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ABSTRACT This paper studies the adaptive asymptotic tracking problem for a class of unknown nonlinear
systems in pure-feedback form. Different from the traditional literatures which only tackle the bounded
tracking problem for pure-feedback systems, this paper investigates the asymptotic tracking problem
by developing a novel controller design method. Moreover, the differentiable assumption on nonaffine
functions is canceled, and only a mild semi-bounded assumption is required as the controllability condition.
By utilizing Lyapunov theorem, it is proved that all the variables of the resulting closed-loop system are semi-
globally uniformly ultimately bounded, and the output tracking error can converge to zero asymptotically by
choosing design parameters appropriately. Finally, a simulation result is presented to verify the effectiveness
of the proposed control scheme.

INDEX TERMS Asymptotic stability, neural networks, nonlinear control systems, pure-feedback systems.

I. INTRODUCTION
In the last several decades, adaptive control techniques have
been found to be powerful for controlling the triangle-
structural nonlinear systems in terms of either pure-feedback
or strict-feedback [1]–[17]. Specifically, pure-feedback sys-
tems do not have the explicit control input, which makes
the control design very difficult and draws much interest
in the control community for a long time [8]–[17]. In [10],
to solve the prescribed performance tracking control problem,
a low-complexity control scheme is designed for a class
of unknown pure-feedback systems. In [11], a predefined-
tracking-constrained-based adaptive control scheme is devel-
oped for a class of switched stochastic nonlinear systems in
the pure-feedback form with dead zone output. By employ
the mean value theorem to convert the nonaffine function
into an affine form, all these studies referred above have
presented a unified and general framework for pure-feedback
nonlinear control system design. However, there are still a
number of issues should have been further studied, such
as, the mean value theorem requires the nonaffine function
must be differentiable with respect to the control variables
or input. In the hope to overcome these problems, in [12],
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a pioneering modeling method is presented under the mild
assumptions. Instead of utilizing mean value theorem and
implicit function theorem, this control method does not
require that the nonaffine functions must be differentiable.
Subsequently, the controllability conditions are relaxed to
semi-bounded and discontinuity in [13] and [14], respec-
tively. In [15], the further research is devoted to a class of
more general MIMO pure-feedback nonlinear systems with
periodic disturbances.

As for pure-feedback nonlinear systems, it is commonly
seen that the system nonlinearities are unknown because of
the characteristics of pure-feedback form systems. Moreover,
there is usually only a mild assumption on the control
directions to be used. The unknown nonlinearities of pure-
feedback nonlinear systems suggest that NN or FLS-based
control methods are always preferable for them. However,
the major drawback of such approximator-based control
methods is that, the output tracking error cannot converge
to zero asymptotically owing to the presence of approx-
imation error. It is well known that asymptotic tracking
has progressed a lot both in theory and practice [18]–[24].
To eliminate the effect of approximation error, a novel neural
networks-based adaptive controller is designed for a class of
uncertain strict-feedback nonlinear systems [24]. However,
the above-mentioned controller design method is limited
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to strict-feedback systems rather than more complex pure-
feedback systems. It is worth noting that, for pure-feedback
systems, it is very hard to achieve the asymptotic tracking
because more sophisticated insight for system structure is
needed.

Motivated with the above issues, this study falls in a
domain with the asymptotic tracking problem of controlling
a class of triangle structure pure-feedback nonlinear systems.
The main contributions of this paper are summarized as
follows.

1) To the best of the authors’ knowledge, it is the first
time that the asymptotic tracking problem of pure-feedback
systems is achieved;

2) Compared with the existing literature, the assumption
on nonaffine functions are much more relaxed, and only the
semi-bounded and continuity conditions are required, which
makes the control design difficult. To overcome the difficulty,
a novel adaptive tracking controller is therefore proposed for
pure-feedback systems under this condition;

3) With the help of the Lyapunov stability theorem and
Barbalat lemma, all the variables of the resulting closed-
loop system are proven to be semi-globally bounded, and
the tracking error can asymptotically converge to zero by
appropriately choosing the design parameters.

The rest of this paper is organized as follows.
Section II gives the problem formulation and preliminar-
ies. In Section III, a modified adaptive neural controller is
developed for a class of uncertain pure-feedback nonlinear
by using backstepping scheme. The stability analysis of the
closed-loop system is given in Section IV. In Section V,
simulation study is presented to show the effectiveness of
the proposed scheme. Finally, the conclusion is included in
Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider a class of uncertain strict-feedback nonlinear
systems of the following form

ẋi = fi(x̄i, xi+1)+1i(t), i = 1, 2, . . . , n− 1
ẋn = fn(x̄n, u)+1n(t)
y = x1

(1)

where x̄i = [x1, x2, . . . , xi]T ∈ Ri denotes the state vector of
the system; u ∈ R is system control input; y ∈ R is system
output; fi(·) are unknown continuous functions; 1i(t) are the
unknown external disturbances or uncertainties of the system,
i = 1, . . . , n.
The control objective is to design adaptive tracking control

such that the system output y asymptotically converges to a
desired trajectory yd and all signals in the closed-loop system
are bounded by appropriately choosing design parameters.

To guarantee the controllability, we will invoke the follow-
ing assumptions, which are standard in backstepping design
method.

The main difficulty of this control design problem is
that the variables and system input do not appear linearly,

which makes the direct feedback linearization difficult
or impossible. Define the functions

Fi(x̄i, xi+1) = fi(x̄i, xi+1)− fi(x̄i, 0), i = 1, 2, . . . , n

And denote xn+1 = u, x̄n+1 = [x1, x2, . . . , xn, u]T for
notation conciseness. Before proceeding to the adaptive fuzzy
control design of system (1), let us consider the following
assumptions.
Assumption 1: For all x and u, there exist constants li, l ′i , ϑi

and ϑ ′i such that{
Fi(x̄i, xi+1) ≥ lixi+1 + ϑi, xi+1 ≥ 0
Fi(x̄i, xi+1) ≤ l ′ixi+1 + ϑ ′i, xi+1 < 0

(2)

where li and l ′i are positive constants, i = 1, 2, . . . , n.
Assumption 2: The desired trajectory yd is sufficiently

smooth function of t , and yd , ẏd are bounded, that is,
there exists a positive constant B0 such that 50 :={
(yd , ẏd , ÿd ) : (yd )2 + (ẏd )2 ≤ B0

}
.

Assumption 3: For 1 ≤ i ≤ n, there exist an unknown
positive constant d∗i such that |1i(t)| ≤ d∗i .
Lemma 1 [21]: for any q ∈ R and ∀υ > 0, the following

inequality holds

0 ≤ |q| −
q2√

q2 + υ2
≤ υ (3)

A. RBFNN BASICS
The radial basis function neural network (RBFNN) is
considered to be used for the controller design in this paper,
which is utilized to approximate the continuous function
h(Z ): Rn→ R:

hnn(Z ) = W Tψ(Z ) (4)

where the input vector Z ∈ �Z ⊂ Rn, the weights vector
W = [W1,W2, . . . ,Wl] ∈ Rl , the neural network (NN) node
number l > 1, and ψ(Z ) = [ψ1(Z ), . . . , ψl(Z )]T with ψi(Z )
being chosen commonly as a Gaussian function as

ψi(Z ) = exp
[
−(Z − µi)T (Z − µi)

η2

]
, i = 1, 2, ...., l (5)

whereµi = [µi1, µi2, . . . , µin]T is the center of the receptive
field and η is the width of the Gaussian function.
It has been proven that the neural network (4) can approx-

imate any continuous function over a compact set �Z ⊂ Rn

to any desired accuracy in the form of

h(Z ) = W ∗Tψ(Z ) + ε(Z ), ∀Z ∈ �Z ⊂ Rn (6)

where W ∗ is the ideal constant weight vector, and ε(Z ) is
the approximation error which is bounded over the compact
set, that is, ‖ε(Z )‖ ≤ ε∗ for ∀Z ∈ �Z , where ε∗ > 0 is
an unknown constant. ε(Z ) is denoted as ε to simplify the
notation in this paper.

The optimal weight vector W ∗ is an "artificial" quantity
required only for analytical purposes. Typically,W ∗ is chosen
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as the value of W that minimizes ε over �Z , that is

W ∗ := arg min
W∈Rl

{
sup
Z∈�Z
|h(Z )−W Tψ(Z )|

}
(7)

Let || · || denote the 2-norm throughout this paper.
Remark 1: Define the continuous functions gi,1(x̄i),

gi,2(x̄i, xi+1), gi,3(x̄i, xi+1) as follows

|Fi(x̄i, xi+1)| ≤ gi,1(x̄i), −a0 < xi+1 < a0 (8)

gi,2(x̄i, xi+1) =
1
xi+1

(Fi(x̄i, xi+1)− ϑi) , xi+1 ≥ a0 (9)

gi,3(x̄i, xi+1) =
1
xi+1

(
Fi(x̄i, xi+1)− ϑ ′

)
i, xi+1 ≤ −a0(10)

where a0 is any positive constant. From the above defi-
nitions, it can seen that they are well-defined continuous
functions since xi+1 is strictly positive or negative and away
from 0 when gi,2(x̄i, xi+1) and gi,3(x̄i, xi+1) are concerned.
It follows from (2), (9) and (10) that gi,2(x̄i, xi+1) ≥ li,
gi,3(x̄i, xi+1) ≥ l ′i and

Fi(x̄i, xi+1)

=


gi,2(x̄i, xi+1)xi+1 + ϑi, xi+1 ≥ a0
lixi+1 + µi,1(t)gi,1(x̄i)+ µi,2(t)a0, 0 < xi+1 < −a0
l ′ixi+1 + µi,3(t)gi,1(x̄i)+ µi,4(t)a0, −a0 < xi+1 < 0
gi,3(x̄i, xi+1)xi+1 + ϑ ′i, xi+1 ≤ −a0

(11)

where µi,1(t) ∈ [−1, 1], µi,2(t) ∈ [−1, 1], µi,3(t) ∈ [−1, 1]
and µi,4(t) ∈ [−1, 1] are some unknown bounded functions.
Then, it follows from (11) that Fi(x̄i, xi+1) can be rewritten

as the form as follows

Fi(x̄i, xi+1) = Gi(x̄i+1, t)xi+1 + ηi(x̄i, t) (12)

with

Gi(x̄i+1, t) =


gi,2(x̄i, xi+1), xi+1 ≥ a0
li, 0 < xi+1 < −a0
l ′i, −a0 < xi+1 < 0
gi,3(x̄i, xi+1), xi+1 ≤ −a0

(13)

ηi(x̄i, t)

=


ϑi, xi+1 ≥ a0
µi,1(t)gi,1(x̄i)+ µi,2(t)a0, 0 < xi+1 < −a0
µi,3(t)gi,1(x̄i)+ µi,4(t)a0, −a0 < xi+1 < 0
ϑ ′i, xi+1 ≤ −a0

(14)

Noting (13), (14) and the fact that gi,2(x̄i, xi+1) ≥ li,
gi,3(x̄i, xi+1) ≥ l ′i , it can be known that

min{li, l ′i} = gi,m ≤ Gi(x̄i+1, t)

≤ max
{
gi,2(x̄i, xi+1), gi,3(x̄i, xi+1), li, l ′i

}
(15)

|ηi(x̄i, t)| ≤max
{
|ϑi| ,

∣∣ϑ ′i∣∣ , ∣∣gi,1(x̄i)∣∣+ a0, ∣∣gi,1(x̄i)∣∣+ a0}
(16)

Since gi,2(x̄i, xi+1), gi,3(x̄i, xi+1) and gi,1(x̄i) are well-
defined continuous functions, we use RBFNN to approximate
them as follows

gi,2(x̄i, xi+1) = W ∗Ti,2 ψi,2(x̄i, xi+1)+ εi,2,

x̄i+1 ∈ �x̄i+1 , xi+1 ≥ a0 (17)

gi,3(x̄i, xi+1) = W ∗Ti,3 ψi,3(x̄i, xi+1)+ εi,3,

x̄i+1 ∈ �x̄i+1 , xi+1 ≤ −a0 (18)

gi,1(x̄i) = W ∗Ti,1 ψi,1(x̄i)+ εi,1, x̄i ∈ �x̄i (19)

where εi,1, εi,2 and εi,3 are the approximation errors, satisfy-
ing

∣∣εi,1∣∣ ≤ ε∗i,1, ∣∣εi,2∣∣ ≤ ε∗i,2, ∣∣εi,3∣∣ ≤ ε∗i,3, with ε∗i,1, ε∗i,2, ε∗i,3
being unknown positive constants.

From [9], it can be known that ‖ψ1(Z1)‖ ≤ s∗ with s∗ being
some positive constant. Therefore, we haveP∣∣gi,2(x̄i, xi+1)∣∣ ≤ ∥∥W ∗i,2∥∥ s∗ + ε∗i,1,

x̄i+1 ∈ �x̄i+1 , xi+1 ≥ a0 (20)∣∣gi,3(x̄i, xi+1)∣∣ ≤ ∥∥W ∗i,3∥∥ s∗ + ε∗i,3,
x̄i+1 ∈ �x̄i+1 , xi+1 ≤ −a0 (21)∣∣gi,1(x̄i)∣∣ ≤ ∥∥W ∗i,1∥∥ s∗ + ε∗i,1, x̄i ∈ �x̄i (22)

Using the above inequalities and noting (15) and (16),
we have

gi,m ≤ Gi(x̄i+1, t) ≤ gi,M (23)

|ηi(x̄i, t)| ≤ η∗i (24)

with gi,M = max
{∥∥∥W ∗i,2∥∥∥ s∗+ε∗i,1, ∥∥∥W ∗i,3∥∥∥ s∗+ε∗i,3, li, l ′i},

η∗i = max
{
|ϑi| ,

∣∣ϑ ′i∣∣ , ∥∥∥W ∗i,1∥∥∥ s∗ + ε∗i,1 + a0,
∥∥∥W ∗i,1∥∥∥ s∗

+ε∗i,1 + a0
}
being unknown positive constants.

III. ADAPTIVE TRACKING CONTROL
In the framework of backstepping approach, the following
change of coordinates is made:{

e1 = x1 − yd
ei = xi − αi−1, i = 2, 3, . . . , n

(25)

where e1 is the tracking error, and αi−1 is the virtual control.
The recursive design procedure contains n steps. First, at each
step of the backstepping design, the intermediate control αi−1
is designed to make the corresponding subsystem toward
equilibrium position, and at the final step, the stabilization
of system (7) can be achieved with the actual control input u
being designed.

Step 1: To start, consider the following subsystem of (1)
and noting e1 = x1 − yd , we have

ė1 = ẋ1 − ẏd
= F1(x1, x2)+ f1(x1, 0)+11(t)− ẏd
= G1(x̄2, t)x2 + η1(x̄1, t)+ f1(x1, 0)+11(t)− ẏd

(26)

where x2 is regarded as a virtual control input of this sub-
system. Consider the stabilization of subsystem (26) and the
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follow quadratic Lyapunov function candidate

Ve1 =
1
2
e21 (27)

The time derivative of Ve1 along (26) is

V̇e1 = e1
(
G1(x̄2, t)x2 + η1(x̄1, t)

+f1(x1, 0)+11(t)− ẏd
)

(28)

Define a continuous function as

h1(Z1) = f1(x1, 0) (29)

where Z1 = x1. Apparently, h1(Z1) can be approximated by
RBFNN as follows

h1(Z1) = W ∗Th,1ψh,1(Z1)+ εh,1, Z1 ∈ �Z1 (30)

where εh,1 is the approximation error, satisfying
∣∣εh,1∣∣ ≤ ε∗h,1,

with ε∗h,1 > 0 being unknown positive constant. Then, we can
rewritten (28) as

V̇e1 = e1
(
G1(x̄2, t)x2 + η1(x̄1, t)

+W ∗Th,1ψh,1(Z1)+ εh,1 +11(t)− ẏd
)

(31)

From [9], it can be known that
∥∥ψh,1(Z1)∥∥ ≤ s∗. Noting

the boundedness of η1(x̄1, t), εh,1, 11(t), ẏd and the fact that
W ∗h,1 is a constant vector, we have∣∣∣η1(x̄1, t)+W ∗Th,1ψh,1(Z1)+ εh,1 +11(t)− ẏd

∣∣∣ ≤ M1 (32)

where M1 = η
∗

1 +

∥∥∥W ∗h,1∥∥∥ s∗ + d∗1 + ε∗1 + B0 is an unknown
constant.

We construct a virtual control α1 and the adaptation
function M̂1 as follows

α1 = −k1e1 −
λ1M̂2

1 e1√
M̂2

1 e
2
1 + δ

2
(33)

˙̂M1 = γ1 |e1| (34)

where k1, λ1, and γ1 are the positive design param-
eters; M̂1 is the estimate of M1; δ is any posi-
tive uniform continuous and bounded function, which
satisfies

lim
t→∞

∫ t

0
δ(τ )dτ ≤ δ1 < +∞ (35)∣∣δ̇(t)∣∣ ≤ δ2 < +∞ (36)

where δ1 and δ2 are any positive constants.
Define the Lyapunov function candidate

V1 = Ve1 +
1
2γ1

M̃2
1 (37)

where M̃1 = M1 − M̂1.
In view of (31), (32), and (37), we have

V̇1 ≤ |e1|M1 + G1(x̄2, t)e1 (e2 + α1)−
1
γ1
M̃1
˙̂M1 (38)

Choosing λ1 ≥ g
−1
1,m and substituting (33) into (38) yields

V̇1 ≤ |e1|M1 − k1g1,me21

−
M̂2

1 e
2
1√

M̂2
1 e

2
1 + δ

2
+ G1(x̄2, t)e1e2 −

1
γ1
M̃1
˙̂M1 (39)

By using Lemma 1 and noting M1 = M̂1 + M̃1, we have

V̇1 ≤ −k1g1,me21 + G1(x̄2, t)e1e2 + |e1| M̂1 + |e1| M̃1

−
M̂2

1 e
2
1√

M̂2
1 e

2
1 + δ

2
−

1
γ1
M̃1
˙̂M1

≤ −k1g1,me21 + δ + G1(x̄2, t)e1e2

−
1
γ1
M̃1

(
˙̂M1 − γ1 |e1|

)
(40)

In view of (34), we have

V̇1 ≤ −k1g1,me21 + δ + g1,M |e1e2| (41)

Step i (2 ≤ i ≤ n − 1): A similar procedure is employed
recursively for each step i = 2, . . . , n − 1. For the sake of
brevity, Step i are simplified, with redundant equations and
explanations being omitted.

Consider the following subsystem of (1) and noting ei =
xi − αi−1, we have

ėi = ẋi − α̇i−1
= Gi(x̄i+1, t)xi+1 + ηi(x̄i, t)

+ fi(x̄i, 0)+1i(t)− α̇i−1 (42)

where

αi−1 = αi−1

(
ei−1, M̂i−1

)
(43)

Therefore, we have that the derivative of αi−1 can be
expressed as

α̇i−1 =
∂αi−1

∂ei−1
ėi−1 +

∂αi−1

∂M̂i−1

˙̂M i−1

=
∂αi−1

∂ei−1
(fi−1(x̄i−1, xi)+1i−1(t))

+
∂αi−1

∂M̂i−1
γi−1 |ei−1| (44)

Obviously, it follows from (44) that there exists a continu-
ous function hi(Zi) such that

|fi(x̄i, 0)− α̇i−1| ≤ hi(Zi) (45)

with Zi =
[
x̄Ti , ei−1,

∂αi−1
∂ei−1

,
∂αi−1

∂M̂i−1

]T . Apparently, hi(Zi) can
be approximated by RBFNN as follows

hi(Zi) = W ∗Th,i ψh,i(Zi)+ εh,i, Zi ∈ �Zi (46)

where εh,i is the approximation error, satisfying
∣∣εh,i∣∣ ≤ ε∗h,i,

with ε∗h,i > 0 being unknown positive constant.
Consider the stabilization of subsystem (42) and the follow

quadratic Lyapunov function candidate

Vei =
1
2
e2i (47)
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The time derivative of Vei along (42) is

V̇ei ≤ ei (Gi(x̄i+1, t)xi+1 + ηi(x̄i, t))

+ei1i(t)+ |ei| hi(Zi) (48)

Similar as Step 1, we have∣∣∣ηi(x̄i, t)+W ∗Th,i ψh,i(Zi)+ εh,i +1i(t)
∣∣∣ ≤ Mi (49)

where Mi = η
∗
i +‖W

∗
h,i‖s

∗
+d∗i +ε

∗
i is an unknown constant.

Using (48) and (49), we obtain

V̇ei ≤ eiGi(x̄i+1, t)xi+1 + |ei|Mi (50)

We construct a virtual control αi and the adaptation func-
tion M̂i as follows

αi = −kiei −
λiM̂2

i ei√
M̂2
i e

2
i + δ

2
(51)

˙̂Mi = γi |ei| (52)

where ki, λi, and γi are the design parameters, and M̂i is the
estimate of Mi.

Define the Lyapunov function candidate

Vi = Vei +
1
2γi

M̃2
i (53)

where M̃i = Mi − M̂i.
In view of (25), (50) and (53), we have

V̇i ≤ |ei|Mi + Gi(x̄i+1, t)ei (ei+1 + αi)−
1
γi
M̃i
˙̂Mi (54)

Choosing λi ≥ g
−1
i,m and substituting (51) into (54) yields

V̇i ≤ |ei|Mi − kigi,me2i −
M̂2
i e

2
i√

M̂2
i e

2
i + δ

2

+Gi(x̄i+1, t)eiei+1 −
1
γi
M̃i
˙̂M i (55)

Similar as Step 1, we have

V̇i ≤ −kigi,me2i + δ + gi,M |eiei+1| (56)

Step n: Consider the following subsystem of (1) and noting
en = xn − αn−1, we have

ėn = ẋn − α̇n−1
= Gn(x̄n+1, t)xn+1 + ηn(x̄n, t)

+fn(x̄n, 0)+1n(t)− α̇n−1 (57)

Similarly, we have that the derivative of αn−1 can be
expressed as

α̇n−1 =
∂αn−1

∂en−1
(fn−1(x̄n−1, xn)+1n−1(t))

+
∂αn−1

∂M̂n−1
γn−1 |en−1| (58)

Obviously, it follows from (58) that there exists an contin-
uous function hn(Zn) such that

|fn(x̄n, 0)− α̇n−1| ≤ hn(Zn) (59)

with Zn = [x̄Tn , en−1,
∂αn−1
∂en−1

,
∂αn−1

∂M̂n−1
]T . Apparently, hn(Zn) can

be approximated by RBFNN as follows

hn(Zn) = W ∗Th,nψh,n(Zn)+ εh,n, Zn ∈ �Zn (60)

where εh,n is the approximation error, satisfying
∣∣εh,n∣∣ ≤ ε∗h,n,

with ε∗h,n > 0 being unknown positive constant.
Consider the stabilization of subsystem (25) and the follow

quadratic Lyapunov function candidate

Ven =
1
2
e2n (61)

Similar as Step 1, we have∣∣∣ηn(x̄n, t)+W ∗Th,nψh,n(Zn)+ εh,n +1n(t)
∣∣∣ ≤ Mn (62)

where Mn = η
∗
n+

∥∥∥W ∗h,n∥∥∥ s∗+d∗n+ε∗n is an unknown constant.
Using (57), (59) and (62), we obtain

V̇en ≤ enGn(x̄n+1, t)u+ |en|Mn (63)

We construct the actual controller u and the adaptation
function M̂n as follows

u = −knen −
λnM̂2

n en√
M̂2
n e2n + δ2

(64)

˙̂Mn = γn |en| (65)

where kn, λn, and γn are the positive design parameters, and
M̂n is the estimate of Mn.

Define the Lyapunov function candidate

Vn = Ven +
1
2γn

M̃2
n (66)

where M̃n = Mn − M̂n.
Similar as Step 1, choosing λn ≥ g−1n,m, we have

V̇n ≤ −kngn,me2n + δ (67)

The design process of adaptive tracking controller has been
completed.

IV. STABILITY ANALYSIS
In this section, the main result of this paper is stated as
follows.
Theorem 1: Consider the uncertain nonlinear systems (1)

and Assumptions 1-3. The virtual controllers are constructed
as (33) and (51), with the corresponding adaptation laws
given by (34) and (52). The actual controller is given by (64)
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with the corresponding adaptation laws given by (65). Choose
the design parameters to satisfy

k1 ≥ 1
g1,m

(
c0 + 1

2

)
ki ≥ 1

gi,m

(
g2i−1,M + c0 +

1
2

)
, i = 2, . . . , n

λi ≥ g
−1
i,m, i = 1, . . . , n

γi > 0, i = 1, . . . , n

where c0 is arbitrary positive constant. Then, all of the signals
in the closed-loop system are semi-globally bounded, and the
tracking error e1 can asymptotically converge to zero.

Proof: Choose the Lyapunov function as follows:

V =
n∑
i=1

Vi (68)

It follows from (41), (56), (67) that the derivative of V is

V̇ ≤ −
n∑
i=1

kigi,me2i +
n−1∑
i=1

gi,M |eiei+1| + nδ (69)

Using the Young’s inequality, we have

gi,M |eiei+1| ≤
e2i
2
+
g2i,Me

2
i+1

2
Then, we have

V̇ ≤ −
n∑
i=1

kigi,me2i +
n−1∑
i=1

(
e2i
2
+
g2i,Me

2
i+1

2

)
+ nδ

≤ −c0
n∑
i=1

e2i + nδ (70)

Integrating (70) over [0, t] yields

V (t) ≤ V (0)−
∫ t

0

(
c0

n∑
i=1

e2i (ξ )

)
dξ + n

∫ t

0
δ(ξ )dξ

≤ V (0)+ nδ1 (71)

which implies ei and M̃i, i = 1, 2, . . . , n are bounded. In the
sequel, we can deduce that xi, xn, αi and u, i = 1, 2, . . . , n−1
are bounded. Therefore, all the signals of closed-loop system
are bounded. Moreover, from the first inequality of (71), one
has∫ t

0
c0

n∑
i=1

e2i (ξ )dξ ≤ V (0)− V (t)+ nδ1 ≤ V (0)+ nδ1

(72)

By applying the Barbalat lemma, it is concluded that

lim
t→∞

e1 = 0 (73)

That is, the asymptotic tracking is achieved. This com-
pletes the proof of Theorem 1.
Remark 2: In the proof of our results, it can be seen

that the inequalities (20), (21) and (22) are used, and
these inequalities actually only hold on some compact sets
which are represented as �x̄i , i = 1, . . . , n. Define the

FIGURE 1. Reference signal yd and system output y .

8x̄n = {x̄n |V (t) ≤ V (0)+ nδ1 }, it can be seen from (72) that
8x̄n is the compact set which xi, i = 1, . . . , n will always
converge into. It is also should be noted that we can always
choose appropriate design parameters such that 8x̄n ⊂ �x̄i ,
i = 1, . . . , n, which means the variables concerned in �x̄i
will stay in �x̄i , and therefore the inequalities (20), (21) and
(22) always hold and can be used.

V. SIMULATION RESULTSION
Consider the dynamics of a one-link manipulator actuated by
a brush dc (BDC) motor described as follows[25]:{

Dq̈+ Bq̇+ N sin(q) = I +1I

Mİ = −HI − Kmq̇+ V
(74)

where q, q̇ and q̈ are the link angular position, velocity, and
acceleration, respectively. I denotes the motor current; 1I
is the current disturbance; V represents the input control
voltage. The parameters values with appropriate units are
given in [26] by D = 1, B = 1, M = 0.05, H = 0.5,
N = 10, and Km = 10. Let the torque disturbance to be
1I = 0.2x1 sin(x2x3) with x1 = q, x2 = q̇ and x3 = I . Define
the desired reference signal yd = (π/2) sin(t)(1− e−0.1t

2
).

Therefore, system (74) can be expressed in the following
form

ẋ1 = x2
ẋ2 = (−10 sin(x1)− x2)+ x3 + 0.2x1 sin(x2x3)
ẋ3 = −10x2 − 10x3 + 20ϕ(u)
y = x1

(75)

Moreover, ϕ(u) is described as follows

ϕ(u) =


u, u ≥ 1.5
0, −2.5 < u < 1.5
u, u ≤ −2.5

(76)

It can be seen that the non-affine function is
non-differentiable with respect to u.
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FIGURE 2. System state x2 and x3.

FIGURE 3. Control input u.

According to Theorem 1, the adaptive neural controller is
chosen as

α1 = −k1e1 −
λ1M̂2

1 e1√
M̂2

1 e
2
1 + δ

2

α2 = −k2e2 −
λ2M̂2

2 e2√
M̂2

2 e
2
2 + δ

2

u = −k3e3 −
λ3M̂2

3 e3√
M̂2

3 e
2
3 + δ

2

The adaptive laws are provided by (34) and (52), and the
design parameters are selected as k1 = k2 = k3 = 5, λ1 =
λ2 = λ3 = 5, δ = 0.001e−0.001t . The initial conditions are
seted as: [x1(0), x2(0), x3(0)]T = [0.5, 0.5, 0.5]T , M̂1(0) =
M̂2(0) = M̂3(0) = 0.
The simulation results are shown in Figs. 1-5. It can be

readily found that the satisfactory asymptotic tracking per-
formance is obtained from Fig. 1, and the boundedness of x2,
x3, u, M̂1, M̂2 and M̂3 are shown in Figs. 2-4.

FIGURE 4. Adaptive parameters M̂1, M̂2 and M̂3.

FIGURE 5. Tracking errors e1.

For comparison, the conventional adaptive control (CAC)
approach in [12] is performed with the same parameters k1 =
k2 = k3 = 5, and the corresponding simulation result on
the system tracking error is presented in Fig. 5. It is obvi-
ously shown in Fig. 5 that, the proposed modified adaptive
control (MAC) approach can achieve the better asymptotic
tracking compared with CAC, which can only achieve the
bounded tracking.

VI. CONCLUSION
In this paper, we concentrate on the asymptotic tracking prob-
lem for a class of nth-order SISO pure-feedback nonlinear
systems. Different from the exiting results on pure-feedback
systems, a novel controller design method is proposed, which
can achieve the asymptotic tracking rather than the bounded
tracking. Under the conditions of the nonaffine functions
being semi-bounded, amodifiedmodeling algorithm is devel-
oped to transform the nonaffine function into an affine form.
It is proven rigorously via the Lyapunov theorem andBarbalat
lemma that the asymptotic tracking performance of a given
smooth enough reference signal, as well as the semi-global
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ultimate uniform boundedness of all the other signals can be
guaranteed. Simulation example demonstrates the effective-
ness of the proposed method.
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