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ABSTRACT The difficulty of establishing a common membership degree is not because there is a margin of
error or some possibility distribution values, but because there is a set of possible values. Based on hesitant
fuzzy sets and soft sets, a hesitant soft fuzzy rough set model is proposed in this paper. Basic properties of
hesitant soft fuzzy rough sets are investigated in detail. We obtain a decomposition theorem for a hesitant
fuzzy binary relation, which states that every typical hesitant fuzzy binary relation on a set can be represented
by a well-structured family of fuzzy binary relations on that set. Indeed, a hesitant fuzzy soft set can induce a
hesitant fuzzy binary relation. Then we give the relationship between hesitant fuzzy rough sets and hesitant
soft fuzzy rough sets. In addition, we prove a characterization theorem for the hesitant soft fuzzy rough set
model, which shows that the lower and upper hesitant soft fuzzy rough approximations can be equivalently
defined by using level sets of the hesitant fuzzy soft set. Finally, by analyzing the limitations and advantages
in the existing literatures, we establish an approach to decision making problem based on the hesitant soft
fuzzy rough set model proposed in this paper and give a practical example to illustrate the validity of the
novel method.

INDEX TERMS Rough sets, hesitant fuzzy sets, soft sets, fuzzy binary relations, level sets.

I. INTRODUCTION
The contemporary concern about knowledge representation
and information systems has put forward useful extensions
of classical set theory such as fuzzy set theory and rough set
theory. The concept of rough set was originally proposed by
Pawlak [21] in 1982 as a formal tool for studying information
systems characterized by insufficient and incomplete infor-
mation. The starting point of this theory is an observation that
objects having the same description are indiscernible with
respect to available information. While the fuzzy set theory,
introduced by Zadeh [36] in 1965, offers a wide variety of
techniques for analyzing imprecise data. It soon evoked a
natural question concerning possible connections between
rough sets and fuzzy sets. It is generally accepted that these
two theories are related, but distinct and complementary,
to each other. Generally speaking, both theories address the
problem of information granulation: the theory of fuzzy sets
is centred upon fuzzy information granulation, whereas the
rough set theory is focused on crisp information granulation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Pawlak’s rough set can be described by a pair of crisp sets
called the lower approximation and the upper approximation.
The lower approximation is the greatest definable set con-
tained in the given set of objects, while the upper approxi-
mation is the smallest definable set containing the given set.
By using the concept of lower and upper approximations in
rough set theory, knowledge hidden in information systems
may be revealed and expressed in the form of decision rules.
The rough set has been extended by miscellaneous ways
including generalizing universes of discourse from one to
two, objects from ordinary sets to fuzzy sets, relations from
equivalence relations to other binary relations, and opera-
tors from conjuctions and disjuctions to fuzzy logical oper-
ators. In 1998, by applying a residual implication (for short,
R-implication) to define the lower approximation operator,
Morsi and Yakout [20] generalized the fuzzy rough sets,
while the duality fails. In 2002, based on a border impli-
cation I (not necessarily a R-implication) and a triangular
norm T , Radzikowska and Kerre [24] introduced (I ,T )-fuzzy
rough sets. For this model, the duality is partly holds. Later,
Mi and Zhang [15] introduced (θT , σS )-generalized fuzzy
rough sets, where θT is an residual implication based on a
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triangular norm T , and σS is the dual of θ ’s. Mi et al. [16]
discussed (S,T )-generalized fuzzy rough sets, where T is
a triangular norm and S is a triangular conorm. In 2009,
Zhang et al. [41] proposed (I ,T )-generalized interval-valued
fuzzy rough sets. To modify the definition of the upper
approximation operator such that the duality hold for a
R-implication, in 2010, Yao et al. [35] defined amore general
fuzzy rough sets so-called (I , J )-fuzzy rough sets, where I
and J are two border implicators, which are real extensions
of the fuzzy rough sets of Radzikowska and Kerre [24],
and that of Mi and Zhang [15]. In 2013, Hu and Wong [11]
investigated (S,T )-generalized interval-valued fuzzy rough
sets and (θT , σS )-generalized interval-valued rough sets.
In 2015, Gong and Zhang [9] defined the (I , J )-soft fuzzy
rough set which generalized the (I , J )-fuzzy rough set of
Yao et al. [35]. In 2018, based on two more extensive oper-
ations than left continuous triangular norms and right con-
tinuous triangular conorms, i.e., the binary operations �
and & on complete residuated and co-residuated lattice L,
respectively, Qiao and Hu [23] proposed (�, &)-fuzzy rough
sets which generalized the (S,T )-generalized fuzzy rough
sets [16] and (S,T )-generalized interval-valued fuzzy rough
sets [11].

On the other hand, for the sake of attempting to better
capture the possible subjectivity, uncertainty, imprecision
of the evaluations, et cetera, Zadeh’s introduction of fuzzy
set (FS) was subsequently extended to different types for
various applications. In recent years, Torra [28] introduced
the concept of hesitant fuzzy set (HFS) as an extension of
the FS in which the membership degree of a given element,
called the hesitant fuzzy element (HFE), is defined as a set
of possible values. This situation can be found in a group
decision making problem. To clarify the necessity of intro-
ducing the HFS, consider a situation in which two decision
makers discuss the membership degree of an element x to a
set A, one wants to assign 0.3, but the other 0.5. Accordingly,
the difficulty of establishing a commonmembership degree is
not because there is a margin of error or some possibility dis-
tribution values, but because there is a set of possible values.
In 2018, Alcantud and Torra proved decomposition theorems
and extension principles for the hesitant fuzzy set [2]. In the
HFS, the membership degree consists of several possible
values reflecting the epistemic certainty but the epistemic
uncertainty degree is ignored. Thus, Zhu et al. [44] proposed
an extension of the HFS–dual hesitant fuzzy set (DHFS),
where both the membership and non-membership degrees
contain a set of possible values. Furthermore, all the fuzzy
set, the IVFS and the IFS can be treated as the particular cases
of the DHFS. The DHFS, by comparison, is able to reflect
the gradual epistemic uncertainty to ill-known objects more
granularly. Since the hesitant fuzzy set and its extensions
indeed describe the thoughts of experts better because of
a better tolerance, they have been widely applied in prac-
tical decision making processes such as the interval-valued
intuitionistic hesitant fuzzy set [42], the generalized hesitant
fuzzy set (GHFS) [22], the hesitant interval-valued fuzzy set

(HIVFS) [31], the probabilistic hesitant fuzzy set (PHFS) [43]
and the probabilistic dual hesitant fuzzy set (PDHFS) [10].

While probability theory, fuzzy set theory, rough set theory,
and other mathematical tools are well known and often useful
approaches to describing uncertainty, each of these theo-
ries has its inherent difficulties as pointed out in [17], [18].
The reason for these difficulties is the inadequacy of the
parametrization tool of the theory. In 1999, Molodtsov [17]
introduced the concept of soft set, which can be seen as a
new mathematical tool for dealing with uncertainties. This
so-called soft set theory is free from the difficulties affecting
existing methods. In 2015, Tripathy and Arun [29] introduced
the notion of characteristic function of a soft set and rectified
basic operations on soft sets. In 2018, Molodtsov [19] intro-
duced the concept of equivalence of soft sets and discussed
the correct operations and correct relationships for soft sets
on the basis of equivalence. However, in the practical model,
the parameters in the soft set are vague words or sentences
involve vague words. Considering this point, Maji et al. [12]
introduced the notion of fuzzy soft set by combining the
fuzzy set and the soft set. Roy and Maji [25] presented a
fuzzy soft set theoretic approach towards a decision mak-
ing problem. Yang et al. [33] introduced the concept of
interval-valued fuzzy soft set and a decision making problem
is analyzed by the interval-valued fuzzy soft set. In 2011,
Gong et al. [8] introduced the interval-valued intuitionistic
fuzzy soft set and described its application to multi-parameter
group decision-making problems. In 2014, Wang et al. [30]
introduced the hesitant fuzzy soft set (HFSS) by combining
the notion of hesitancy withMolodtsov’s soft set. As a further
generalization, the interval-valued hesitant fuzzy soft set,
the weighted interval-valued hesitant fuzzy soft set and their
applications in decision making problem were presented by
Zhang et al. [37].

Recently, a framework to combine fuzzy sets, rough sets
and soft sets all together was provided by Feng et al. [5], [6],
which gives rise to several interesting new concepts such as
rough soft sets, soft rough sets and soft rough fuzzy sets.
This study is a research hotspot, and it presents a poten-
tially interesting research direction. In [6], Feng et al. proved
that Pawlak’s rough set model can be viewed as a special
instance of the soft rough set. Subsequently, Meng et al. [14]
further discussed the relationship between the soft rough set
and the soft rough fuzzy set and introduced the soft fuzzy
rough set. Sun and Ma [27] gave a new approach to deci-
sion making problems, they defined a new fuzzy soft set
named as pseudo fuzzy soft set by exchanging the role of
the universe and the parameter set, and a soft fuzzy rough
set based on the pseudo fuzzy soft set. Although fuzzy rough
set theory or soft fuzzy rough set theory can handle some
decision making problems and quantify the ideas of decision
makers by using a crisp number, one of the main features of
decision-making activities should be described in hesitancy
situations. When facing the problem, the decision-makers
can not offer a comprehensive, accurate and flexible solution
by using the fuzzy rough set or soft fuzzy rough set. But if
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FIGURE 1. The extension process of rough sets. The first item in the bracket is relation and the second represents object.

the basic features of decision-making activities are described
by several numbers within [0,1], we can avoid such a situ-
ation. So it is very natural for us to extend concepts from
fuzzy rough set theory or soft fuzzy rough set theory to
their generalizations in hesitant fuzzy set theory. In 2014,
the fusion of hesitant fuzzy set and rough set–hesitant fuzzy
rough set, is firstly explored by Yang et al. [34], and both
constructive and axiomatic approaches are considered. And
the interval-valued hesitant fuzzy rough set was further inves-
tigated by Zhang et al. [38]. In 2017, Zhang et al. [39] intro-
duced the hesitant fuzzy rough set over two universes and its
application in decision making. In 2018, the hesitant fuzzy
compatible rough set over two different universes and its
application in hesitant fuzzy soft set based decision mak-
ing were investigated by Zhang and He [40]. In this paper,
we mainly are devoted to establishing a new hybrid model
called a hesitant soft fuzzy rough set which is extended
from soft fuzzy rough set theory to hesitant fuzzy set theory.
The Fig. 1 intuitively shows that the new model discussed in
this paper is the extension of the already existing models from
the mathematical point of view. In addition, we investigate
a practical application of hesitant soft fuzzy rough sets in
decision making.

The paper is organized as follows. Section 2 presents some
basic results of rough sets, soft sets and hesitant fuzzy sets.
In Section 3, we introduce a hesitant soft fuzzy rough set
model and investigated basic properties. Then we obtain a
decomposition theorem for a hesitant fuzzy binary relation
and give the relationship between hesitant fuzzy rough sets
and hesitant soft fuzzy rough sets. In addition, we prove a
characterization theorem for the hesitant soft fuzzy rough
set model. In Section 4, a decision making approach to a
hesitant fuzzy soft set based on the hesitant soft fuzzy rough
set model is established and an example is given to illustrate
the efficiency of the approach. Section 5 concludes this paper.

II. PRELIMINARIES AND NOTATIONS
In this section, we recall some basic notions and previous
results that will be used in the later parts of this paper.

A. FUZZY LOGICAL CONNECTIVES
A triangular norm (t-norm for short) is a binary operator
T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1],
the conditions hold (T1) y 6 z implies T (x, y) 6 T (x, z)
(monotonicity), (T2) T (x, y) = T (y, x)(commutativity), (T3)
T (T (x, y), z) = T (x,T (y, z)) (associativity), (T4) T (x, 1) =
1 (boundary condition). A t-norm is said to be continuous
(left-continuous) if it is a continuous (left-continuous) func-
tion. The three important continuous t-norms are: the mini-
mum TM (x, y) = x ∧ y, the algebraic product TP(x, y) = xy
and the Łukasiewicz t-norm TL(x, y) = 0 ∨ (x + y− 1),

A triangular conorm (t-conorm or s-norm, for short)
is a binary operator S : [0, 1]2 → [0, 1] such
that for all x, y, z ∈ [0, 1], the conditions (T1), (T2),
(T3) and (S4) hold, where (S4) S(x, 0) = x (bound-
ary condition). The well-known continuous t-conorms are:
the maximum SM (x, y) = x ∨ y, the probabilistic
sum SP(x, y) = x + y − xy and the bounded sum
SL(x, y) = (x + y) ∧ 1.
Definition 1:AnegationN : [0, 1]→ [0, 1] is a decreasing

function such that N (1) = 0 and N (0) = 1. A negation
N is called involutive (weakly involutive) if N (N (X )) =
x (N (N (X )) > x) for all x ∈ [0, 1]. The standard negation
N (x) = 1− x is involutive.
Note that every involutive negation is continuous. For any

continuous negation N we have N (∨xi) = ∧N (xi) and
N (∧xi) = ∨N (xi).
Definition 2: A function I : [0, 1]2 → [0, 1] is said to be

an implication if it satisfies the conditions I (0, 0) = I (0, 1) =
I (1, 1) = 1 and I (1, 0) = 0. We call an implication I a border
implication if for all x ∈ [0, 1], I (1, x) = x.
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An implication I is said to be left monotonic (right mono-
tonic, respectively) if it is decreasing in its first component
(increasing in its second component). An implication I is said
to be hybrid monotonic if it is both left monotonic and right
monotonic.

The most important classes of implications are R-, S- and
QL-implications. Let T be a left-continuous t-norm, S be a
t-conorm and N a negation, then an implication I is called
(i) a R-implication (residual implication) based on T if for

all (x, y) ∈ [0, 1]2, we have I (x, y) =
∨
{c ∈ [0, 1] :

T (x, c) 6 y}.
(ii) a S-implication based on S and N if for all (x, y) ∈

[0, 1]2, we have I (x, y) = S(N (x), y).
(iii) aQL-implication (quantum logic implication) based on

T , S and N if for all (x, y) ∈ [0, 1]2, we have I (x, y) =
S(N (x),T (x, y)).

One can easily check the fact that every R-, S- and QL-
implication is a border implication.
Proposition 1 (See [24]): Every R-implication and every

S-implication is hybrid monotonic and every QL-implication
is right monotonic.

Given a negation N and a border implication I , define an
N -dual operation of I , θI ,N : [0, 1]2→ [0, 1] satisfies θI ,N =
N (I (N (x),N (y))). Then we have θI ,N (1, 0) = θI ,N (1, 1) =
θI ,N (0, 0) = 0 and θI ,N (0, 1) = 1. Moreover, if N is an
involution, then θI ,N (0, x) = N (I (1,N (x))) = N (N (x)) = x.
For example, we way S is the N -dual of T , if for all x, y ∈

[0, 1], S(x, y) = N (T (N (x),N (y))). Furthermore, if N is the
standard negation, i.e., S(x, y) = 1−T (1−x, 1−y), then we
say S is the dual of T .

B. SOFT FUZZY ROUGH SETS
Let U be a nonempty set called the universe of discourse,
P(U ) be the set of all subsets of U and F(U ) be the set
of all fuzzy sets in the universe U . R denotes a relation
on U . When R is an equivalence relation on U , the pair
P = (U ,R) is called a Pawlak approximation space. R will
generate a partition U/R = {[x]R : x ∈ U} on U , where
[x]R = {y ∈ U : (x, y) ∈ R} is the equivalence class
with respect to R containing x. These equivalence classes are
referred to as R-elementary sets which are the basic building
blocks (concepts) of our knowledge about reality. The main
question addressed by rough sets is how to represent subset
X of U by means of elements of the quotient set U/R. For
an approximation space P = (U ,R), for each X ⊆ U ,
the lower rough approximation operator R and the upper
rough approximation operator R of X with respect to P are
defined as [21]

R(X ) = {x ∈ U : [x]R ⊆ X}, (1)

R(X ) = {x ∈ U : [x]R ∩ X 6= ∅}. (2)

A subset X ⊆ U is said to be definable in a given approxima-
tion space P if R(X ) = R(X ); otherwise, X is called a rough
set. Note that sometimes the pair (RX ,RX ) is also referred to
as the rough set of X with respect to P.

Dubois and Prade [4] introduced the lower and upper
approximations of fuzzy sets in a Pawlak approximation
space, and obtained a new notion called rough fuzzy sets.
Definition 3 (See [4]): Let P = (U ,R) be a Pawlak

approximation space and µ ∈ F(U ). The lower and upper
rough approximations of µ in P are denoted by R(µ) and
R(µ), respectively, which are fuzzy subsets in U defined
by

R(µ)(x) = ∧{µ(y) : y ∈ [x]R}, (3)

R(µ)(x) = ∨{µ(y) : y ∈ [x]R}, (4)

for all x ∈ U . The operators R and R are called the lower and
upper rough approximation operators on fuzzy sets, respec-
tively. µ is called definable in P if R(µ) = R(µ); otherwise µ
is called a rough fuzzy set.

Clearly, rough fuzzy sets are natural extensions of rough
sets.

The equivalence classes are the building blocks for the con-
struction of the lower and upper approximations. By replac-
ing the equivalence relation by an arbitrary relation, different
kinds of generalizations of Pawlak rough set model were
obtained. Dubois and Prade [4] were among the first who
investigated the problem of a fuzzification of a rough set,
the concept of fuzzy rough set were proposed by replacing
crisp binary relations with fuzzy relations in the universe.

Given a nonempty universe U , when R is a fuzzy binary
relation on U , i.e., R ∈ F(U × U ), the pair PF = (U ,R)
is called a fuzzy approximation space. For all x, y, z ∈
U , if R satisfies reflexivity (R(x, x) = 1) and symme-
try (R(x, y) = R(y, x)), we say R is a fuzzy similarity
relation. If R satisfies reflexivity, symmetry and transitivity
(R(x, y) > min{R(x, z),R(z, y)}), we say R is a fuzzy equiva-
lence relation.
Definition 4 (See [4]): Let PF = (U ,R) be a fuzzy

approximation space and R a fuzzy equivalence relation.
Given a fuzzy set µ ∈ F(U ), the lower and upper rough
approximations of x ∈ U with respect to µ are defined as

R(µ)(x) = inf
y∈U

max{1− R(x, y), µ(y)}, (5)

R(µ)(x) = sup
y∈U

min{R(x, y), µ(y)}. (6)

The operators R and R are called the lower and upper
fuzzy rough approximation operators, respectively. The pair
(R(µ),R(µ)) is called a fuzzy rough set.

Dubois and Prade also pointed out that the rough fuzzy
set is a special case of the fuzzy rough set in the universe.
In 1998,Morsi and Yakout [20] generalized the operator from
min to a t-norm, introduced T -equivalence relation, i.e., R
satisfies reflexivity, symmetry and T -transitivity (R(x, y) >
T (R(x, z),R(z, y)), where T is a t-norm), and built the gen-
eralized fuzzy rough set model. In 2002, Radzikowska and
Kerre [24] introduced (I ,T )-fuzzy rough sets, where T is
a triangular norm. In 2010, Yao et al. [35] defined a more
general fuzzy rough sets so-called (I , J )-fuzzy rough sets,
where I and J are two border implicators, as follows:
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Definition 5 (See [35]): Let PF = (U ,R) be a fuzzy
approximation space, R a fuzzy equivalence relation, and I , J
be border implications. Then the lower fuzzy rough approxi-
mation operator RI and the upper fuzzy rough approximation
operator R

J
are given by

RI (µ)(x) =
∧
y∈U

I (R(x, y), µ(y)), (7)

R
J
(µ)(x) =

∨
y∈U

θJ ,N (N (R(x, y)), µ(y))

=

∨
y∈U

N (J (R(x, y),N (µ(y)))), (8)

where µ ∈ F(U ) and N is a negation. The pair
(RI (µ)(x),R

J
(µ)(x)) is called a (I , J )-fuzzy rough set.

Remark 1: Let T be a t-norm, and S be the N -dual
s-norm of T . If N is an involution, and J is a S-implication,
i.e., J (x, y) = S(N (x), y), then θJ ,N (N (R(x, y)), µ(y)) =
T (R(x, y), µ(y)), thus, the (I , J )-fuzzy rough set reduces to
a (I ,T )-fuzzy rough set.

LetU be a nonempty set of the universe and E be the set of
all possible parameters under consideration with respect toU .
Usually, parameters are attributes, characteristics, or prop-
erties of objects in U . A pair S = (F,A) is called a soft
set [17] over U , where A ⊆ E and F is a mapping given
by F : A→ P(U ). In other words, the soft set is not a type of
set, but a parameterized family of the universe U . For e ∈ A,
F(e) may be considered as the set of e-approximate elements
of the soft set (F,A).
Note that a soft set S = (F,A) over U is called a full soft

set (see [5], [6]) if
⋃
a∈A

F(a) = U .

Example 1: Suppose that there are four cars in the uni-
verse U given by U = {x1, x2, x3, x4, x5, x6} and A =
{a1, a2, a3, a4, a5} is the set of parameters, which stand for
being beautiful, being cheap, being safe, being comfortable
and being in strong power, respectively. In this case, to define
a soft set means to point out beautiful cars, cheap cars and so
on. The soft set (F,E) may describe the ‘attractiveness of the
cars’ which Mr. X is going to buy.

Suppose that F(a1) = {x2, x4}, F(a2) = {x1, x3}, F(a3) =
{x3, x4, x5}, F(a4) = {x1, x3, x5}, F(a5) = {x2}. Then the
soft set (F,A) is a parameterized family {F(ai) : 1 6 i 6
5} of subsets of U and gives us a collection of approximate
descriptions of an object, i.e.,

(F,A) = {(a1, {x2, x4}), (a2, {x1, x3}), (a3, {x3, x4, x5}),

(a4, {x1, x3, x5}), (a5, {x2})}.

Remark 2 (See [17]): Zadeh’s fuzzy set may be considered
as a special case of the soft set.

Letµ be a fuzzy set andF(α) = {x ∈ U : µ(x) ≥ α} (∀α ∈
[0, 1]) be the α-level set of µ. If we know the family {F(α) :
α ∈ [0, 1]}, we can calculate µ(x) by means of the formula
µ(x) = sup

x∈F(α)
α, that is, µ =

⋃
α∈[0,1]

αF(α). This observation

is usually summarized by a decomposition theorem in fuzzy

set theory, which establishes a one-to-one correspondence
between a fuzzy and a family of crisp sets satisfying certain
conditions. Thus, fuzzy set µ may be considered as the soft
set (F, [0, 1]).
Remark 3 (See [1]): Pawlak’s rough set model may be

considered as a special case of the soft set.
Suppose that P = (U ,R) is a Pawlak approximation space

and X ⊆ U . Let R(X ) = (RX ,RX ) be the rough set of
X with respect to R. Consider two predicates p1(x), p2(x),
which mean ‘‘[x]R ⊆ X" and ‘‘[x]R ∩ X 6= ∅", respectively.
The predicates p1(x), p2(x) may be treated as elements of a
parameter set, that is, E = {p1(x), p2(x)}. Then we can define
a set-valued mapping

F : E → P(U ),

pi(x) 7→ F(pi(x)) = {x ∈ U : pi(x) is true},

where i = 1, 2. It follows that the rough set R(X ) may be
considered a soft set (F,E) with the following representation
(F,E) = {(p1(x),RX ), (p2(x),RX )}.
Definition 6 (See [25]): A pair S = (f ,A) is called a fuzzy

soft set over U , where A ⊆ E and f is a mapping given by
f : A→ F(U ).
In the definition of a fuzzy soft set, fuzzy sets in the

universe U are used as substitutes for the crisp subsets of U .
Hence, every soft set may be considered as a fuzzy soft set.
Example 2: Mr. X thinks x1 is a little expensive and this

fuzzy information cannot be expressed only by two crisp
numbers, that is, 0 and 1, a membership degree can be used
instead, which is associated with each element and repre-
sented by a real number in the interval [0, 1]. The fuzzy soft
set (f ,A) can describe the ‘attractiveness of the cars’ which
Mr. X is going to buy under the fuzzy information.

f (a1) = {
x1
0.2
,
x2
0.5
,
x3
0.3
,
x4
0.3
,
x5
0.4
,
x6
0.6
},

f (a2) = {
x1
0.6
,
x2
0.5
,
x3
0.6
,
x4
0.7
,
x5
0.4
,
x6
0.3
},

f (a3) = {
x1
0.4
,
x2
0.6
,
x3
0.8
,
x4
0.3
,
x5
0.4
,
x6
0.7
},

f (a4) = {
x1
0.3
,
x2
0.2
,
x3
0.5
,
x4
0.7
,
x5
0.5
,
x6
0.8
},

f (a5) = {
x1
0.6
,
x2
0.3
,
x3
0.5
,
x4
0.4
,
x5
0.7
,
x6
0.3
}.

Motivated by Dubois and Prade’s original idea about the
rough fuzzy set, Feng et al. [5], [6] introduced the lower and
upper approximations of soft sets in a Pawlak approximation
space, and the concept of soft rough set and soft rough fuzzy
set were proposed. Furthermore, Feng et al. [6] proved that
Pawlak’s rough set model can be viewed as a special instance
of the soft rough set. Meng et al. [14] introduced the lower
and upper soft fuzzy rough approximations of fuzzy sets and
pointed out that soft fuzzy rough sets are extensions of soft
rough fuzzy sets. In 2015, Gong and Zhang [9] defined the
(I , J )-soft fuzzy rough set which generalized the (I , J )-fuzzy
rough set of Yao et al. [35].
Definition 7 (See [5], [6]): Let S = (F,A) be a soft

set over U . Then the pair SP = (U , S) is called a
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soft approximation space. Based on the soft approximation
space P, we define the following two operations

apr
SP
(X ) = {x ∈ U : ∃ a ∈ A(x ∈ F(a) ⊆ X )}, (9)

aprSP(X ) = {x ∈ U : ∃ a ∈ A(x ∈ F(a),F(a) ∩ X 6= ∅)},

(10)

assigning to every subset X ⊆ U . apr
SP
(X ) and aprSP(X ) are

called the lower and upper soft rough approximations of X
in S, respectively. If apr

SP
(X ) = aprSP(X ), X is said to be

soft definable; otherwise X is called a soft rough set.
Obviously, apr

SP
(X ) and aprSP(X ) can be expressed

equivalently as

apr
SP
(X ) =

⋃
a∈A

{F(a) : F(a) ⊆ X},

aprSP(X ) =
⋃
a∈A

{F(a) : F(a) ∩ X 6= ∅}.

Definition 8 ( [14]): Let S = (f ,A) be a fuzzy soft set
over U . Then the pair SF = (U , S) is called a soft fuzzy
approximation space. For a fuzzy set µ ∈ F(U ), the lower
and upper soft fuzzy rough approximations of µ with respect
to SF are denoted by Apr

SF
(µ) and AprSF (µ), respectively,

which are fuzzy sets in U given by

Apr
SF
(µ)(x)

=

∧
a∈A

(
(1− f (a)(x)) ∨

(∧
y∈U

((1− f (a)(y)) ∨ µ(y))
))
,

(11)

AprSF (µ)(x)

=

∨
a∈A

(
f (a)(x) ∧

(∨
y∈U

(f (a)(y) ∧ µ(y))
))
, (12)

for all x ∈ U . The operators Apr
SF
(µ) and AprSF (µ) are

called the lower and upper soft fuzzy rough approximations
on fuzzy sets, respectively. If Apr

SF
(µ) = AprSF (µ), µ is

said to be soft fuzzy definable; otherwise µ is called a soft
fuzzy rough set.

C. HESITANT FUZZY SOFT SETS
When giving the membership degree of an element, the dif-
ficulty of establishing the membership degree is not because
we have a margin of error, or some possibility distribution
on the possibility values, but because we have several pos-
sible values. For such cases, Torra [28] proposed the hesi-
tant fuzzy set (HFS) as a generalization form of the fuzzy
set (FS).

Let U be a fixed set, a hesitant fuzzy set (HFS) on U is in
terms of a function hE that when applied toU returns a subset
of [0, 1]. To be easily understood, we express the HFS by a
mathematical symbol

E = {〈x, hE (x)〉|x ∈ U},

where hE (x) is a set of some values in [0, 1], representing the
possible membership degrees of the element x ∈ U to the

set E . For convenience, we call h = hE (x) a hesitant fuzzy
element (HFE) andH (U ) the set of HFSs onU . In particular,
if hE (x) is a non-empty and finite subset of [0, 1], HFS is
called a typical hesitant fuzzy set (THFS) (see [3]).

For each typical hesitant fuzzy set hE on U , let

hE (x) = {h1E (x), · · · , h
lM (x)
E (x)},

where h1M (x) < · · · < hlE (x)E (x) and lE (x) = |hE (x)| is the
cardinality of the HFE hE (x).
Definition 9 (See [28]): LetU be the universe of discourse,
∀F,G ∈ H (U ), then
(i) the complement of F is denoted by Fc such that ∀x ∈ U ,

hFc (x) = ∼ hF (x)

= {1− h : ∀h ∈ hF (x)};

(ii) the intersection of F and G is denoted by F ∩G such that
∀x ∈ U ,

hF∩G(x) = hF (x) ∧ hG(x)

= {h ∈ hF (x) ∪ hG(x) : h ≤ min{h+F (x), h
+

G(x)}};

(iii) the intersection of F andG is denoted by F ∩G such that
∀x ∈ U ,

hF∪G(x) = hF (x) ∨ hG(x)

= {h ∈ hF (x) ∪ hG(x) : h ≥ max{h−F (x), h
−

G(x)}};

where h+F (x) is the upper bound of F , i.e.,

h+F (x) = max{h : h ∈ hF (x)},

and h−F (x) is the lower bound of F , i.e.,

h−F (x) = min{h : h ∈ hF (x)}.

Proposition 2 (See [34]): Let F,G and H be HFSs on U ,
then for any x, y, z ∈ U , the following properties hold:
(1) Idempotent:

hF (x) ∧ hF (x) = hF (x),

hF (x) ∨ hF (x) = hF (x).

(2) Commutativity:

hF (x) ∧ hG(y) = hG(y) ∧ hF (x),

hF (x) ∨ hG(y) = hG(y) ∨ hF (x).

(3) Associativity:

hF (x) ∧ (hG(y) ∧ hH (z)) = (hF (x) ∧ hG(y)) ∧ hH (z),

hF (x) ∨ (hG(y) ∨ hH (z)) = (hF (x) ∨ hG(y)) ∨ hH (z).

(4) Distributivity:

hF (x) ∧ (hG(y) ∨ hH (z))

= (hF (x) ∧ hG(y)) ∨ (hF (x) ∧ hH (z)),

hF (x) ∨ (hG(y) ∧ hH (z))

= (hF (x) ∨ hG(y)) ∧ (hF (x) ∨ hH (z)).
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(5) De Morgan’s laws:

∼ (hF (x) ∧ hG(y)) = (∼ hF (x)) ∨ (∼ hG(y)),

∼ (hF (x) ∨ hG(y)) = (∼ hF (x)) ∧ (∼ hG(y)).

(6) Double negation law:

∼ (∼ hF (x)) = hF (x).

For a HFE h, s(h) = 1
#h

∑
γ∈h γ is called the score function

of h, where #h is the number of the values in h. For two HFEs
h1 and h2, if s(h1) > s(h2), then h1 > h2; s(h1) = s(h2), then
h1 = h2.
Let F and G be HFSs on U . We say F ⊆ G if and

only if hF (x) � hG(x) for any x ∈ U , i.e., h−F (x) ≤
h−F (x) and h

+

F (x) ≤ h+F (x). The (α, k)-level set and strong
(α, k)-level set associated with E are defined, respectively,
as

α,khE = {x ∈ U : |{h ∈ hE (x) : h ≥ α}| ≥ k}

and

α+,khE = {x ∈ U : |{h ∈ hE (x) : h > α}| ≥ k}

for all α ∈ [0, 1] and for all k ∈ {1, 2, · · · }.
Given a universe U , a hesitant fuzzy relation on U is a

hesitant fuzzy set such that R ∈ H (U × U ), i.e., R =
{〈(x, y), hR(x, y)〉 : (x, y) ∈ U × U}, where hR(x, y) is a set
of the values in [0, 1], which is used to denote the possible
membership degrees of the relationships between x and y. R
is referred to as serial if and only if ∀x ∈ U , there is a y ∈ U
such that hR(x, y) = 1; R is referred to as reflexive if and
only if hR(x, x) = 1 holds for each x ∈ U ; R is referred to as
symmetric if and only if hR(x, y) = hR(y, x) (∀x, y ∈ U ); R
is referred to as transitive if and only if hR(x, y) ∧ hR(y, z) �
hR(x, z) (∀x, y, z ∈ U ) (see [34]). If a hesitant fuzzy relation
R on U is reflexive, symmetric and transitive, we say R is a
hesitant fuzzy equivalent relation on U .
Definition 10 (See [34]): Let R be a hesitant fuzzy relation

on U . The pair PH = (U ,R) is called a hesitant fuzzy
approximation space. Given a hesitant fuzzy set E ∈ H (U ),
the lower approximation and upper approximations of E are
denoted by R(hE ) and R(hE ), respectively, which are hesitant
fuzzy sets in U defined by

R(hE )(x) =
∧

y∈U
{hRc (x, y) ∨ hE (y)}, (13)

R(hE )(x) =
∨

y∈U
{hR(x, y) ∧ hE (y)}. (14)

for all x ∈ U . The operators R and R are called the lower and
upper hesitant fuzzy rough approximation operators, respec-
tively. The pair (R(hE ),R(hE )) is called a hesitant fuzzy rough
set.
Definition 11 (See [2]): Let E = {hE(i)}i∈J be a family

of hesitant fuzzy sets on U , indexed by the set of indices J .

Then the HFS associated with E, denoted by either hE or⋃
i∈J

hE(i), is defined as

hE : U → P([0, 1]),

x 7→
⋃
i∈J

hE(i)(x).

Theorem 1 (See [2]): Let hE be a typical hesitant fuzzy set
onU . Then hE is the HFS associated with the family of fuzzy
sets f = {kH}k∈N+ , i.e.,

hE =
⋃

k=1,2,···
kH ,

where 1H (x) = max{α ∈ [0, 1] : x ∈α,1 hE } = hlE (x)E (x)
for each x ∈ U ; if 1H , · · · ,k H are known, then k+1H (x) =
max{α ∈ [0, 1] : x ∈α,k+1 hE }, if x ∈α,k+1 hE some α ∈
[0, 1], and k+1H (x) =k H (x) otherwise.
Theorem 1 produces a decomposition of any THFS in

terms of the simplest THFSs, which are the fuzzy sets.
Example 3: Let U = {x1, x2}, E = {〈x1, {0.3, 0.6, 0.7}〉,
〈x2, {0.4, 0.5}〉}. Then

α,1hE =


{x1, x2}, α ≤ 0.5,
{x1}, 0.5 < α ≤ 0.7,
∅, otherwise,

α,2hE =


{x1, x2}, α ≤ 0.4,
{x1}, 0.4 < α ≤ 0.6,
∅, otherwise,

α,3hE =

{
{x1}, α ≤ 0.3,
∅, otherwise,

α,4hE = ∅ for each α ∈ [0, 1]. Thus, we have

1H : U → [0, 1]

x1 7→ 0.7,

x2 7→ 0.5,

2H : U → [0, 1]

x1 7→ 0.6,

x2 7→ 0.4,

3H : U → [0, 1]

x1 7→ 0.3,

x2 7→ 0.4,

and 3H =4 H =5 H = · · · . Therefore,

hE =
⋃

k=1,2,···
kH = 1H ∪ 2H ∪ 3H .

By combining the notion of hesitancy with Molodtsov’s
soft set, Wang et al. [30] introduced the hesitant fuzzy soft
set.
Definition 12: A pair (f ,A) is called a hesitant fuzzy soft

set (HFSS) over U , where A ⊆ E and f is a mapping given
by f : A→ H (U ).
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TABLE 1. Tabular representation of a hesitant fuzzy soft set.

The hesitant fuzzy soft set is a parameterized family of
hesitant fuzzy subsets of U . For convenience, for x ∈ U ,
we call f (a)(x) a hesitant fuzzy soft element (HFSE).
Example 4:Consider Example 1.Mr. X found it was hard to

give a single value to express his opinion about the cars with
respect to different criteria. For example,Mr. X thinks that the
degree of car x1 satisfies that criterion a1 ‘beautiful’ is 0.3 or
0.2. Then the HFSS (f ,A) can describe the ‘attractiveness of
the cars’ whichMr. X is going to buy under the hesitant fuzzy
information.

f (a1)={
x1

0.2, 0.3
,

x2
0.5, 0.6

,
x3
0.3
,

x4
0.3, 0.5

,
x5

0.4, 0.5
,

x6
0.6, 0.7

},

f (a2) = {
x1

0.4, 0.6, 0.7
,

x2
0.5, 0.7, 0.8

,
x3

0.6, 0.8
,

x4
0.7, 0.9

,

x5
0.3, 0.4, 0.5

,
x6
0.3
},

f (a3)={
x1

0.2, 0.4
,

x2
0.6, 0.7

,
x3

0.8, 0.9
,

x4
0.3, 0.5

,
x5

0.4, 0.6
,
x6
0.7
},

f (a4) = {
x1

0.3, 0.5, 0.6
,
x2
0.2
,
x3
0.5
,

x4
0.6, 0.7

,
x5

0.5, 0.6
,
x6
0.8
},

f (a5) = {
x1
0.6
,

x2
0.2, 0.3, 0.5

,
x3

0.5, 0.7
,

x4
0.2, 0.4

,
x5

0.5, 0.7
,

x6
0.3, 0.5

}.

To stored a hesitant fuzzy soft set in the computer, a hes-
itant fuzzy soft set can be represented by Table 1, where
{hij} ⊆ [0, 1], i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

III. HESITANT SOFT FUZZY ROUGH SETS
In this section, we define a hesitant soft fuzzy rough set
model and investigate basic properties of this model in detail.
Then we obtain a decomposition theorem for a hesitant fuzzy
binary relation and give the relationship between hesitant
fuzzy rough sets and hesitant soft fuzzy rough sets. Further-
more, we prove a characterization theorem for the hesitant
soft fuzzy rough set model.

Let S = (f ,A) be a hesitant fuzzy soft set over U . We call
S = (f ,A) a full hesitant fuzzy soft set if

∨
a∈A

hf (a)(x) = 1
for all x ∈ U , and then HSF = (U , S) is said to be a full
hesitant soft fuzzy approximation space. If for all a ∈ A, x ∈
U , f (a, x) is a typical hesitant fuzzy set, then we call S =
(f ,A) a typical hesitant fuzzy soft set (THFSS).

We define the (strong) (α, k)-level set of the hesitant fuzzy
soft set S = (f ,A) with respect to attribute a as follows:

Sα,k(a) = {x ∈ U : |{h ∈ hf (a)(x) : h ≥ α}| ≥ k},

Sα+,k(a) = {x ∈ U : |{h ∈ hf (a)(x) : h > α}| ≥ k},

where α ∈ [0, 1], a ∈ A. Obviously, if k = 1,

Sα,1(a) = {x ∈ U : h
−

f (a)(x) ≥ α},

Sα+,1(a) = {x ∈ U : h
−

f (a)(x) > α}.

By applying (strong) (α, k)-level set of fuzzy soft set S =
(f ,A), a set of objects with respect to an attribute can be
found. From Table 2, if we want to obtain a set of objects of
which all the attribute values with respect ai are not less than
0.5, then we will find these objects as {x ∈ U : h−f (ai)(x) ≥
0.5}. Furthermore, if we get a set of objects of which all the
attribute values with respect ai are not less than 0.5 and a2
are more than 0.6, then the selected objects as {x ∈ U :
h−f (ai)(x) ≥ 0.5} ∩ {x ∈ U : h−f (a2)(x) > 0.6}.
Clearly, from the definition of hesitant fuzzy soft set we

known that the mapping f : A → H (U ) is a binary hesitant
fuzzy relation defined between the universe U with with the
parameter set A. That is, for any ai ∈ A and xj ∈ U ,
f (ai)(xj) ∈ H (A × U ). In general, f (ai)(xj) does not satisfy
reflexive, symmetric and transitive. Therefore, f (ai)(xj) is an
arbitrary hesitant fuzzy relation.
Theorem 2: Let S = (f ,A) be a hesitant fuzzy soft set over

U . Then S determines a hesitant fuzzy binary relation RS ∈
H (A× U ), which is defined by

hRS (a, y) = hf (a)(y),

where a ∈ A, y ∈ U .
Conversely, assume that R is a binary relation from A to U .
If we define a set-valued mapping hfR : A→ H (U ) by

hfR (a)(y) = hR(a, y),

where a ∈ A, then SR = (hfR ,A) is a hesitant fuzzy soft set
over U , and SRS = S, RSR = R.
Proof: It is obtained directly by the definition of hesitant

fuzzy soft set.
Based on the concept of hesitant fuzzy soft set, we define

the hesitant soft fuzzy rough set as follows:
Definition 13: Let S = (f ,A) be a hesitant fuzzy soft set

over U . Then the pair HSF = (U , S) is called a hesitant
soft fuzzy approximation space. For a hesitant fuzzy set
E ∈ H (U ), the lower and upper hesitant soft fuzzy rough
approximations of E with respect to HSF are denoted by
Apr

HSF
and AprHSF , respectively, which are hesitant fuzzy

sets in U given by

Apr
HSF

(hE )(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hE (y))
))
,

(15)

AprHSF (hE )(x)

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ hE (y))
))
,

(16)

for all x ∈ U . The operators Apr
HSF

and AprHSF
are called the lower and upper hesitant soft fuzzy rough
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TABLE 2. Tabular representation of a hesitant fuzzy soft set.

approximation operators on hesitant fuzzy sets, respectively.
If Apr

HSF
(hE ) = AprHSF (hE ), E is said to be hesitant soft

fuzzy definable; otherwise E is called a hesitant soft fuzzy
rough set. The pair (Apr

HSF
(hE ),AprHSF (hE )) is also called

a hesitant soft fuzzy rough set of E with respect to HSF .
Remark 5: If S = (f ,A) is a fuzzy soft set and E is a

fuzzy set, then ∧ and ∨ reduce to the minimal and maximal
operations, and (Apr

HSF
(hE ),AprHSF (hE )) is a soft fuzzy

rough set.
Example 5: Consider Example 4. Let S = (f ,A) be a

hesitant fuzzy soft set on U (Table 2).
Give a hesitant fuzzy subset E ∈ H (U ) as follows:

E = {〈x1, {0.2, 0.3}〉, 〈x2, {0.5}〉, 〈x3, {0.4, 0.6}〉,

〈x4, {0.7, 0.8, 0.9}〉, 〈x5, {0.1}〉, 〈x6, {0.9}〉}.

By Definition 13, the lower and upper hesitant soft fuzzy
rough approximations of E , respectively, as follows:

Apr
HSF

(hE )(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hE (y))
))
,

AprHSF (hE )(x)

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ hE (y))
))
.

for all x ∈ U .
Since∧

xi∈U
(hf c(a1)(xi) ∨ hE (xi))

= ({0.7, 0.8} ∨ {0.2, 0.3}) ∧ ({0.4, 0.5} ∨ {0.5})

∧ ({0.7} ∨ {0.4, 0.6}) ∧ ({0.5, 0.7} ∨ {0.7, 0.8, 0.9})

∧ ({0.5, 0.6} ∨ {0.1}) ∧ ({0.3, 0.4} ∨ {0.9})

= {0.7, 0.8} ∧ {0.5} ∧ {0.7} ∧ {0.7, 0.8, 0.9} ∧ {0.5, 0.6}

∧ {0.9}

= {0.5},∧
xi∈U

(hf c(a2)(xi) ∨ hE (xi))

= {0.3, 0.4, 0.6} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.5, 0.6, 0.7} ∧ {0.9}

= {0.3, 0.4, 0.5},∧
xi∈U

(hf c(a3)(xi) ∨ hE (xi))

= {0.6, 0.8} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.6} ∧ {0.9}

= {0.4, 0.5},

∧
xi∈U

(hf c(a4)(xi) ∨ hE (xi))

= {0.4, 0.5, 0.7} ∧ {0.8} ∧ {0.5, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.5} ∧ {0.9}

= {0.4, 0.5},∧
xi∈U

(hf c(a5)(xi) ∨ hE (xi))

= {0.4} ∧ {0.5, 0.7, 0.8} ∧ {0.4, 0.5, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.3, 0.5} ∧ {0.9}

= {0.3, 0.4},

then we obtain the lower hesitant soft fuzzy rough approxi-
mations of E as follows:

Apr
HSF

(hE )(x1)

= ({0.7, 0.8} ∨ {0.5}) ∧ ({0.3, 0.4, 0.6} ∨ {0.3, 0.4, 0.5})

∧ ({0.6, 0.8} ∨ {0.4, 0.5}) ∧ ({0.4, 0.5, 0.7} ∨ {0.4, 0.5})

∧ ({0.4} ∨ {0.3, 0.4})

= {0.7, 0.8} ∧ {0.3, 0.4, 0.5, 0.6} ∧ {0.6, 0.8}

∧{0.4, 0.5, 0.7} ∧ {0.4}

= {0.3, 0.4},

Apr
HSF

(hE )(x2)

= {0.5} ∧ {0.3, 0.4, 0.5} ∧ {0.4, 0.5} ∧ {0.8}

∧ {0.5, 0.7, 0.8}

= {0.3, 0.4, 0.5},

Apr
HSF

(hE )(x3)

= {0.7} ∧ {0.3, 0.4, 0.5} ∧ {0.4, 0.5} ∧ {0.5}

∧ {0.3, 0.4, 0.5}

= {0.3, 0.4, 0.5},

Apr
HSF

(hE )(x4)

= {0.5, 0.7} ∧ {0.3, 0.4, 0.5} ∧ {0.5, 0.7} ∧ {0.4, 0.5}

∧ {0.6, 0.8}

= {0.3, 0.4, 0.5},

Apr
HSF

(hE )(x5)

= {0.5, 0.6} ∧ {0.5, 0.6, 0.7} ∧ {0.4, 0.5, 0.6} ∧ {0.4, 0.5}

∧ {0.3, 0.4, 0.5}

= {0.3, 0.4, 0.5},

Apr
HSF

(hE )(x6)

= {0.5} ∧ {0.7} ∧ {0.4, 0.5} ∧ {0.4, 0.5} ∧ {0.5, 0.7}

= {0.4, 0.5}.

Similarly,∨
xi∈U

(hf (a1)(xi) ∧ hE (xi))

= ({0.2, 0.3} ∧ {0.2, 0.3}) ∨ ({0.5, 0.6} ∧ {0.5})

∨ ({0.3} ∧ {0.4, 0.6}) ∨ ({0.3, 0.5} ∧ {0.7, 0.8, 0.9})

∨ ({0.4, 0.5} ∧ {0.1}) ∨ ({0.6, 0.7} ∧ {0.9})

= {0.2, 0.3} ∨ {0.5} ∨ {0.3} ∨ {0.3, 0.5} ∨ {0.1}
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underline∨ {0.6, 0.7}

= {0.6, 0.7},∨
xi∈U

(hf (a2)(xi) ∧ hE (xi))

= {0.2, 0.3} ∨ {0.5} ∨ {0.4, 0.6} ∨ {0.7, 0.8, 0.9} ∨ {0.1}

∨ {0.3}

= {0.7, 0.8, 0.9},∨
xi∈U

(hf (a3)(xi) ∧ hE (xi))

= {0.2, 0.3} ∨ {0.5} ∨ {0.4, 0.6} ∨ {0.3, 0.5} ∨ {0.1}

∨ {0.7}

= {0.7},∨
xi∈U

(hf (a4)(xi) ∧ hE (xi))

= {0.2, 0.3} ∨ {0.2} ∨ {0.4, 0.5} ∨ {0.6, 0.7} ∨ {0.1}

∨ {0.8}

= {0.8},∨
xi∈U

(hf (a5)(xi) ∧ hE (xi))

= {0.2, 0.3} ∨ {0.2, 0.3, 0.5} ∨ {0.4, 0.5, 0.6} ∨ {0.2, 0.4}

∨ {0.1} ∨ {0.3, 0.5}

= {0.4, 0.5, 0.6},

then we obtain the upper hesitant soft fuzzy rough approxi-
mations of E as follows:

AprHSF (hE )(x1)

= ({0.2, 0.3} ∧ {0.6, 0.7}) ∨ ({0.4, 0.6, 0.7}

∧ {0.7, 0.8, 0.9})

∨ ({0.2, 0.4} ∧ {0.7}) ∨ ({0.3, 0.5, 0.6} ∧ {0.8})

∨ ({0.6} ∧ {0.4, 0.5, 0.6})

= {0.2, 0.3} ∨ {0.4, 0.6, 0.7} ∨ {0.2, 0.4}

∨ {0.3, 0.5, 0.6} ∨ {0.4, 0.5, 0.6}

= {0.4, 0.5, 0.6, 0.7},

AprHSF (hE )(x2)

= {0.5, 0.6} ∨ {0.5, 0.7, 0.8} ∨ {0.6, 0.7} ∨ {0.2}

∨ {0.2, 0.3, 0.4, 0.5}

= {0.6, 0.7, 0.8},

AprHSF (hE )(x3)

= {0.3} ∨ {0.6, 0.7, 0.8} ∨ {0.7} ∨ {0.5} ∨ {0.4, 0.5, 0.6}

= {0.7, 0.8},

AprHSF (hE )(x4)

= {0.3, 0.5} ∨ {0.7, 0.8, 0.9} ∨ {0.3, 0.5} ∨ {0.6, 0.7}

∨ {0.2, 0.4}

= {0.7, 0.8, 0.9},

AprHSF (hE )(x5)

= {0.4, 0.5} ∨ {0.3, 0.4, 0.5} ∨ {0.4, 0.6} ∨ {0.5, 0.6}

∨ {0.4, 0.5, 0.6}

= {0.5, 0.6},

AprHSF (hE )(x6)

= {0.6, 0.7} ∨ {0.3} ∨ {0.7} ∨ {0.8} ∨ {0.3, 0.4, 0.5}

= {0.8}.

Therefore,

Apr
HSF

(hE )

={〈x1, {0.3, 0.4}〉, 〈x2, {0.3, 0.4, 0.5}〉, 〈x3, {0.3, 0.4, 0.5}〉,

〈x4, {0.3, 0.4, 0.5}〉, 〈x5, {0.3, 0.4, 0.5}〉, 〈x6, {0.4, 0.5}〉},

AprHSF (hE )

= {〈x1, {0.4, 0.5, 0.6, 0.7}〉, 〈x2, {0.6, 0.7, 0.8}〉,

〈x3, {0.7, 0.8}〉,

〈x4, {0.7, 0.8, 0.9}〉, 〈x5, {0.5, 0.6}〉, 〈x6, {0.8}〉}.

Theorem 3: Let S = (f ,A) be a hesitant fuzzy soft set over
U , HSF = (U , S) be a hesitant soft fuzzy approximation
space. Then for any F,G ∈ H (U ), we have
(1) Apr

HSF
(hU ) = AprHSF (hU ) = U ,

Apr
HSF

(∅) = AprHSF (h∅) = ∅.
(2) Apr

HSF
(hFc ) = h(AprHSF (hF ))c ,

AprHSF (hFc ) = h(Apr
HSF

(hF ))c .
(3) F ⊆ G⇒ Apr

HSF
(hF ) ⊆ Apr

HSF
(hG),

AprHSF (hF ) ⊆ AprHSF (hG).
(4) Apr

HSF
(hF∩G) = Apr

HSF
(hF ) ∩ AprHSF (hG),

AprHSF (hF∪G) = AprHSF (hF ) ∪ AprHSF (hG).
(5) Apr

HSF
(hF∪G) ⊆ Apr

HSF
(hF ) ∪ AprHSF (hG),

AprHSF (hF∩G) ⊇ AprHSF (hF ) ∩ AprHSF (hG).

Proof: (1) For any x ∈ U , hU (x) = 1, h∅(x) = 0. Then

Apr
HSF

(hU )(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hU (y))
))

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ {1})
))

=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ {1}

)
=

∧
y∈U

(∧
a∈A

(hf c(a)(x) ∨ hf c(a)(y))
)
∨ {1}

= {1},

and

AprHSF (h∅)(x)

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ h∅(y))
))

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ {0})
))

=

∨
y∈U

(∨
a∈A

(
hf (a)(x) ∧ hf (a)(y)

)
∧ {0}

)
=

∨
y∈U

(∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)
∧ {0}

= {0}.
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Therefore, Apr
HSF

(hU ) = U , AprHSF (h∅) = ∅. Similarly,
we can obtain other equations.

(2) For any x ∈ U ,

Apr
HSF

(hFc )(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hFc (y))
))

=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hFc (y)

)
=

∧
y∈U

(
∼

((∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)
∧ hF (y)

))
=∼

(∨
y∈U

(∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)
∧ hF (y)

)
=∼

(∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ hF (y))
)))

= h(AprHSF (hF ))c (x).

Therefore, Apr
HSF

(hFc ) = h(AprHSF (hF ))c . The other equation
can be proved in the similar way.

(3) Since F ⊆ G, i.e., hF (x) � hG(x) for all x ∈ U , then

Apr
HSF

(hF )(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hF (y))
))

=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y)

)
�

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hG(y)

)
=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hG(y))
))

= Apr
HSF

(hG)(x).

Therefore, Apr
HSF

(hF ) ⊆ Apr
HSF

(hG). Similarly, we can
obtain AprHSF (hF ) ⊆ AprHSF (hG).

(4) For any x ∈ U ,

Apr
HSF

(hF∩G)(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hF∩G(y))
))

=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF∩G(y)

)
=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ (hF (y) ∧ hG(y))

)
=

∧
y∈U

((∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y)

)
∧

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hG(y)

))
=

(∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y)

))
∧

(∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hG(y)

))
=

(∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hF (y))
)))

∧

(∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hG(y))
)))

= Apr
HSF

(hF )(x) ∩ AprHSF (hG)(x).

Therefore, Apr
HSF

(hF∩G) = Apr
HSF

(hF ) ∩ Apr
HSF

(hG).
Similarly, AprHSF (hF∪G) = AprHSF (hF ) ∪ AprHSF (hG).
(5) For any x ∈ U , since hF (x) � hF (x) ∨ hG(x), then

Apr
HSF

(hF∪G)(x)

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hF∪G(y))
))

=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF∪G(y)

)
=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ (hF (y) ∨ hG(y))

)
=

∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y) ∨ hG(y)

)
�

∧
y∈U

((∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y)

)
∨

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hG(y)

))
=

(∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hF (y)

))
∨

(∧
y∈U

(∧
a∈A

(
hf c(a)(x) ∨ hf c(a)(y)

)
∨ hG(y)

))
=

(∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hF (y))
)))

∨

(∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hG(y))
)))

= Apr
HSF

(hF )(x) ∪ AprHSF (hG)(x).

Therefore, Apr
HSF

(hF∪G) ⊆ Apr
HSF

(hF ) ∪ Apr
HSF

(hG).
Since hF (x) � hF (x) ∧ hG(x) for any x ∈ U , then we can
prove AprHSF (hF∩G) ⊇ AprHSF (hF ) ∩ AprHSF (hG) in the
similar way.

Now we wonder, ∀a ∈ A, what is the relationship between
x and y if we know f (a, x) and f (a, y). To that purpose,
we define a hesitant fuzzy binary relation on U induced by
a hesitant fuzzy soft set as follows:
Definition 14: Let S = (f ,A) be a hesitant fuzzy

soft set over U . Then S induces a hesitant fuzzy
binary relation RS ∈ H (U × U ), which is defined
by

RS = {〈(x, y), hRS (x, y)〉|(x, y) ∈ U × U},

where hRS (x, y) =
∨

a∈A
(hf (a)(x) ∧ hf (a)(y)).

Theorem 4: Let S = (f ,A) be a hesitant fuzzy soft set over
U and R be the hesitant fuzzy binary relation induced by S.
Then for any E ∈ H (U ),

R(hE ) = Apr
HSF

(hE ),

R(hE ) = AprHSF (hE ).
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Proof: For any x ∈ U ,

R(hE )(x)

=

∧
y∈U
{hRc (x, y) ∨ hE (y)}

=

∧
y∈U

{
∼

(∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)
∨ hE (y)

}
=

∧
y∈U

{∧
a∈A

(hf c(a)(x) ∨ hf c(a)(y))
)
∨ hE (y)

}
=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hE (y))
))

= Apr
HSF

(hE )(x),

R(hE )(x)

=

∨
y∈U
{hR(x, y) ∧ hE (y)}

=

∨
y∈U

{∨
a∈A

(hf (a)(x) ∧ hf (a)(y)) ∧ hE (y)
}

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ hE (y))
))

= AprHSF (hE )(x).

Example 6: Consider Example 5. According to Defini-
tion 14, S induces a hesitant fuzzy binary relation RS , which
is defined by

RS = {〈(x, y), hRS (x, y)〉|(x, y) ∈ U × U},

where hRS (x, y) =
∨

a∈A
(hf (a)(x) ∧ hf (a)(y)). Thus,

by calculating RS (xi, xj) for all pairs of the universe U ,
we obtain the hesitant fuzzy relation matrix RS (xi, xj)6×6 as
follows:

RS =


0.6, 0.7 0.4, 0.5, 0.6, 0.7 0.5, 0.6, 0.7

0.4, 0.5, 0.6, 0.7 0.6, 0.7, 0.8 0.6, 0.7, 0.8
0.5, 0.6, 0.7 0.6, 0.7, 0.8 0.8, 0.9

0.4, 0.5, 0.6, 0.7 0.5, 0.7, 0.8 0.6, 0.7, 0.8
0.5, 0.6 0.4, 0.5, 0.6 0.5, 0.6, 0.7

0.3, 0.4, 0.5, 0.6 0.6, 0.7 0.7

0.4, 0.5, 0.6, 0.7 0.5, 0.6 0.3, 0.4, 0.5, 0.6
0.5, 0.7, 0.8 0.4, 0.5, 0.6 0.6, 0.7
0.6, 0.7, 0.8 0.5, 0.6, 0.7 0.7
0.7, 0.9 0.5, 0.6 0.6, 0.7
0.5, 0.6 0.5, 0.6, 0.7 0.5, 0.6
0.6, 0.7 0.5, 0.6 0.8


(17)

By Definition 10, the lower and upper hesitant fuzzy rough
approximations ofE in terms of the hesitant fuzzy relationRS ,
respectively, as follows:

RS (hE )(x) =
∧

xi∈U
{h(RS )c (x, xi) ∨ hE (xi)},

RS (hE )(x) =
∨

xi∈U
{hR(x, xi) ∧ hE (xi)},

for all x ∈ U . Thus, we have

RS (hE )(x1)

=

∧
xi∈U
{h(RS )c (x1, xi) ∨ hE (xi)},

= ({0.3, 0.4} ∨ {0.2, 0.3}) ∧ ({0.3, 0.4, 0.5, 0.6} ∨ {0.5})

∧ ({0.3, 0.4, 0.5} ∨ {0.4, 0.6}) ∧ ({0.3, 0.4, 0.5, 0.6}

∨ {0.7, 0.8, 0.9}) ∧ ({0.4, 0.5} ∨ {0.1})

∧ ({0.4, 0.5, 0.6, 0.7} ∨ {0.9})

= {0.3, 0.4} ∧ {0.5, 0.6} ∧ {0.4, 0.5, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.5} ∧ {0.9}

= {0.3, 0.4},

RS (hE )(x2)

=

∧
xi∈U
{h(RS )c (x2, xi) ∨ hE (xi)},

= {0.3, 0.4, 0.5, 0.6} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.5, 0.6} ∧ {0.9}

= {0.3, 0.4, 0.5},

RS (hE )(x3)

=

∧
xi∈U
{h(RS )c (x3, xi) ∨ hE (xi)},

= {0.3, 0.4, 0.5} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.3, 0.4, 0.5} ∧ {0.9}

= {0.3, 0.4, 0.5},

RS (hE )(x4)

=

∧
xi∈U
{h(RS )c (x4, xi) ∨ hE (xi)},

= {0.3, 0.4, 0.5, 0.6} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.5} ∧ {0.9}

= {0.3, 0.4, 0.5},

RS (hE )(x5)

=

∧
xi∈U
{h(RS )c (x5, xi) ∨ hE (xi)},

= {0.4, 0.5} ∧ {0.5, 0.6} ∧ {0.4, 0.5, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.3, 0.4, 0.5} ∧ {0.9}

= {0.3, 0.4, 0.5},

RS (hE )(x6)

=

∧
xi∈U
{h(RS )c (x6, xi) ∨ hE (xi)},

= {0.4, 0.5, 0.6, 0.7} ∧ {0.5} ∧ {0.4, 0.6} ∧ {0.7, 0.8, 0.9}

∧ {0.4, 0.5} ∧ {0.9}

= {0.4, 0.5},

Similarly,

RS (hE )(x1)

=

∨
xi∈U
{hRS (x1, xi) ∧ hE (xi)}

= ({0.6, 0.7} ∧ {0.2, 0.3}) ∨ ({0.4, 0.5, 0.6, 0.7} ∧ {0.5})

∨ ({0.5, 0.6, 0.7} ∧ {0.4, 0.6}) ∨ ({0.4, 0.5, 0.6, 0.7}

∧ {0.7, 0.8, 0.9}) ∨ ({0.5, 0.6} ∧ {0.1})
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∨ ({0.3, 0.4, 0.5, 0.6} ∧ {0.9})

= {0.2, 0.3} ∨ {0.4, 0.5} ∨ {0.4, 0.5, 0.6}

∨ {0.4, 0.5, 0.6, 0.7} ∨ {0.1}

= {0.4, 0.5, 0.6, 0.7},

RS (hE )(x2)

=

∨
xi∈U
{hRS (x2, xi) ∧ hE (xi)}

= {0.2, 0.3} ∨ {0.5} ∨ {0.4, 0.6} ∨ {0.5, 0.7, 0.8} ∨ {0.1}

∨ {0.6, 0.7}

= {0.6, 0.7, 0.8},

RS (hE )(x3)

=

∨
xi∈U
{hRS (x3, xi) ∧ hE (xi)}

= {0.2, 0.3} ∨ {0.5} ∨ {0.4, 0.6} ∨ {0.6, 0.7, 0.8} ∨ {0.1}

∨ {0.7}

= {0.7, 0.8},

RS (hE )(x4)

=

∨
xi∈U
{hRS (x4, xi) ∧ hE (xi)}

= {0.2, 0.3} ∨ {0.5} ∨ {0.4, 0.6} ∨ {0.7, 0.8, 0.9} ∨ {0.1}

∨ {0.6, 0.7}

= {0.7, 0.8, 0.9},

RS (hE )(x5)

=

∨
xi∈U
{hRS (x5, xi) ∧ hE (xi)}

= {0.2, 0.3} ∨ {0.4, 0.5} ∨ {0.4, 0.5, 0.6} ∨ {0.5, 0.6}

∨ {0.1} ∨ {0.5, 0.6}

= {0.5, 0.6},

RS (hE )(x6)

=

∨
xi∈U
{hRS (x6, xi) ∧ hE (xi)}

= {0.2, 0.3}∨{0.5}∨{0.4, 0.6}∨{0.6, 0.7}∨{0.1}∨{0.8}

= {0.8}.

Therefore,

RS (hE ) = Apr
HSF

(hE ), RS (hE ) = AprHSF (hE ).

Proposition 3: Let S = (f ,A) be a hesitant fuzzy soft set
over U and R be the hesitant fuzzy binary relation induced
by S. If R is reflexive, then for any E ∈ H (U ), we have
Apr

HSF
(hE ) ⊆ hE ⊆ AprHSF (hE ).

Proof: For any x ∈ U , since R is reflexive, then hRc (x, x) =
{0}. According to Theorem 4, we have

Apr
HSF

(hE )(x)

=

∧
y∈U
{hRc (x, y) ∨ hE (y)}

=

(
hRc (x, x) ∨ hF (x)

)∧ (∧
y 6=x
{hRc (x, y) ∨ hE (y)}

)
= hF (x)

∧(∧
y 6=x
{hRc (x, y) ∨ hE (y)}

)
� hE (x).

Therefore, Apr
HSF

(hE ) ⊆ hE . Similarly, we can prove hE ⊆
AprHSF (hE ).
Proposition 4: Let S = (f ,A) be a hesitant fuzzy soft set

over U and R be the hesitant fuzzy binary relation induced
by S. Given E ∈ H (U ), then for all x ∈ U , we have

h−Apr
HSF

(hE )
(x) = min{max{h−Rc (x, y), h

−

E (y)} : y ∈ U},

h+Apr
HSF

(hE )
(x) = min{max{h+Rc (x, y), h

+

E (y)} : y ∈ U}.

h−
AprHSF (hE )

(x) = max{min{h−R (x, y), h
−

E (y)} : y ∈ U},

h+
AprHSF (hE )

(x) = max{min{h+R (x, y), h
+

E (y)} : y ∈ U}.

Proof: For any x ∈ U , according to Theorem 6, we have
Apr

HSF
(hE )(x) =

∧
y∈U {hRc (x, y) ∨ hE (y)}, therefore,

by the definition of ∧ and ∨, we obtain h−Apr
HSF

(hE )
(x) =

min{max{h−Rc (x, y), h
−

E (y)} : y ∈ U}, h+Apr
HSF

(hE )
(x) =

min{max{h+Rc (x, y), h
+

E (y)} : y ∈ U}. The other equations can
be proved in the similar way.

We denote the (α, t)-level set and strong (α, t)-level set
associated with RS , respectively, as

α,thRS = {(x, y) ∈ U × U : |{h ∈ hR(x, y) : h ≥ α}| ≥ t},

α+,thRS = {(x, y) ∈ U × U : |{h ∈ hR(x, y) : h > α}| ≥ t},

for all α ∈ [0, 1] and for all t ∈ N+.
Theorem 5: Let S = (f ,A) be a hesitant fuzzy soft set over

U and RS be the hesitant fuzzy binary relation induced by S.
If RS is typical, then RS is the hesitant fuzzy binary relation
onU associated with the family of fuzzy binary relations R =
{tR}t∈N+ on U , i.e.,

hRS =
⋃

t=1,2,···
tR,

where 1R(x, y) = max{α ∈ [0, 1] : (x, y) ∈α,1 hRS } =
h
lRS (x,y)
RS (x, y) for each (x, y) ∈ U × U ; if 1R, · · · ,t R are
known, then t+1R(x, y) = max{α ∈ [0, 1] : (x, y) ∈α,t+1
hRS }, if (x, y) ∈α,t+1 hR some α ∈ [0, 1], and t+1R(x, y) =t
R(x, y) otherwise.
Proof: Since RS is a typical hesitant fuzzy set, the conclu-

sion can be easily obtained by Theorem 1.
Theorem 5 produces a decomposition of any hesitant fuzzy

binary relation in terms of the fuzzy binary relations.
Example 7:Consider Example 6. For the hesitant fuzzy soft

set S = (f ,A), and the induced hesitant fuzzy binary relation
RS (see Equation 17). According to Theorem 5,

hRS =
4⋃
t=1

tRS ,

where

1RS =


0.7 0.7 0.7 0.7 0.6 0.6
0.7 0.8 0.8 0.8 0.6 0.7
0.7 0.8 0.9 0.8 0.7 0.7
0.7 0.8 0.8 0.9 0.6 0.7
0.6 0.6 0.7 0.6 0.7 0.6
0.6 0.7 0.7 0.7 0.6 0.8

 ,
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2RS =


0.6 0.6 0.6 0.6 0.5 0.5
0.6 0.7 0.7 0.7 0.5 0.6
0.6 0.7 0.8 0.7 0.6 0.7
0.6 0.7 0.7 0.7 0.5 0.6
0.5 0.5 0.6 0.5 0.6 0.5
0.5 0.6 0.7 0.6 0.5 0.8

 ,

3RS =


0.6 0.5 0.5 0.5 0.5 0.4
0.5 0.6 0.6 0.5 0.4 0.6
0.5 0.6 0.8 0.6 0.5 0.7
0.5 0.5 0.6 0.7 0.5 0.6
0.5 0.4 0.5 0.5 0.5 0.5
0.4 0.6 0.7 0.6 0.5 0.8

 ,

4RS =


0.6 0.4 0.5 0.4 0.5 0.3
0.4 0.5 0.6 0.5 0.4 0.6
0.5 0.5 0.8 0.6 0.5 0.7
0.4 0.5 0.5 0.7 0.5 0.6
0.5 0.4 0.5 0.5 0.5 0.5
0.3 0.6 0.7 0.6 0.5 0.8

 .

Remark 4: If S = (f ,A) is a full fuzzy soft set, then∧ and∨
reduce to∧ and∨, respectively, and RS is a fuzzy equivalence
relation.
Proof: For any x ∈ U , the reflexivity and symmetry of RS

can be easily obtained.
Since S = (f ,A) is a full fuzzy soft set, then

∨
a∈A

hf (a)(x) = 1

for all x ∈ U , thus, for every x ∈ U , there exists a0 ∈ A such
that hf (a0)(x) = 1. Therefore, ∀x, y, z ∈ U ,∧

(hRS (x, z), hRS (z, y))

=

∧(∨
a∈A

(hf (a)(x) ∧ hf (a)(z)),
∨
a∈A

(hf (a)(z) ∧ hf (a)(y))
)

=

∧(
hf (a0)(x) ∧ hf (a0)(z), hf (a0)(z) ∧ hf (a0)(y)

)
= hf (a0)(x) ∧ hf (a0)(y))

≤

∨
a∈A

(hf (a)(x) ∧ hf (a)(y)))

= hRS (x, y).

It follows that RS is transitive. Therefore, RS is a fuzzy
equivalence relation.
Remark 5: If S = (f ,A) is a full fuzzy soft set, then t = 1,

and for any α ∈ [0, 1], tRα = Rα and tRα+ = Rα+ construct
a partition of the universe U , respectively, i.e.,

U/Rα = {[x]Rα : x ∈ U}, U/Rα+ = {[x]Rα+ : x ∈ U},

where

[x]Rα = {y ∈ U : hR(x, y) ≥ α}

= {y ∈ U :
∨
a∈A

(hf (a)(x) ∧ hf (a)(y)) ≥ α},

= {y ∈ U :
∨
a∈A

(f (a)(x) ∧ f (a)(y)) ≥ α},

[x]Rα+ = {y ∈ U : hR(x, y) > α}

= {y ∈ U :
∨
a∈A

(hf (a)(x) ∧ hf (a)(y)) > α},

= {y ∈ U :
∨
a∈A

(f (a)(x) ∧ f (a)(y)) > α}.

Theorem 6: Let S = (f ,A) be a hesitant fuzzy soft set, RS

be the hesitant fuzzy binary relation induced by S. If RS is
a typical hesitant fuzzy equivalence relation on U , then tR
is the fuzzy equivalence relation on U for all t ∈ N+, and
tRβ , tRβ+ (t ∈ N+) are the crisp equivalence relations on U
for all β ∈ [0, 1].
Proof: Since RS is a typical hesitant fuzzy binary relation

on U , then according to Theorem 5,

hRS =
⋃

t=1,2,···
tR,

where tR (∀t ∈ N+) is a fuzzy binary relation. Since RS

is a hesitant fuzzy equivalence relation, then ∀x, y, z ∈ U ,
we have (i) RS is reflexive, i.e., hRS (x, x) = 1, it implies
that tR(x, x) = 1, ∀t ∈ N+; (ii) RS is symmetric,
i.e., hRS (x, y) = hRS (y, x), thus, tR(x, y) =t R(y, x), ∀t ∈ N+;
(iii) RS is transitive, i.e., hRS (x, y) ∧ hRS (y, z) � hRS (x, z),
which implies that min{h+RS (x, y), h

+

RS (y, z)} ≤ h+RS (x, z)
and min{h−RS (x, y), h

−

RS (y, z)} ≤ h−RS (x, z), thus, we obtain
tR(x, y) > min{tR(x, z),t R(z, y)}, ∀t ∈ N+. Therefore, tR
is the fuzzy equivalence relation on U for all t ∈ N+.
On the other hand, ∀β ∈ [0, 1], for the β-level set and the

strong β-level set of fuzzy binary relation tR (t ∈ N+), i.e.,

tRβ = {(x, y) : tR(x, y) ≥ β},

tRβ+ = {(x, y) : tR(x, y) > β},

since tR is the fuzzy equivalence relation, tRβ , tRβ+ are
reflexive and symmetric are easily obtained. Since tR is tran-
sitive, i.e., tR(x, y) > min{tR(x, z), tR(z, y)} for any x, y, z ∈
U , then for all β ∈ [0, 1], if (x, y) ∈ tRβ and (y, z) ∈ tRβ ,
i.e., tRβ (x, y) ≥ β and tRβ (y, z) ≥ β, we have tRβ (x, z) ≥ β,
i.e., (x, z) ∈ tRβ , it implies that tRβ is transitive. Therefore,
tRβ (t ∈ N+) is the crisp equivalence relation on U for all
β ∈ [0, 1].
Similarly, tRβ+ (t ∈ N+) is the crisp equivalence relation on
U for all β ∈ [0, 1].
Remark 6: ∀t ∈ N+, tRβ and tRβ+ construct a partition of

the universe U for all β ∈ [0, 1], respectively, i.e.,

U/tRβ = {[x]tRβ : x ∈ U}, U/tRβ+ = {[x]tRβ+ : x ∈ U},

where

[x]tRβ = {y ∈ U : tR(x, y) ≥ β},

[x]tRβ+ = {y ∈ U : tR(x, y) > β}.

Theorem 7: Let S = (f ,A) be a full fuzzy soft set, RS

be the typical hesitant fuzzy binary relation induced by S.
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Then for E ∈ TH (U ), we have

Apr
HSF

(hE ) =
⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR1−β (kHβ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR(1−β)+ (kHβ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR1−β (kHβ+ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR(1−β)+ (kHβ+ )),

and

AprHSF (hE ) =
⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ (kHβ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ+ (kHβ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ (kHβ+ ))

=

⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ+ (kHβ+ )),

where hRS =
⋃
t∈N+

tR, hE =
⋃

k∈N+
kH .

Proof: For any x ∈ U ,⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR1−β (kHβ )(x))

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : x ∈ tR1−β (kHβ )}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : [x]tR1−β ⊆ kHβ}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : for all y,

y ∈ [x]tR1−β H⇒ y ∈ kHβ}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : for all y,

tR(x, y) ≥ 1− β H⇒ y ∈ kHβ}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : for all y,

y /∈ kHβ H⇒ tR(x, y) < 1− β}

=

⋃
k∈N+

⋃
t∈N+

∧
{1− tR(x, y) : y /∈ kHβ}

=

⋃
k∈N+

⋃
t∈N+

∧
{kH (y) ∨ (1− tR(x, y)) : y ∈ U}

=

∧{( ⋃
k∈N+

kH (y)
)
∨

(
1−

( ⋃
t∈N+

tR(x, y)
))
: y ∈ U

}
=

∧
y∈U

{
hE (y) ∨ (1− hRS (x, y))

}
=

∧
y∈U

{
hE (y) ∨

(
1−

∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)}

=

∧
a∈A

(
hf c(a)(x) ∨

(∧
y∈U

(hf c(a)(y) ∨ hE (y))
))

= Apr
HSF

(hE )(x).

Therefore, we have

Apr
HSF

(hE ) =
⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tR1−β (kHβ )).

For any x ∈ U ,⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ (kHβ )(x))

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : x ∈ tRβ (kHβ )}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : [x]tRβ ∩ kHβ 6= ∅}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : there exists a y such that

y ∈ [x]tRβ and y ∈ kHβ}

=

⋃
k∈N+

⋃
t∈N+

sup{β ∈ [0, 1] : there exists a y such that

tR(x, y) ≥ β and kH (y) ≥ β}

=

⋃
k∈N+

⋃
t∈N+

sup{tR(x, y) : y ∈ kHβ}

=

⋃
k∈N+

⋃
t∈N+

∨
{kH (y) ∧ tR(x, y) : y ∈ U}

=

∨{( ⋃
k∈N+

kH (y)
)
∧

( ⋃
t∈N+

tR(x, y)
)
: y ∈ U

}
=

∨
y∈U

{
hE (y) ∧ hRS (x, y)

}
=

∨
y∈U

{
hE (y) ∧

(∨
a∈A

(hf (a)(x) ∧ hf (a)(y))
)}

=

∨
a∈A

(
hf (a)(x) ∧

(∨
y∈U

(hf (a)(y) ∧ hE (y))
))

= AprHSF (hE )(x).

Therefore, we have

AprHSF (hE ) =
⋃
k∈N+

⋃
t∈N+

∨
β∈[0,1]

(β ∧ tRβ (kHβ )).

Similarly, the other equations can be proved.
Theorem 7 indicates that the lower approximation

Apr
HSF

(hE ) and upper approximation AprHSF (hE ) can be
equivalently defined by using the (strong) level sets of a
hesitant fuzzy soft set.

IV. APPLICATION OF HESITANT SOFT FUZZY ROUGH
SETS BASED DECISION MAKING
In this section, we establish an approach to decision making
problem based on the hesitant soft fuzzy rough set model
proposed in this paper.

For decision making in an imprecise environment, some of
these problems are essentially humanistic and thus subjective
in nature (e.g. human understanding and vision systems);
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there actually does not exist a unique or uniform criterion for
evaluating the alternatives. Therefore, every existing decision
approach could inevitably have their limitations and advan-
tages more or less. In fact, all the existing approaches to
decision making based on soft set and its extensions theory
have solved kinds of decision problem effectively. In 2007,
Roy and Maji [25] first give the decision method based on
fuzzy soft set theory. In 2010, Feng et al. [7] analyzed the
limitations of the decision method proposed by Roy and Maji
in detail and established a novel approach by using the level
soft sets to solve the fuzzy soft set based decision making
problems. In 2014, Wang et al. [30] apply this level soft
sets method to hesitant fuzzy soft set based decision making
problems. In 2018, Zhang and He [40] investigated the hesi-
tant fuzzy compatible rough set over two different universes
and its application in hesitant fuzzy soft set based decision
making, where for a given threshold value, a hesitant fuzzy
soft set could be converted into a hesitant fuzzy compatible
relation.

Though the Feng’s et al. methods have overcome the limi-
tations exiting in the Roy andMaji’s method, but there need to
chose the thresholds in advance by decision makers. By con-
sidering different types of thresholds, they can derive differ-
ent level soft sets from the original fuzzy soft set. In general,
the final optimal decisions based on different level soft sets
could be different, that is, the results will be dependent to the
threshold values to some extent. In the following, we establish
a new approach to decision making based on hesitant soft
fuzzy rough set theory. This approach will using the data
information provided by the decision making problem only
and does not need any additional available information pro-
vided by decision makers or other ways. Therefore, the final
optimal decision could be more objective and also avoid the
paradox results for the same decision problem induced by the
effect of the subjective factors influenced by different experts.

Suppose that the universe U = {x1, x2, · · · , xm} is an
initial universe of objects, andA = {a1, a2, · · · , an} is a set of
parameters. Let (f ,A) be a hesitant fuzzy soft set over U . For
a ceratin decision evaluation problem, one want to find out
the decision alternative in universe with the evaluation value
as larger as possible on every evaluate index. Thus, we first
constructive an optimistic optimum normal decision object E
on the evaluation universe U as follows:

E = {〈x, {max hf (a1)(x),max hf (a2)(x), · · · ,

max hf (a|A|)(x)}〉|x ∈ U},

where |A| denotes the cardinality of the parameter set A.
Similarly, pessimistic optimum normal decision object E can
be constructed.

Secondly, calculate the hesitant soft fuzzy rough lower
approximation Apr

HSF
(hE ) and hesitant soft fuzzy rough

upper approximation AprHSF (hE ) of the optimum normal
decision object E by Definition 13. Since the rough lower
approximation and upper approximation are two most close
to the approximated set of the universe, we obtain two most

TABLE 3. Tabular representation of a hesitant fuzzy soft set.

close values Apr(hE )(xi) and AprHSF (hE )(xi) to the decision
alternative xi ∈ U . So we redefine the choice value ci, which
used by the existing decision making based fuzzy soft set, for
the decision alternative xi on the universe U as follows

ci = s(Apr(hE )(xi))+ s(AprHSF (hE )(xi)), xi ∈ U ,

where s(·) denotes the score function of a hesitant fuzzy
element. Finally, take the object xi ∈ U in universe U with
the maximum choice value ci as the optimum decision for the
given decision making problem. If there exists two or more
object xi ∈ U with the same maximum choice value ci, then
one of them can be chosen randomly as the optimum decision
for the given decision making problem.

We present the decision algorithm as follows:

Step 1. Input the hesitant fuzzy soft set S = (F,A).
Step 2. Compute the optimistic optimum normal decision

object E .
Step 3. Compute the hesitant soft fuzzy rough lower approx-

imation Apr
HSF

hE and hesitant soft fuzzy rough
upper approximation AprhE .

Step 4. Compute the choice value ci = s(Apr(hE )(xi)) +
s(AprHSF (hE )(xi)), xi ∈ U .

Step 5. The decision is xk ∈ U if ck = max ci, i =
1, 2, · · · , |U |.

Step 6. If k has more than one value, then any one of xk may
be chosen.

To illustrate our method, let us consider the following
example.
Example 8: Assume that a company wants to fill a posi-

tion. Let U = {x1, x2, · · · , x5} be a set of five candidates
who apply for the position. Suppose that the set of candi-
dates U can be characterized by a set of parameters A =
{a1, a2, a3, a4}, where aj(j = 1, 2, 3, 4) stands for ‘‘computer
knowledge’’, ‘‘higher education’’, ‘‘skilled foreign’’, ‘‘lan-
guages’’ and ‘‘experience’’, respectively. Now suppose that
the company organizes two experts to evaluate five candidates
under four parameters. In that case, the characteristics of
five candidates under four parameters are represented by a
hesitant fuzzy soft set. Its tabular representation is shown
in Table 3 which is cited from [39].
Then we can obtain the optimistic optimum normal decision
object E as follows:

E = {〈x1, {0.3, 0.6, 0.8, 0.9}〉, 〈x2, {0.2, 0.5}〉,

〈x3, {0.3, 0.4, 0.8}〉, 〈x4, {0.3, 0.5, 0.8, 0.9}〉,

〈x5, {0.2, 0.4, 0.7, 0.9}〉}.
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According to Definition 13, we have

Apr
HSF

(hE )

= {〈x1, {0.2, 0.3, 0.4, 0.5, 0.6}〉, 〈x2, {0.5, 0.6}〉,

〈x3, {0.3, 0.4, 0.5, 0.6}〉, 〈x4, {0.2, 0.3, 0.4, 0.5, 0.6}〉,

〈x5, {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}〉},

AprHSF (hE )

= {〈x1, {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}〉,

〈x2, {0.3, 0.4, 0.5}〉,

〈x3, {0.3, 0.4, 0.5, 0.8}〉,

〈x4, {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}〉,

〈x5, {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}〉}.

Therefore, we obtain

c1 = s(Apr
HSF

(hE )(x1))+ s(AprHSF (hE )(x1))

= 0.4+ 0.6 = 1.0,

c2 = s(Apr
HSF

(hE )(x2))+ s(AprHSF (hE )(x2))

= 0.55+ 0.4 = 0.95,

c3 = s(Apr
HSF

(hE )(x3))+ s(AprHSF (hE )(x3))

= 0.45+ 0.5 = 0.95,

c4 = s(Apr
HSF

(hE )(x4))+ s(AprHSF (hE )(x4))

= 0.4+ 0.6 = 1.0,

c5 = s(Apr
HSF

(hE )(x5))+ s(AprHSF (hE )(x5))

= 0.45+ 0.6 = 1.05.

From the above results, it is easy to see that the maximum
choice value is c5 = 1.05, scored by x5, and then x5 is the
most suitable candidate for the position.

V. CONCLUSION
In this paper, we construct a hesitant soft fuzzy rough set
model and investigate basic properties in detail. Based on the
decomposition theorem for a hesitant fuzzy binary relation,
which states that every typical hesitant fuzzy binary relation
on a set can be represented by a well-structured family of
fuzzy binary relations on that set, we give the relationship
between hesitant fuzzy rough sets and hesitant soft fuzzy
rough sets. The characterization theorem for the hesitant soft
fuzzy rough set model is also given. Finally, we develop a
decision making approach to a hesitant fuzzy soft set by using
the new model and use a numerical example to illustrate the
validity.

We believe that the new model will extend the application
scope of rough set theory and help us to gain new insights
into the mathematical structures of fuzzy sets, soft sets, rough
sets and hesitant fuzzy sets. Our further research is to extend
this model to multi-granulation and present an axiomatic
characterization.
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