
those local skyline objects.

Suppose, the coordinator selects PartyZ (one of the par-
ties other than PartyA) as the collector of the encrypted
value of the masked dominant objects counters for the local
skyline objects ofPartyA. Therefore, the other parties send the
encrypted value of the masked dominant objects counters for
the local skyline objects of PartyA to PartyZ . Then, PartyZ
computes the encrypted sum of masked dominant objects
counters (i.e.,

[∑
f A
]
A) according to Step 8 of Algorithm 3,

and sends it to PartyA. After receiving, PartyA decrypts[∑
f A
]
A, and identifies eachAi∈Sky(DSA) as the global skyline

object if
∑
fA,i = 0.

Let us consider, four parties (PartyA, PartyB, PartyC , and
PartyD) want to identify their global skyline objects. Let
PartyA has three local skyline objects:A1,A2, andA3. Among
these three objects, one object of PartyB and two objects of
PartyC dominate A1; one object of PartyD dominates A2;
none of the object of other parties dominates A3. Further
assume, the coordinator selects PartyD as the collector of the
encrypted values of the masked dominant objects counters for
the local skyline objects of PartyA. Based on these, Fig. 5
shows a data-flow diagram of the MPS protocol. Besides,
Table 15 describes the computation results for the local sky-
line objects of PartyA.

VI. PRIVACY AND SECURITY ANALYSES
In this section, we analyze the privacy and security aspects of
the proposed framework. According to the composition the-
orem [29], a framework is considered as secure as long as its
elemental protocols are secure, alongside all the intermediate
results are random or pseudo-random. Now, we analyze the
underlying protocols of our proposed framework.

A. PRIVACY OF THE DOC PROTOCOL
According to Algorithm 1, PartyB randomly shuffles the list
of object pairs before comparing the dominance relation.

FIGURE 5. Data-flow diagram of the MPS protocol for more than two
parties.

Thus, PartyA cannot knowwhich of its local skyline objects is
being compared through the SDC protocol. Moreover, PartyB
randomizes the parameters’ sequence of the SDC protocol
during dominance comparison. Therefore, by decrypting the
anonymized data within the SDC protocol, PartyA cannot
know whither PartyA’s object dominates PartyB’s object or
vice versa.

On the other hand, PartyA encrypts the dominance com-
parison result of the SDC protocol before sending it to
PartyB. Consequently, PartyB cannot know the dominance
relation between two specific objects. Besides, PartyB adds a
nonzero random integer r with each

[
dcountAB

]
A. As a result,

by decrypting
[
eAB
]
A, PartyA cannot know anything about the

local skyline objects of PartyB.

B. PRIVACY OF THE SDC PROTOCOL
As stated in Algorithm 2, PartyB generates four arrays of
random integers M , K , M ′, and K ′ to construct vectors X ,
X ′, Y , and Y ′. After that, PartyB swaps the vector elements
based on the random binary vectors σ and σ ′. Besides,
PartyB also concatenates random integer vectors with the
constructed vectors, and then shuffles it using random per-
mutation function π and π ′.

Since PartyA does not know which specific object of
PartyA is being compared via the SDC protocol; without
knowing M , R, M ′, R′, σ , σ ′, π , and π ′, PartyA cannot
retrieve the object of PartyB only from the decrypted vectors.
On the other hand, PartyA encrypts the dominance compari-
son result before sending it to PartyB. Thereby, PartyB cannot
know the dominance relation between two specific objects.
Thus, the SDC protocol can ensure required data privacy
for both parties while they compare the dominance relation
between their objects.

C. PRIVACY OF THE MPS PROTOCOL
According to Algorithm 3, every party masks each of the
encrypted dominant objects counters of other parties’ objects
by multiplying a random integer. Thus, all parties are unable
to know precisely how many objects dominate each of their
dominated objects.

Furthermore, when more than two parties compute the
multi-party skyline, any party does not send the encrypted

167492 VOLUME 7, 2019



M. Qaosar et al.: Framework for Privacy-Preserving Multi-party Skyline Query

TABLE 15. Example of the MPS protocol considering four parties.

TABLE 16. Notations used for complexity analyses.

value of the masked dominant objects counters to the cor-
responding local skyline objects’ owner individually. There-
fore, any party cannot identify which and how many parties’
object(s) dominates its specific local skyline object.

D. SECURITY OF THE PROPOSED FRAMEWORK
The proposed framework also maintains the security of the
datasets of all participating parties. Within Fig. 3, Fig. 4, and
Fig. 5, we can observe that all the exchanged data are being
encrypted before transmission between the parties. There-
fore, even if an adversary or an intruder eavesdrops on the
communicationmedia to obtain the transmitted data, it cannot
get anything from the encrypted content.

VII. PERFORMANCE EVALUATION
Here, we analyze the complexity and evaluate the perfor-
mance of the proposed framework. Also, we present a com-
parison of the proposed framework.

A. COMPLEXITY ANALYSES
To present the complexity analyses, we summarize the
required notations in Table 16. Now the analyses of computa-
tion and communication complexity of DOC, SDC, and MPS
protocols are presented in Table 17, Table 18, and Table 19,
respectively.

B. EXPERIMENT
To evaluate the performance through simulation, we use
two identical computers connected through Cisco Catalyst

TABLE 17. Complexity of the DOC protocol (based on Algorithm 1).

TABLE 18. Complexity of the SDC protocol (based on Algorithm 2).

TABLE 19. Complexity of the MPS protocol (based on Algorithm 3).

2960-X Series Gigabit Switch, where one is considered as
PartyA and another as PartyB. Each computer is configured
with an Intel R© Core i5-6500 3.20GHz CPU, 8GB memory,
and 64-bit Ubuntu 16.04 operating system. We develop our
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program using Java RemoteMethod Invocation (RMI) frame-
work and use 80-bit Paillier encryption key. We generate
synthetic datasets for our experiment where each attribute
value of the synthetic datasets is randomly picked from 32-bit
unsigned integer.

Initially, we extract two sets of local skyline objects from
the generated datasets to represent the local skyline objects
of two parties. After that, we examine the effect of domi-
nance comparison through the SDC protocol within the DOC
protocol. Since the number of dominance comparison within
the DOC protocol depends on the number of two parties’
local skyline objects, we vary the number of both parties’
local skyline objects during our experiment. We also vary
the object dimension from 2 to 5. Based on these, Fig. 6
shows the runtime of the DOC protocol. From the figure, it is
seen that the runtime is linearly proportional to the number
of dominance comparison through the SDC protocol as well
as the number of object dimension, which is apparent since
the complexity of the SDC protocol depends on the number
of object dimension. Although every party can compute with
all other parties through the DOC protocol within the MPS
protocol, it does not require to maintain any specific synchro-
nization. Hence, we do not evaluate the runtime of the MPS
protocol.

FIGURE 6. Runtime of the DOC protocol.

C. COMPARISONS
The proposed framework utilizes data anonymization and
randomization schemes for secure dominance comparison.
However, it does not lose the universality of the objects
dominance relation. Thus, the utility of data and the skyline
query results are not limited by the proposed framework.
Also, many multi-party computation systems include one or
more trusted third parties. It is a severe risk to the system if the
third party(s) has been compromised. Whereas, the proposed
framework does not utilize such a trusted third party. Further-
more, every party firstly computes the local skyline objects
set from its database in plaintext space. Therefore, it signifi-
cantly reduces the complexity of multi-party computation.

So far as we know, only one framework [7] computes
privacy-preserving multi-party skyline without incorporat-
ing any semi-honest trusted third party. For this reason,

FIGURE 7. Runtime comparison of the proposed SDC protocol with the
ESVC protocol [7]. Object dimension: 2, Attribute value length: 32-bit.

we compare with this one. The ESVC protocol proposed
in [7] depends on the length of the attribute value in
the number of binary bits since it adapts the 0-encoding
and 1-encoding scheme for comparing two integer vec-
tor elements. In contrast, we substituted the secure integer
comparison with data anonymization schemes within our
SDC protocol. Thereby, the complexity of our SDC pro-
tocol does not depend on the attribute value length. Also,
the ESVC protocol requires five rounds of data exchanges,
whereas our SDC protocol requires only two rounds of data
exchanges during secure dominance comparison. Thus, our
SDC protocol is more efficient than that of the ESVC proto-
col. To compare the performance, we simulate both protocols
for the dominance comparison of the two-dimensional dataset
objects. Fig. 7 shows the runtime comparison of the proposed
SDC protocol with the ESVC protocol. From the figure,
we can see that the runtime of the ESVC protocol is much
higher than the SDC protocol.

Moreover, the ESVC protocol discloses the dominance
relation between two specific objects to both parties.
Whereas, our SDC protocol does not reveal the dominance
relation to anyone. Thus, our proposed framework enriches
data privacy.

VIII. CONCLUSION
In this paper, we propose a novel framework for the skyline
query considering the data privacy issues of multi-party data
analyses. The detailed explanation of the proposed frame-
work, along with the proper examples of the underlying
protocols, confirms that all participating organizations can
recognize their multi-party skyline objects without disclos-
ing their dataset objects to others. The privacy and security
analyses demonstrate that the framework satisfies the desired
privacy requirements. Also, through extensive performance
evaluation, we show the efficiency of the proposed framework
for real-world deployment. Due to the avoidance of ‘secure
integer comparison’, and the exploitation of encryption of
‘the dominance comparison result’ within our SDC protocol,
our proposed framework becomes significantly efficient and
secure. A future plan of improvement is to extend the work
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for computing other variants of skyline query, e.g., k-skyband
query (returns the set of objects that are dominated by at most
k other objects), top k-dominating queries (returns the set of
top-k objects that dominate themaximum number of objects),
in a privacy-preserving way.
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