
SPECIAL SECTION ON FEATURE REPRESENTATION AND LEARNING METHODS WITH
APPLICATIONS IN LARGE-SCALE BIOLOGICAL SEQUENCE ANALYSIS

Received November 8, 2019, accepted November 17, 2019, date of publication November 19, 2019,
date of current version December 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2954457

White Blood Cell Segmentation via
Sparsity and Geometry Constraints
ZHEN ZHONG 1,2, TAO WANG 1,3,4, KUN ZENG 1, XIAOGEN ZHOU 3, AND ZUOYONG LI 1,2
1Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350108, China
2Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
3College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
4NetDragon Inc., Fuzhou 350001, China

Corresponding author: Tao Wang (taowang2600@gmail.com)

This work was supported in part by the NSFC under Grant 61703195, Grant 61702431, Grant 61972187, and Grant 61772254, in part by
the Fujian NSF under Grant 2019J01756, in part by the Key Project of College Youth NSF of Fujian Province under Grant JZ160467,
in part by The Education Department of Fujian Province under Grant JAT170459 and Grant JK2017039, in part by the Distinguished
Young Scholars Program of Fujian Universities, in part by the Fuzhou Technology Planning Program under Grant 2018-G-96 and Grant
2018-G-98, in part by Minjiang University under Grant MJUKF201716, Grant MJY19021, and Grant MJY19022, and in part by the Fujian
University of Traditional Chinese Medicine under Grant X2017004-platform.

ABSTRACT Digital pathology and microscopic image analysis play an important role in cell morphology
research. In particular, the effective segmentation of White Blood Cells (WBCs) remains a challenging
problem due to the blurring boundaries of WBCs under rapid staining, as well as the adhesion between
leukocytes and other cells. In this paper, we propose a novel WBC (including nuclei and cells) segmentation
algorithm based on both sparsity and geometry constraints. Specifically, we first construct a sparse image
representation via combining the HSL color space and the RGB color channels, followed by the use of a
sparsity constraint to only preserve useful information from the nuclei features. In addition, we introduce
a robust model fitting strategy (i.e., the geometry constraint) to detect cells. Our model fitting strategy is
able to significantly improve the robustness of the proposed segmentation algorithm against outliers that
could seriously contaminate WBCs. The experimental results show that the proposed algorithm presents
clear advantages over the state-of-the-art WBC segmentation algorithms in terms of accuracy.

INDEX TERMS Geometry constraint, sparsity constraint, white blood cell segmentation.

I. INTRODUCTION
White blood cells (WBCs) [1], [2] are important defense
cells in human blood that consists of five kinds of cells,
i.e., neutrophils, basophils, eosinophils, monocytes, and lym-
phocytes. The WBC segmentation is a challenging task for
a variety of medical diagnosis applications. For example,
the visual examination of WBCs in blood smears collected
under a bright field microscope can be used to diagnose var-
ious diseases, such as septic bacterial inflammation, uremia,
and various kinds of leukaemia.

A number of WBC segmentation methods have been
proposed in recent years. In general, existing methods
can be divided into two distinct categories: supervised
vs. unsupervised WBC segmentation methods. The super-
vised WBC segmentation methods [3]–[6] formulate the
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WBC segmentation problem as a multi-class classification
problem. They are typically solved in a two-step manner,
i.e., first extracting image features and then classifying
the extracted features. However, these supervised methods
require a large number of annotated training samples, which
are often manually labeled and difficult to obtain. Particu-
larly, the manual pixelwise segmentation process is tedious
and error-prone for the abundant fine structures in the blood
cell imagery. In addition, the training and test images are
assumed to be visually similar to minimize the domain shift
between training and test images. In practice, this assumption
could negatively impact the generalization abilities of these
supervised algorithms.

One appealing alternative to the supervised methods is the
unsupervised WBC segmentation methods (e.g., threshold-
ing [7]–[9], K-means [10], [11], fuzzy C-means (FCM) [12]
and mean shift [13]) that do not generally require manually
labeled images. Indeed, blood cells exhibit strong overall
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FIGURE 1. Overview of the proposed algorithm. Segmentation of WBCs are obtained via two streams by applying a sparsity constraint (top) and a
geometry constraint (bottom) respectively. The sparsity constraint augments the image features for accurate nuclear segmentation. The geometry
constraint uses arc fitting to complete the partial cell boundary derived from the original image and the nuclear segmentation results. See text for
details.

shape priors and internal structural patterns that may render
training a data-hungry discriminative segmentation model
unnecessary. One of the key challenges, however, is that
WBCs and RBCs (i.e., red blood cells) often adhere together
since they have similar colors. Such ambiguity presents a
unique challenge for the accurate localization and the delin-
eation ofWBCs using unannotated images only. In particular,
it is difficult to obtain pixel accurate cell segmentations when
the boundary information is weak, and this leads to spuri-
ous or eroded segmentations as illustrated in Fig. 6 and Fig. 7.
To address the above issues, we propose a novel WBC

segmentation algorithm based on both the sparsity and the
geometry constraints, as shown in Fig. 1. Our primary goal is
to reduce the impact of WBC and RBC adhesions and WBC
boundary ambiguities for WBC segmentation. To achieve
this, we adopt a two-stream architecture that incorporates
sparsity and geometry cues respectively. Specifically, we first
use the HSL color space and the RGB color channels to
construct an image representation that makes the features of
the nuclei more significant. Afterwards, we use the sparsity
constraint to preserve only the nuclei features to obtain a
nuclear segmentation. The preserved features are also used
as an input to the geometry stream to identify nuclei regions
that are irrelevant for cell boundary segmentation. In the
geometry stream, our goal is to extract the cell boundaries,
beginning with edge detection. Note that, the edge detection
results are generally composed of incomplete boundary frag-
ments. Therefore, we introduce a robust arc fitting strategy
to complete the WBC boundaries. Importantly, the model
fitting process allows us to recover weak or ambiguous

boundary information and to propose cell structures from
partial observations only. The overview of the proposed algo-
rithm is presented in Fig. 1.

Key contributions of this paper are summarized as follows:
• We construct a new sparse image representation based
on the HSL color space and the RGB color channels
for nuclear segmentation. The constructed sparse image
representation is able to emphasize on key structures
while weakening irrelevant features (e.g., backgrounds,
red blood cells, cytoplasms).

• We propose a model fitting strategy to improve the
robustness and effectiveness of WBC segmentation for
detecting incomplete cell boundaries. To the best of
our knowledge, this model fitting based algorithm for
addressing the WBC segmentation problem has not yet
been reported.

• Experimental results demonstrate that the proposed
algorithm is able to achieve highly accurate results on
both rapid and standard staining WBC data. When com-
pared to several other state-of-the-art WBC segmenta-
tion algorithms (e.g., Combination Graph Segmentation
(CGS) [8], Watershed Segmentation (WS) [14], Support
Vector Machines (SVM) [3] and Adaptive Histogram
Threshold segmentation (AHT) [9]), the proposed algo-
rithm exhibits a significant superiority in terms of the
segmentation accuracy.

The rest of the paper is organized as follows. In Section 2,
we discuss the recent literature on WBC segmentation.
We present the details of the sparsity and geometry
constraints to segment WBCs in Section 3. In Section 4,
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we compare our algorithmwith the state-of-the-artWBC seg-
mentation algorithms. We summarize this paper with some
closing remarks in Section 5.

II. RELATED WORK
In this section, we briefly review the existing literature on
WBC segmentation. As discussed in the previous section,
we broadly categorize existing WBC segmentation methods
into two distinct groups: the supervised methods and the
unsupervised methods.

The supervised methods include those based on sup-
port vector machines (SVMs) [3], [15] and convolutional
neural nets (CNNs) [2], [4]–[6], [16]–[20], among others.
For example, Zheng et al. [3] first use an EM algorithm-
based layered sampling technique to sample the images.
Afterwards, they train an SVM online by using the color
features of the sampled pixels, and then classify each pixel
in the test image by the SVM. Inspired by the recent suc-
cess of CNNs in image classification and segmentation,
many recent papers [2], [4]–[6], [16]–[20] propose to solve
the WBC segmentation or similar medical imaging prob-
lems by training a special purpose CNN. For example,
Shitong et al. [2] propose a fuzzy cellular neural net for
white blood cell detection and segmentation. More recently,
Habibzadeh et al. [16] propose to use pre-trained deep
neural nets for white blood cell classification. In addition,
Tiwari et al. [17] propose a 6-layer CNN for detecting
subtypes of blood cells. We note that CNN-based methods
generally require a large amount labeled training data, which
may be prohibitive to obtain especially in the medical imag-
ing domains. Contrary to supervised methods, we explore
improving the localization accuracy of unsupervised
WBC segmentation methods by exploiting sparsity in image
features and the geometric regularities (e.g., shape priors) of
blood cells.

The unsupervised methods include threshold-based seg-
mentation [7]–[9], cluster-based methods [10], [13], and
the watershed algorithm based methods [14], [21], etc. For
example, Nee et al. [7] propose to use gradient magnitude,
thresholding, morphological operations and the watershed
transform to perform cell segmentation. Zhang et al. [10]
first convert the color space of the WBC images, and then
use K-means to segment the color space decomposition.
In addition, Liu et al. [13] use the mean shift algorithm
instead of K-means to obtain whole cells, and then use
the watershed algorithm to segment cells accurately. Fur-
thermore, Arslan et al. [14] model color and shape char-
acteristics of WBCs by defining two transformations, and
then use the watershed algorithm for effective segmentation.
In general, unsupervised methods do not require a large
number of annotated training data. However, they are prone
to overfitting/underfitting when the color and shape varia-
tions of cells are large. Therefore, a large number of adjust-
ments to parameters may be required. In addition, RBCs are
often stuck to and being visually similar to WBCs, mak-
ing the WBC segmentation problem more challenging when

RBCs and other staining impurities are present. In this paper,
we propose exploiting a sparse image representation based
on the HSL color space and the RGB color channels. Such a
representation can effectively distinguish WBCs from RBCs.
In order to deal with weak or ambiguous boundaries in origi-
nal images, we also introduce a robust model fitting strategy
to detect incomplete cells from partial observations.

III. THE PROPOSED ALGORITHM
In this section, we describe the details of the proposed WBC
segmentation algorithm based on sparsity and geometry con-
straints. Specifically, in the first step, we segment the nuclei
by a sparsity constraint. We adopt an image representation
that makes the features of nuclei more significant, and there-
fore can be reliably detected. In the second step, we use a
geometry constraint to detect cells. The key idea in this step
involves the use of a model fitting procedure to recover cells
from weak and incomplete boundaries.

A. NUCLEUS SEGMENTATION BASED ON SPARSITY
CONSTRAINT
The nucleus is the largest and the most important cellu-
lar structure in a WBC and is also the regulatory center
for cytogenetics and metabolism. Accurate segmentation of
the nucleus is an important step in the segmentation of
WBCs. In our algorithm, nucleus segmentation involves two
main stages: 1) constructing a sparse image representation
based on the HSL color space and the RGB color channels;
2) segmenting the nucleus by a sparsity constraint.

1) CONSTRUCTING A SPARSE IMAGE REPRESENTATION
The HSL color space [22] is a way of reflecting the per-
ceived colors of the human vision system. Compared to the
most widely used RGB imagery, the three channels in HSL,
i.e., hue, saturation, and lightness are a more natural rep-
resentation of the visual perception in human eyes. More
importantly, the rapidly stained blood cell image shown
in Fig. 2 has different intensity values in the HSL color space
and the RGB color channels. In particular, the nucleus is
darker than surrounding pixels in the G and B channels, and
brighter in the S channel. Therefore, we would like to exploit
these cues to obtain an image that highlights the nucleus
to improve the accuracy of threshold-based segmentation.
Based on our empirical observations and initial experiments,
we have found a specific combination of channels that is
able to highlight the nucleus. The output image from this
processing, Is, can be given by:

Is(Iin) = S − 2× G+ 2× B+
S − G
B

(1)

where Iin, S, G and B denotes the input image, saturation,
green and blue channel maps, respectively.

2) THE SPARSITY CONSTRAINT
In the next step, we obtain the intensity histogram of Is
and then perform automatic threshold segmentation [23].
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FIGURE 2. An example of a WBC image under rapid staining. We show the image in both the HSL and RGB color spaces. Note that the nucleus has
lower intensity values (i.e., darker) in some channels, and we exploit these cues for reliable nuclear segmentation. See text for details.

As shown in the upper part of Fig. 1, we first obtain the first
two peaks T1, T2 in the histogram, and then find the lowest
point between the two peaks, and T is our segmentation
threshold:

T = min[T1,T2] (2)

Then we obtain the nucleus region Cn(i, j) by T :

Cn(i, j) =

{
1 if Is(i, j) ≥ T
0 otherwise

(3)

where Cn(i, j) denote a binary map for nuclear segmen-
tation. In addition, we perform the connected component
analysis [24] to remove small and isolated noise pixels.

B. CELL SEGMENTATION BASED ON GEOMETRY
CONSTRAINT
In this section, we extract the geometric features of the cells
by edge detection, and then we propose a new model fitting
strategy for geometric features (note that robust model fit-
ting can extract valid information from a large amounts of
outliers [25]–[29]). In particular, the edge detection results
typically contain incomplete boundary fragments, and our
model fitting approach aims at recovering ambiguous or weak
cell boundaries for accurate localization.

1) OVERVIEW OF THE PROPOSED MODEL FITTING
STRATEGY
The core idea of RANSAC [30], which is the most popular
model fitting method, is to find the most suitable model by
generating a large number ofmodel candidates, which is often

very time-consuming.We note that edge detection algorithms
usually cannot fully recover WBC boundaries. That is, there
exists a gap when we obtain the edge features from a WBC
image. To address this issue, we use the detected edges to
infer the missing parts. Specifically, we use the edges to infer
an underlying model (i.e., a circle) that closes the gaps in
between boundary fragments. Note that, if we use RANSAC
to detect the cells directly, it always fits the best circle, but
not the best arc we need in order to fill in the missing parts
of cell boundaries. Our strategy makes use of the strong
shape priors of cells and respects the non-circular boundary
detection results. On one hand, stronger boundaries that can
be detected will be retained. On the other hand, any missing
cell boundaries will be filled in with an underlying circle that
best fits the detectable parts of the cell boundaries. In our
method, instead of fitting the entirety of the cell boundaries
in RANSAC, we only fill in gaps in incomplete boundaries
with the most appropriate arc, and then we use this arc to
close the gap. In addition, we fit the circles in RANSAC with
two breakpoints of a boundary fragment to make sure that
the fitted arc can be seamlessly stitched back to the detected
parts of the boundary.We show the flow chart of the proposed
model fitting strategy in Fig. 3.

2) THE PRETREATMENT STEP
As a preprocessing step, we would like to remove the red
blood cells and some other backgrounds irrelevant to WBC
segmentation. We do so by carefully examining the colors
of various regions in both the rapid staining and standard
staining images, as shown in Fig. 4. Specifically, we make
the following observations:
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FIGURE 3. Flow chart of the proposed model fitting strategy. We first retain only the longest boundary fragment, which typically belongs to the
outer boundary of the WBC. Afterwards, we fit an arc with two breakpoints plus another random point from the fragment. A number of arc
hypotheses are generated and the best is chosen. The best arc is then stitched back to the fragment, resulting in a complete and closed WBC
boundary. See text for details.

FIGURE 4. Cell examples in the pretreatment step. (a) WBC under rapid
staining, and (b) standard stained WBC. We note that although the
background colors are different, in both images the backgrounds have
high intensity values in the green channel. Therefore, we use color cues
for background removal. See text for details.

• The background under rapid staining is yellow, and the
background under standard staining is green.

• For both rapid and standard staining images, the back-
grounds have high intensity values in the green channel.
In addition, red blood cells have high intensity values in
the red channel.

Therefore, we can ignore image pixels that have high
intensities in the red and the green channels, as follows:
• If the green channel intensity is greater than the green
channel threshold t1(i, j), we ignore the pixel values by
creating a binary map Cg(i, j):

Cg(i, j) =

{
1 if Iin(i, j, 2) ≥ t1(i, j)
0 otherwise

(4)

t1(i, j) =
Iin(i, j, 1)+ Iin(i, j, 3)

2
, (5)

where I (i, j, 1), I (i, j, 2) and I (i, j, 3) are the red, green
and blue pixel intensities at pixel location (i, j) for an
image I . Here we use the average of red and blue inten-
sity values as the threshold for the green intensity.

• If the red channel intensity is greater than the red channel
threshold t2(i, j), we ignore the pixel values by creating
a binary map Cr (i, j):

Cr (i, j) =

{
1 if Iin(i, j, 1) ≥ t2(i, j)
0 otherwise

(6)

t2(i, j) =
Iin(i, j, 2)+ Iin(i, j, 3)

2
(7)

So far, we have three binary maps for identifying irrelevant
regions for WBC boundary segmentation, i.e, the nucleus
region map Cn(i, j) and the two color-based binary maps
Cg(i, j) and Cr (i, j). In the following sections, we will ignore
the edge detection results in these regions unless otherwise
specified. This will help us focus on the outer boundary of
the cells and remove as much noise as possible. In addition,
we note that the preprocessing steps above are necessary for
both the rapid staining and standard staining images.

3) MODEL FITTING FOR CELL BOUNDARY DETECTION
Now we move on to the most important step in applying our
geometry constraint, as illustrated in the lower part of Fig. 1.
We begin with applying a Canny edge detector [31] on the
input image, and removing edge detection results from the
nucleus region Cn(i, j) as well as from the two color-induced
background maps Cg(i, j) and Cr (i, j). Still, there remains
a large amount of noisy edges within the cell, as shown
in Fig. 3. For the sake of simplicity, for any given cell we
simply search for the largest connected component [24], as
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this boundary fragment typically belongs to the outer bound-
ary of the cell. Further, if this boundary fragment has a gap,
we propose a robust model fitting approach below to recover
the boundary from partial observations.

Our proposed model fitting strategy is inspired by
RANSAC. The proposed strategy aims to find themost appro-
priate model from a set of data with outliers present. Note
that, after Canny edge detection, the WBC boundary has a
large number of irregular and approximately circular edge
pixels. Thus, we treat each pixel as a data point, and then
find the two breakpoints (i.e., endpoints of the boundary
fragment). In order to fit a circle that could complete the gap,
we need one additional point. As shown in Fig. 3, most data
points left now are inliers, so sampling only a small number
of data points will be sufficient to search for a high quality
model hypothesis. The main steps of the proposed model
fitting strategy are described as follows:
• Search for the two breakpoints from the largest con-
nected component of the Canny edge detection results.

• Randomly sample data points, and together with the
two breakpoints, to generate circle candidates. Then we
choose the best circle with the largest number of inliers
from the generated candidates. The number of inliers for
the generated circle candidates is computed as follows:

S(θ ) =
n∑
i=1

|d(xi, θ) < ξ |, (8)

where n is the number of data points, ξ is the inlier noise
scale, and d(xi, θ) is the residual value between a data
point xi and a circle θ .

• Use the breakpoints to cut the best circle hypothesis
into two arcs and keep the appropriate arc. Specifically,
we connect the two breakpoints with a line segment and
find the midpoint, and then draw a line orthogonal to
this line segment from this midpoint. In this way, the arc
that should be removedwill intersect with the orthogonal
line at the same side as the Canny detected boundary
fragment. See Fig. 3 for an illustration.

• Stitch the arc with the Canny detected boundary frag-
ment, to obtain a complete outer boundary of a cell.

One of the key advantages of our method is that we can
find the arc that best fits the gap in the boundary fragment,
and then stitch the arc to the detected boundary. In this way,
the pixel-accurate edge detection results will not be altered,
and gaps will be filled. It should be noted that the main
limitation of the original RANSAC, if applied in this step,
would produce near-perfect circular segmentation, which is
not the common case for WBCs. See Fig. 5 for a comparison.

IV. EXPERIMENTAL RESULTS
In this section, we compare the proposed WBC segmenta-
tion algorithm with several well-established WBC segmenta-
tion methods, including Support Vector Machine (SVM) [3],
Watershed Segmentation (WS) [14], Combination Graph
Segmentation (CGS) [8] and Adaptive Histogram Threshold

segmentation (AHT) [9]. Firstly, we introduce the dataset
and evaluation criteria. Then, we analyze the proposed algo-
rithm by comparing the most popular model fitting algorithm
(i.e., RANSAC) with our method. Afterwards, we show the
qualitative and quantitative experimental results obtained by
all competing methods.

A. DATASET AND EVALUATION CRITERIA
To better evaluate the algorithm in terms of accuracy and
robustness, we evaluate the performance of our algorithm
on two datasets (i.e., Rapid Data and Standard Data). Rapid
Data contains 138 single WBC images which have a size of
120 × 120 under rapid staining provided by Jiangxi Tecom
Science Corporation, China. Standard Data was provided by
the Third People’s Hospital of Fujian Province under stan-
dard staining conditions using standard staining containing
28 single WBC images, which was a size of 250 × 250.
The experimental results of the two datasets under two dye-
ing conditions is able to verify the robustness of the WBC
segmentation method. Two examples of the two datasets are
shown in Fig. 4.

For evaluation metrics, we use four metrics: misclassifica-
tion error (ME) [32], false positive rate (FPR) [33], [34] and
false negative rate (FNR) [35], kappa index (KI) [36]. Lower
ME, FPR, and FNR values indicate better segmentation; in
contrast, higher KI values indicate better segmentation. The
experiments are conducted on a laptop with 2.40GHz Intel
Pentium 2020M CPU and 8GB memory, with MATLAB
codes.

ME = 1−
|Bs ∩ Ba| + |Ft ∩ Fa|
|Bs| + |Ft |

(9)

FPR =
|Bs ∩ Fa|
|Bs|

(10)

FNR =
|Ft ∩ Fa|
|Ft |

(11)

KI = 2×
Ft ∩ Fa
|Ft | + |Fa|

(12)

Among them,Bs andFt are the background and foreground
of the ground-truth; Ba and Fa are the background and fore-
ground of the segmentation results.

B. ALGORITHM ANALYSIS
In this work, we introduce a modified RANSAC-based
model fitting method to solve WBC segmentation. However,
RANSAC can be directly used to detect the cells by fitting a
circle from the Canny detected boundary fragment. Specifi-
cally, we implement a naive baseline that superimpose the fit-
ted circle onto the edge detection results. However, although
RANSAC can fit the periphery of WBCs more accurately,
the pixel-accurate edge detection results will be compromised
for a better overall fitting. We show the qualitative results
obtained by RANSAC and the proposed model fitting strat-
egy in Fig. 5. We can see that, the outer boundary estimated
by RANSAC is usually over- or under-segmented. In contrast,
the proposed model fitting strategy is able to obtain a superior
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FIGURE 5. The fitting results obtained by RANSAC and the proposed model fitting strategy. (a) Original image; (b) Edge detection image;
(c) and (d) The circle and cell estimated by RANSAC; (e) and (f) The circle and cell estimated by the proposed model fitting strategy.

performance, and the results better align with ground-truth
cell boundaries.

C. QUALITATIVE ANALYSIS
We first present some intuitive results on the WBC segmen-
tation of our algorithm. We randomly select eight images
and present the segmentation results of each algorithm from

the rapid staining data and standard staining data. The seg-
mentation results of two different datasets obtained by all
competing algorithms are shown in Fig. 6 and Fig. 7, respec-
tively.We can see that, the proposed algorithm is significantly
better than the SVM segmentation algorithm, the Watershed
Segmentation algorithm (WS), and the Combined Graph
Segmentation algorithm (CGS). For WS and CGS, they
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FIGURE 6. Experimental results obtained by different algorithms for Rapid Data. (a) Original images. (b)-(e) The segmentation results obtained by
SVM, WS, CGS and the proposed algorithm, respectively. (f) Ground truth.

frequently mistake the nucleus for the entire cell. In con-
trast, SVM and AHT frequently mistake the cell for the
background or RBCs. Although AHT is more accurate,
it also mistakes the nucleus for the entire cell in some cases.

Combining the results illustrated in Fig. 6 and Fig. 7, we can
see that the proposed algorithm leads to the most accu-
rate segmentation results compared to the above mentioned
methods.
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FIGURE 7. Experimental results obtained by different algorithms for Standard Data. (a) Original images. (b)-(e) The segmentation results obtained by
SVM, WS, CGS and the proposed algorithm, respectively. (f) Ground truth.

D. QUANTITATIVE ANALYSIS
To provide quantitative comparisons, we compare the pro-
posed algorithm with four state-of-the-art WBC

segmentation methods: CGS [8], WS [14], SVM [3] and
AHT [9]. We report the ME, FPR, FNR, KI (lower
ME indicates more accurate segmentation results, and higher
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FIGURE 8. Quantitative comparison on two datasets. From top to bottom: Cumulative distributions of ME, FPR, FNR and KI. From left
to right: Results on the cell in Rapid Data (a), the nucleus in Rapid Data (b), the cell in Standard Data (c) and the nucleus in Standard
Data (d). Four WBC segmentation algorithms (i.e., CGS, WS, SVM and AHT) and the proposed algorithm are used for a comparison.

TABLE 1. Average values of ME, FPR, FNR and KI obtained by SVM, WS,
CIS, AHT and the proposed algorithm on Rapid Data and Standard Data.
The best results are boldfaced.

KI indicates more accurate segmentation results) obtained by
all the five competing algorithms in Fig. 8 and Table 1.We can
see that two competing methods (i.e., SVM and the proposed
algorithm) are able to achieve low ME and high KT on the

cells from the Rapid Data than the other three competing
methods. However, SVM often mistakes the cell for the
background. Therefore, its FPR is the highest, and the FNR is
the lowest on the Rapid Data (cell). Our proposed algorithm,
on the other hand, distinguishes the cell and the background
by a geometry constraint, and obtains more accurate segmen-
tation results. For the nucleus of the Rapid Data, SVM has a
lower ME than WS, CIS and AHT. The proposed algorithm,
however, has an even lower ME and a higher KI (i.e., more
accurate than the SVM). Note that AHT has a lower FNR than
the proposed algorithm due to its over-segmentation. For the
Standard Data with many RBCs that have similar nuclei and
cytoplasms compared to WBCs, we can see that AHT and
the proposed algorithm have a higher KI and a lower ME.
AHT uses the morphological operations, which often result
in over-segmentations. The proposed algorithm is able to
achieve better performance thanks to the geometry constraint.
For the nucleus of the Standard Data, we can see that AHT
and the proposed algorithm achieve better performance than
other three algorithms. It is worth pointing out that the
proposed algorithm is based on a sparse image representa-
tion which can reduce unimportant features. Therefore, our
algorithm has a lower ME and higher KI than AHT.

167602 VOLUME 7, 2019



Z. Zhong et al.: WBC Segmentation via Sparsity and Geometry Constraints

V. CONCLUSION
In this paper, we introduce sparsity and geometry constraints
to detect nuclei and cells forWBC segmentation. Specifically,
we first construct a sparse image representation and then
segment the nuclei with a sparsity constraint. The constructed
sparse image representation is able to remove background
and RBC by combining the information from the HSL color
space and the RGB color channels. To improve the robustness
to outliers, we further propose a novel model fitting strategy
(i.e., the geometric constraint) to detect outer cell boundaries.
The experimental results on two datasets that include both
rapid and standard staining images verify the effectiveness
of the proposed algorithm. In the future, we would like to
explore more challenging cases such as the segmentation of
multiple cells and cells of multiple classes.
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