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ABSTRACT Eye and systemic diseases are known to manifest themselves in retinal vasculature. Segmenta-
tion of retinal vessel is one of the important steps in retinal image analysis. A simple unsupervised method
based on Gabor wavelet and Multiscale Line Detector is proposed for retinal vessel segmentation. Vessels
are enhanced by linear superposition of first scale Gabor wavelet image and complemented Green channel.
Multiscale Line Detector is used to segment the blood vessels. Finally, a simple post processing scheme
based on median filtering is deployed to remove false positives. The proposed scheme was evaluated with
publicly available datasets called DRIVE, STARE and HRF, obtaining an accuracy of 0.9470, 0.9472, and
0.9559, and a sensitivity of 0.7421, 0.8004, and 0.7207, respectively. These results are comparable to the
state-of-the-art methods, albeit with a simpler approach.

INDEX TERMS Blood vessel segmentation, color retinal images, Gabor wavelet, line detector, image
processing, unsupervised method, image preprocessing.

I. INTRODUCTION
One of the important tasks in diagnosing different medi-
cal conditions such as diabetic retinopathy, cardiovascular
diseases, and stroke is the segmentation of blood vessels
in color medical images. To this end, different strategies
have been devised. The strategies can be roughly grouped
into i) multiscale, ii) matched filtering, iii) mathematical
morphology, iv) hierarchical, v) model and vi) deep learning
approach [1]. Furthermore, they can also be categorized
into supervised and unsupervised algorithm. The prominent
strategies based on multiscale are [2], [3]. Soares et al. [2]
used Gabor wavelet transform with four scales (2,3,4,5)
to account for different width sizes of blood vessel, and
supervised classification. Nyugen et al. [4] proposed blood
vessel segmentation using a multi-scale line detection based
technique. The approach is an extension of the scheme based
on single scale line detector and support vector machine [5].
Examples of filter based approach are [6]–[8] and
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mathematical morphology based are [9]–[11]. Retinal vessel
segmentations based on hierarchical detections are [12], [13],
model based approaches [14]–[16], and deep learning based
schemes [13], [17]–[21].

One major challenge in retinal image analysis especially
for accurate vessel detection is low and varying contrast.
A method based on Gabor wavelet and multi-scale line detec-
tor is being proposed here. The Gabor wavelet transform
presents high frequency precision in low frequencies and
high spatial precision in high frequencies. In other words,
the transform is suitable for detecting edges and other singu-
larities in the image [22], [23]. By tuning its elongation and
frequency parameters, Gabor wavelet transform can be used
to detect elongated objects such as blood vessels (details can
be found in [24]). However, detecting the edges in such way
might result into central reflex type problem in the case of
medium and fat vessels. Fig. 1 (a) and Fig. 1(b) describes
the example of central reflex in colored and green chan-
nel, respectively. As the line-detection based approaches are
shown to be effective in dealingwith vessel central line reflex.
Hence, using Gabor wavelet transform for edge enhancement
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FIGURE 1. Central reflex in colored and green channel.

followed by application of line detector on enhanced image
might overcome the central reflex problem and subsequently
improve the vessel detection. Therefore, an unsupervised
blood vessel segmentation method is proposed, which is
based on image enhancement built on Gabor wavelet and line
detector.

After image enhancement, the proposed approach uses
multiple scale line detector and post-processing to overcome
the central reflect problem and to remove false posi-
tives respectively. The proposed method obtains sensitiv-
ity of 0.7421, 0.8004 and 0.7207, and accuracy of 0.9470,
0.9472 and 0.9559 respectively on DRIVE, STARE and HRF
datasets, which is comparable to the state-of-the-art methods.
While on the DRIVE dataset, it takes less than 20 seconds on
average per image, based on unoptimized Matlab scripts.

This paper is organized into five sections as follows:
Section I, describes the introduction and literature review.
Section II presents Gabor wavelet and Line Detector.
Section III presents the materials and methods, while
Section IV reports the results and discussion of the proposed
methodology. Section V gives the conclusion of this work.

II. GABOR WAVELET AND LINE DETECTOR
The 2-D Gabor wavelet is defined as [2]:

ψG(x) = e(jk0x)e(−
1
2 |Ax|

2) (1)

where A is 2 by 2 diagonal matrix and A = [ε−1/2, 1],
ε ≥ 1, its elongation in any desired direction. The parameter
k0 defines the frequency of the complex exponential. The
filter is made elongated [24] by setting ε = 4 and k0 is
set to [0, 3], a low-frequency complex exponential with few
significant oscillations perpendicular to the large axis of the
wavelet. These two characteristics are especially suited for
the detection of directional features and have been chosen in
order to enable the transform to present stronger responses
to pixels associated with the blood vessels. The other two
key parameters of Gabor wavelet, after frequency and elonga-
tion, are scale and orientation. Scale selects the width of the
elongated object while orientation is used for orientation of
the objects. Vessels in the retinal image have different widths
and can be in difference orientations. To accommodate all the

sizes of vessel, [2] used four scales i.e. 2, 3, 4 and 5. They used
18 different orientations and the highest response from all the
orientations was kept [2].

Line Operator proposed by [5] was modified by [4] to
include multiple scales by changing length of basic Line
Detector/Operator and called it Multiscale Line Detector.
The vessel central light reflex can be effectively dealt by
the line detector. It is based on the logic that in inverted
green channel, for vessel pixel, response will be high whereas
for background it will be low (Eq. 2). In inverted green
channel, when there is central light reflex, the pixels in the
centre of vessel have comparatively lower intensities. Hence,
they often give rise to misclassification. But in the case of
line detector, they are recognized as vessel because winning
line includes only a small number of ‘central reflex’ pix-
els. In inverted green channel, a window of size W × W
pixels centered at each pixel position is used and average
intensity (IWmean) is calculated. Lines with width of W and
at angular resolution of 15◦ (12 lines in different directions)
are passed through the centred pixels and the mean values
of each line are calculated. The line with maximum value
(IWmax) is the winning line. Response at a pixel is computed
as [4]:

RW = IWmax − IWmean (2)

Line detectors at multiple scales are achieved by

RW = ILmax − IWmean (3)

where 1≤ L≤ W . By changing the values of L, line detectors
at different scales are obtained. In [4], angular resolution
of 15◦ (12 different orientations), W equals to 15 pixels and
line responses at 8 scales (from 1 to 15 with increment size
of 2) are linearly combined.

III. MATERIAL AND METHODS
The proposed algorithm is assessed with publicly available
color retinal images datasets called DRIVE [25], STARE [6]
and HRF [26]. The DRIVE dataset consists of 40 images
which is equally divided into training (20 images) and testing
(20 images). The images are taken with three CCD cameras
using 45-degree field of view (FOV). Each image is 768 by
584 pixels using 24 bits RGB color (8 bits per color plane).
All images have FOV of around 540 pixels diameter, and
each of them is accompanied by its mask image to delineate
the FOV. The DRIVE dataset also provides the manually
segmented images as the ground truth. Training images have
single manual segmentation while for the test images there
are two manual segmentations. Most of the researchers (as
summarized in Table 1) use first manual segmentation to
evaluate the performance of their algorithms. In this paper
we use the first manual segmentations same as the other
researchers do. STARE dataset on the other hand consists
of 20 images with resolution of 700 × 605. The images are
captured at 35o FOV and fifty percent of the images contain
pathologies. Two different manual segmentations are pro-
vided for each image. However, the STARE dataset does not
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TABLE 1. Results comparison.

provide separate training and test set unlike DRIVE dataset.
In our evaluations we have used the first manual segmentation
as the ground truth.

The third dataset, High-Resolution Fundus (HRF) Image
Database, is also adopted to evaluate the performance of
the proposed algorithm. This dataset consists of 45 images
and are grouped into three subcategories of each contains
15 images of healthy, diabetic retinopathy and glaucoma. The
images have a resolution of 3504 × 2336 and FOV of 60◦.
The dataset is also provided with single manual segmentation
and mask for each image. The parameter values were esti-
mated using the training images provided by DRIVE dataset.
In case of STARE dataset, there is no standardized procedure
available in the literature for dividing the images into train
and test dataset [32], so we used five images for param-
eter estimation. For HRF dataset similar to [32], the first
five images from each group were utilized for parameter
estimation.

Fig. 2 describes the flow diagram of the proposed vessel
segmentation technique. The proposed methodology consists
of: a). image preprocessing based on Gabor wavelet, b).

candidate blood vessel extraction based on Multiscale Line
Detector, and c). Post processing.

a. Image Preprocessing: Blood vessels appear as dark
objects in green channel. They have the highest contrast in
green channel. However, color retinal images suffer from low
and varying contrast, which makes it difficult to extract blood
vessel based on intensity alone. To overcome this problem,
we propose the linear superposition of Gabor wavelet-based
scheme at single scale (first scale only) and complemented
green channel.We set the elongation and frequency parameter
values respectively to ε = 4 and k0 = [0, 3], so as to detect
the elongated objects and filter out the other objects and noise.
Gabor wavelet using first scale only enhanced the fine vessels
and the edges of the wide vessels. From 0◦ to 170◦ in the steps
of 10, Gabor wavelet was taken, and the maximum response
was kept among 18 different orientations. The image contain-
ing the maximum responses out of 18 different orientations
was added with the complemented green channel to obtain
the preprocessed image. This resulted in better contrast for
elongated objects such as vessels. Fig. 2, top row second
image is the green channel and the one on the right is resulting
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FIGURE 2. Flow diagram of the proposed system.

image after Gabor wavelet taken in the described way. The
image on the right in bottom row of Fig. 1 shows the described
preprocessed mage.

b. Candidate blood vessel extraction based on Multiscale
Line Detector: During the preprocessing, we took Gabor
wavelet response at first scale only, thus the wide vessel might
suffer from the central reflex type situation. To overcome this
issue, we proposed to use Multiscale Line Detector, an effec-
tive technique in central light reflex situation. We used
W = 13, 17 and 45 pixels and line responses at 7, 9 and
23 scales were linearly combined respectively for DRIVE,
STARE and HRF dataset. The angular resolution was 15◦

(12 lines in different directions). After the application of
Multiscale Line Detector, images were thresholded to obtain
the binarized images. After threshold, filling was applied to
fill the one-pixel gap. The resulting image is shown in Fig. 2,
in the middle of the bottom row.

c. Post-processing: After application of Multiscale Line
Detector, there were false positives around the Region of
Interest (ROI) boundary, in the optic disc (OD) region and
at the edges of the medium and fine vessels. To remove
these false positives, we proposed a postprocessing scheme
in which background was calculated using a median filter
of the size of 15 × 15, 17 × 17 and 45 × 45, respectively

for DRIVE, STARE and HRF datasets and removed from
the green channel. The background removed image was fur-
ther median filtered using a 3x3 array to obtain a smoothed
background removed image denoted by GrnSBKRMImg.
In the GrnSBKRMImg, pixels were bright both for the OD
region and ROI boundary while blood vessels and other dark
objects such as hemorrhages appear dark, as could be clearly
observed in Fig. 3. Even most of the blood vessels inside OD
became dark, as shown in Fig. 3. Therefore, to remove such
false positives, we presumed that vessels having width equal
to greater than 2 pixels had lower intensity values than those
falsely detected objects such as from ROI and OD region.
Thus, using intensity values inGrnSBKRMImg all the vessels
having width 2 pixels or more were checked and classified
into non-vessels if their intensity values were higher than
the specified threshold. Finally, all those objects which were
100 pixels or less in case of DRIVE dataset and 500 pixels
for STARE dataset and 2500 pixels for HRF dataset, and
having intensity greater than specified threshold than the
mean intensity in GrnSBKRMImg are also removed. In this
way, we were able to get rid from most of the false positives
contributed by ROI and OD region. Shown in Fig. 2, the first
image from left side in bottom row is the final image obtained
after postprocessing.
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FIGURE 3. Pre-processing to obtain GrnSBKRMImg.

To evaluate the performance of the proposed system,
the following parameters are used:
i. True Positive Rate (TPR) or Sensitivity.
ii. False Positive Rate (FPR).
iii. Accuracy (ACC).
iv. Receiver Operating Characteristics Curve (ROC), for

DRIVE dataset only.
v. Matthews Correlation Coefficient (MCC).

These parameters are mathematically defined using
Eq. 4-7 except ROC which is a curve, obtained by plotting
sensitivity along y-axis and FPR on x-axis. These parameters
were calculated for each pixel inside the ROI region using the
first manual segmentation as a gold standard, which was used
by the authors in comparison Table 1. Definitions:

TP is true positive, if a pixel detected by our proposed sys-
tem as blood vessel and be consistent with its identification
by the ground truth.

FP is false positive, if the proposed system determines non-
vessel pixels as vessel pixels.

TN is true negative, if the proposed system detects a pixel
as non-blood and ground truth also indicates it as a non-vessel
pixel.

FN is false negative, if a pixel recognised by the proposed
system is a non-blood pixel whereas ground truth identifies it
as a vessel pixel.

MCC was introduced by [21] which measures the quality
of binary classification. It is also good for the case where
the two classes are imbalance as is the case of retinal vessel
segmentation. Its value will be +1 when the system does
not make any mistake i.e. ideal system no false positive and
no false negative. Similarly, its value will be −1, if all the
values are false positives and false negatives and no true
positive and true negative. As a result, the MCC value closer

FIGURE 4. ROC curve on DRIVE dataset.

to +1 indicates a better classification system.

TPR = TP/(TP+ FN) (4)

FPR = 1− TN/(FP+ TN) (5)

ACC = (TP+ TN)/(TP+ TN+ FP+ FN) (6)

MCC = (TP× TN− FP× FN)/
√
((TP+ FP)(TP+ FN)(TN+FP)(TN+FN)) (7)

IV. RESULTS AND DISCUSSION
The results of the proposed system using DRIVE, STARE
and HRF datasets are described in Table 1. Fig. 4 shows
the ROC of the proposed blood vessel segmentation scheme
using DRIVE dataset. We achieved an accuracy of 0.9470,
sensitivity of 0.7421, false positive rate of 0.0227, and MCC
of 0.7525 on DRIVE dataset. As described in the previous
section that the MCC value indicates quality of binary clas-
sifier such as blood vessel segmentation system and for the
ideal system it will be +1. The proposed system achieved
MCC value of 0.7525 which is better than all the unsuper-
vised methods presented in Table 1 and very near to the 2nd
Observer (0.7601). The scheme was very effective for wide
vessel detection and we have negligible false positives around
the wide blood vessels. Although the proposed scheme is
good at detectingmediumwide and fine vessels, it still suffers
from over segmentation in the case of fine and medium wide
vessels.

The proposed system could detect blood vessels in OD
region and produced very few false positives in optic region
and ROI region. Fig. 5 shows the two extreme cases of results
of the proposed system. The upper row in Fig. 5 shows
a case where it achieved the best accuracy while bottom
row presents the case where it achieved the worst accuracy.
In Fig. 5, the first column is colored image, second column
is the ground truth, third column is segmented blood vessels
while in fourth column the same segmented image as in
column three where black pixels are true negative (TN), white
are the true positives (TP), red pixels are false positives (FP)
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FIGURE 5. Results of proposed system on DRIVE dataset describing best (top row) and worst (bottom row) case accuracies respectively. Colored in
red are the FP pixels while green are the FN pixels.

FIGURE 6. (a) and (b) shows in color and green channel the central reflex while (c) is obtained after image preprocessing and image (d) is the blood
vessel segmented image.

and green are the missed vessel pixels ( FN). It can be noticed
that in both of the images shown in Fig. 5, the proposed
system was able to detect most of the blood vessels inside
OD region. The false positives were mostly from over seg-
mentation of medium and fine vessels and those from lesions
both bright and dark. Fig. 6 shows the central reflex problem,
(a) and (b) shows a patch containing central reflex in color
and green channel respectively. While shown in Fig. 6 (c) is
the same patch but after image preprocessing, it is quite clear
that now the fat vessels have additional central reflex type
problems due to using the Gabor wavelet at single scale. This
additional central reflex as well as the one already presents
in the patch are well dealt by the Multiscale line detector
as shown in Fig. 6 (d), which describes the blood vessel

extracted from the patch. It is quite clear that the central
reflex issue was solved by the Multiscale Line Detector. The
performance comparison of the proposed method in terms of
execution time for DRIVE dataset is presented in Table 2. The
proposed method processes an image in less than 20 seconds
on average on unoptimized matlab code using core i5 with
6 GB RAM.

The proposed system achieved high sensitivity on
STARE dataset with comparable accuracy as described
in Table 1. The accuracy and MCC values were, respec-
tively, 0.9472 and 0.7294 which were higher than the human
observer. Fig. 7 shows the best case and the worst-case accu-
racies achieved by the proposed system on STARE dataset.
Similarly, onHRF dataset, the proposed system achieved very
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FIGURE 7. Results of proposed system on STARE dataset describing best (top row) and worst (bottom row) case accuracies respectively.
Colored in red are the FP pixels while green are the FN pixels.

FIGURE 8. Results of proposed system on HRF dataset describing best (top row) and worst (bottom row) case accuracies respectively. Colored
in red are the FP pixels while green are the FN pixels.

TABLE 2. Performance of segmentation in terms of execution time for
DRIVE dataset.

high accuracy and specificity reflecting the strength of the
technique. It achieved overall mean accuracy of 0.9559 and
overall mean MCC value of 0.7244. Fig. 8 shows the best
case and the worst-case accuracies achieved by the proposed

TABLE 3. HRF dataset.

system on HRF dataset. It is clear from the Fig.7 and 8 that
the proposed technique was not effective in dealing with
pathological images which are detected as false positives.
The mean values on individual groups i.e. DR, Glaucoma and
Healthy images are presented in Table 3. It can be seen that
the proposed technique achieved the highest mean accuracy
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and mean sensitivity on Glaucoma group while it achieved
the highest mean specificity of 0.9898 on healthy images of
HRF dataset. In general, the proposed system demonstrated
that it could detect the thick vessels with high accuracy and
negligible false positives in all the three datasets, while in case
of fine vessels the proposed system had a lower sensitivity
and many fine vessels were missed.

V. CONCLUSION
In this paper, a novel unsupervised method for blood vessel
segmentation was proposed. Single scale Gabor wavelet and
Multiscale Line Detector were utilized to extract the blood
vessel. A post processing scheme was devised based on
intensity feature to differentiate between wide blood vessels
and false positives due to the OD boundary and ROI bound-
ary. The effectiveness of the proposed technique was tested
on the datasets of DRIVE, STARE and HRF. The results
showed that the proposed technique was equally effective
on comparatively low-resolution dataset such as DRIVE,
on a challenging dataset STARE and on a high resolution
dataset (HRF). The proposed scheme is better in terms of
both accuracy and sensitivity than the supervised method of
Soares et al. [2] on DRIVE dataset. It can be noticed from
the Table 2 that the proposed method took less time than [2].
Overall, it achieved 0.9470 at a similar accuracy level as the
state-of-the-art methods while on average it took less than
20 seconds per image using unoptimized Matlab scripts.
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