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ABSTRACT With the development of commercialized autonomous vehicles (AVs), the interaction between
AVs and human-driven vehicles has become increasingly important. Nevertheless, on the one hand, complex
driver behaviors like distraction are hard to detect by AVs, which may lead to traffic accidents because
of the late alert to the following vehicles. On the other hand, advanced techniques such as the real-time
image or video processing and vehicle-to-vehicle (V2V) communications make it possible to let AVs
receive monitoring signals from nearby vehicles, predict the latent risks, and make smart control to avoid
the vehicles driven by distracted drivers. Hence, in this paper, we envisage a collaborative framework
integrating human driver distraction monitoring, V2V communications, and AV velocity control. Then,
we design the smart velocity control of AVs by taking into consideration the distraction behaviors of the
drivers in the human-driven vehicles, and by formulating it as a feasible optimization problem based on
model predictive control (MPC) strategies. Furthermore, we analyze the safety benefits that the collaborative
framework could help improve on the condition of preserving traffic performance. Finally, we implement
the contrast tests of real-time evaluation on driver distraction monitoring based on convolutional neural
networks (CNNs) and perform simulations of smart velocity control strategies of the AV at avoiding the
distracted driver and reducing rear-end collisions. Through the analysis and the simulations, we show our
framework could increase the safety regions, reduce the rear-end collisions, and thus increase the safety of
the whole transportation networks.

INDEX TERMS Autonomous vehicle, distraction monitoring, velocity control, model predictive control,
convolutional neural networks.

I. INTRODUCTION
In recent years, intelligent transportation system (ITS) has
attracted much attention from both academia and indus-
try, which is expected to improve transportation safety and
mobility [1]–[3]. As one of the significant technologies,
autonomous driving systems have been aimed to bring us
safety, as well as autonomy, namely making driving decisions
independently [4]–[6]. Meanwhile, much attention has been
paid to the theoretical research and industrial practice of
autonomous vehicles (AVs) [7]–[9].
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Nevertheless, AVs and human drivers are expected to
coexist for a long time. Thus, it is important to consider
their interactions [10], [11]. In particular, on the one hand,
the driving manner of AVs may seem to be stubborn without
face-to-face communications between human drivers. For
instance, many AVs only use on-board sensors to perceive the
environment thus having difficulties anticipating the motion
of surrounding human-driven vehicles [12]. On the other
hand, the implicit and complex states and behaviors of human
drivers like distractions and fatigue, which are hard to detect
by the AVs, may result in sudden brakes and subsequent
accidents because of the late alert to the following AVs.
Moreover, the movements of human-driven vehicles usually
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involve a high level of uncertainty and randomness [13], and
sometimes human drivers dangerously trade off safety for
throughput [14], both bringing potential risks to the AVs.
Current research on AV control mainly focuses on the opera-
tions like car-following [15], lane-changing [16], or assisted
driving for the drivers inside vehicles [17], and it often
ignores the interactions between AVs and human-driven vehi-
cles. Even there exists some related work, it mainly resides in
sharing roads and the passing policy at the road intersections
[18], [19], or simply sending out alerts in the case of
emergency [20]. Recently, there also appears some pioneer-
ing studies like improving the throughput by a cooperative
platoon control of mixed AVs and human-driven vehicles
[13], [14] or mitigating the cascade of braking events by using
the motion information of nearby human-driven vehicles for
the AV [12]. However, in a nutshell, current studies in AV
control have not fully exploited complex driver behaviors like
distractions to make smart control.

However, there is no doubt that driver distraction has
become a crux safety concern in transportation networks. It is
regarded as one main form of inattention which is involved
in at least 25% of police-reported crashes as reported by
the National Highway Traffic Safety Administration [21].
What’s more, it is found that almost 80% of all crashes
and 65% of all near-crashes involve driver distractions [22].
As a result, it’s meaningful to take the complex distraction
behaviors of human drivers into consideration, which can
guide AVs to perform smart control decisions independently
and avoid abnormal drivers carefully like experienced drivers,
not only execute the processes and procedures without human
interventions as required by automated vehicles [23], [24].
Nevertheless, the appealing idea brings several difficulties
as well: (1) the implicit distraction behaviors need to be
detected and processed in an acceptable delay on the side
of human drivers; (2) the information on driver distraction
behaviors should be effectively evaluated and incorporated
into the AV control once being obtained by the AV; and
(3) a collaborative framework needs to be designed to support
the whole procedures spanning computer vision, communica-
tion and control areas from both the human driver side and the
AV side.

As for the related work on AV control and autonomous
driving systems, the role of vehicle control is to enhance
the robustness and stability of the system in the presence
of modeling error and uncertainties [25]. Typical control
design methods include static feedback control, optimal con-
trol, MPC, and artificial intelligence techniques [26]. Static
feedback control methods determine control actions based
on the current state of the system, but they cannot han-
dle any external constraints [27]. Optimal control and MPC
are two dynamic control methods which use optimization
algorithms to determine optimal control actions based on
real-time measurements. Optimal control suffers from the
disturbances and model mismatch errors because of its intrin-
sic open-loop control approach [28]; MPC uses a rolling hori-
zon approach that introduces a feedback mechanism, which

can make the controlled system more robust to uncertain-
ties and disturbances than optimal control [29]. In practice,
MPC-based methods have been widely demonstrated in real-
time applications in AVs [25], [30], [31]. What’s more, artifi-
cial intelligence techniques including case-based reasoning,
fuzzy logic, rule-based system, etc., are always used when
explicit models are not available, which we refer the read-
ers to [26] for more details. Recently, there have already
been some pioneering studies to introduce the role of human
drivers into the guidance of AVs. Lefèvre et al. [30] present
a framework for autonomous driving which can learn from
human demonstrations, and apply the demonstrations to the
longitudinal control of an autonomous car. Tehrani et al. [32]
compare the actions of a human driver with computer gen-
erated motions for expressway lane changing. By analyzing
the human-driver lane change data, Do et al. [33] propose
a two-segment lane change model that mimics the human
driver. Nevertheless, most of these studies focus on imitating
human drivers in the AV control, while none of them consider
the active management of AVs with distracted drivers.

The work presented in this paper is to build a bridge
between the AV control and the driver behavior detection
by focusing on the longitudinal velocity control of AV to
avoid potential distracted human drivers. To concentrate on
establishing a whole mechanism to support the AV to predict
the latent risks and actively avoid abnormal drivers, in the rest
of the paper, we consider the basic car-following scenario,
namely that an AV follows a human-driven vehicle.We aim to
establish a framework to make AV drive smarter to adaptively
spare more relative distances when the preceding driver falls
into distraction. The main insight of the proposed framework
is that the distracted human driver will decrease his/her driv-
ing ability and may make strong brakes to deal with a sudden
emergency, thus leading to potential rear-end collisions for
the following ‘‘unaware’’ vehicles. In more details, on the one
hand, it’s hard for the AV to avoid the distracted human driver
since the distraction state of the driver cannot be detected
by the AV. Furthermore, even the AV can take advantage of
its short responding time to avoid the collision, it’s much
harder for its followers especially human drivers to stop in
time because of the late alert. Therefore, we want to make an
attempt to address how theAV couldmake longitudinal veloc-
ity control to avoid distracted human drivers in this paper.
By jointly dealing with the above-discussed challenges, our
main technical contributions can be summarized as follows:
• Collaborative Framework: To make AV aware of the
potential risks, we need collaborations from multiple
areas. Thus we put forward a practical system frame-
work integrating driver distraction monitoring, V2V
communications, and AV velocity control.

• Smart Longitudinal Velocity Control of AV to Avoid
Distracted Driver: The detected driver distraction infor-
mation cannot be directly used to guide the AV, thus
we evaluate the influence of driver distraction behav-
iors from two aspects: the risk and the confidence, and
integrate them into longitudinal velocity control of AV.
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FIGURE 1. Illustration of the collaborative framework.

Then, we formulate it as a feasible optimization problem
based on model predictive control (MPC) strategies.

• Benefit Analysis of the Framework: We analyze and
visualize the safety benefits by comparing the increase
of safety regions with and without the system framework
on the condition of preserving the traffic performance.

• Simulations: We perform two simulations to validate
the effectiveness of our system framework and control
strategies: driver distraction monitoring based on the
convolutional neural networks (CNNs) model and lon-
gitudinal velocity control of AV .

The rest of this paper is organized as follows. Section II
proposes a collaborative framework. Section III puts forward
an MPC-based optimization method of longitudinal velocity
control of AV by taking driver distractions into considera-
tion. Section IV analyzes the safety benefits the collaborative
framework could help improve. The simulation results are
provided in Section V. Finally, we conclude the whole paper
in Section VI and several technical details are deferred to the
appendices.
Notation: Uppercase letters denote matrixes and bold low-

ercase letters refer to column vectors. Operators (·)T and
tr(·) indicate transposition and matrix trace, respectively. R
represents the real number set, and R+ is its positive part.
N+ denotes the positive integer set. log(x) returns the natural
logarithm of x. A K -dimensional column vector of all ones is
presented by 1K . | · | represents the absolute value of a scalar.
|| · ||2 presents the 2-norm of a vector. The Frobenius norm
of matrix A = [ai,j] ∈ Rm×n is ||A||F :=

√
tr(AAT ). cos(x) is

the cosine of x. angle(a, b) denotes the angle between vector
a and vector b.

II. COLLABORATIVE FRAMEWORK
In this section, we put forward a practical collaborative frame-
work integrating driver distraction monitoring, V2V commu-
nications, and AV velocity control, which spans computer
vision, communication and control areas.

As shown in Fig.1, the collaborative framework consists
of three parts: real-time distraction monitoring on the side
of the human driver, information transmission to AV through
V2V communications, and longitudinal velocity control on
the AV side. Here, we consider the car following scenario and
without loss of generality assume the AV follows a human-
driven car on the same lane.

The part of real-time distraction monitoring could be
performed by computer vision techniques, such as popular
convolutional neural networks (CNNs), based on real-time
sensed images or video streams. With the popularization of
assisting driving systems, this part can be easily implemented
by cameras and processors in the driver’s car or just an
active monitoring application installed in the smart mobile
phone [34]. Due to the privacy concern, the results should
be sensed under the authorization of the driver and encrypted
before transmission using the encryption techniques like sim-
ple interleaving or differential privacy [35] and so on. What’s
more, based on the distraction monitoring results, the human-
driven vehicle could send alerts to the distracted driver and
send the encrypted results to the following AV to let the
AV drive more cautiously, both for the safety concern of the
human driver. Thus, it would become easier for the human
driver to accept the distraction monitoring. Moreover, con-
sidering the distraction usually lasts for a while, the detection
based on the anomalies of the vehicle dynamic movement
may not work in time compared to the real-time distraction
monitoring based on computer vision techniques, since the
anomalies commonly not appear at the very beginning stage
of the distraction of the human driver.

Information broadcast through V2V communications is
aimed to be supported by the communicators equipped within
both vehicles and the techniques like millimeter wave tech-
nologies [36]–[38]. To be practical and efficient, we assume
only the encrypted vector of classification probability is
transferred.

The part of longitudinal velocity control at the AV side is
based on model predictive control (MPC) strategies, which
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applies optimization algorithms to determine optimal control
actions based on real-time measurements.

Next, we focus our attention on designing the smart longi-
tudinal velocity control of AV.

III. SMART LONGITUDINAL VELOCITY CONTROL
OF AV TO AVOID DISTRACTED DRIVER
In this section, we propose the adaptive longitudinal velocity
control of AV according to the human driver’s distraction
behaviors. We firstly introduce the vehicle model. Then we
evaluate the risk caused by driver distraction behaviors and
the confidence of the received monitoring result. Next, safety
constraints are given with persistent feasibility analyzed.
Finally, we integrate the risk and the confidence to design
the cost function and adopt MPC strategies to formulate
the longitudinal velocity control into a feasible optimization
problem.

A. VEHICLE MODEL
To depict the longitudinal velocity control of AV, we use ξt =
[dt , vt ]T to present the state of the AV at time t ∈ T , where
T denotes the unique time set of the system, and dt ∈ R+
and vt ∈ R+ are the longitudinal position of the AV in a
road-aligned coordinate system and its longitudinal velocity,
respectively, and likewise for ξpt = [dpt , v

p
t ]
T of the vehicle

driven by the human.
The acceleration sequence is denoted as at =

[at , . . . , at+Nc−1]
T with at ∈ R, t ∈ T , and Nc = Tc/1tc

is the number of time steps in the prediction horizon Tc ⊂ T
for the controller’s sampling time 1tc. Here acceleration
sequence at is the optimization variable we focused on in
the longitudinal velocity control of the AV.

For demonstration, we adopt a kinematic point-massmodel
for the AV [30], since the longitudinal motions could reduce
the degree of freedom of vehicle model from six to one [39].
The state update equations are given by

dk+1|t = dk|t + vk|t1tc +
1
2
ak|t · (1tc)2 (1a)

vk+1|t = vk|t + ak|t ·1tc (1b)

where the variable vk|t for k ∈ N+ denotes the predicted value
of v at time t+k ∈ T based on information available at time t ,
and denotes the history value of v at time t+k ∈ T for k ≤ 0,
same for other variables. Compactly, the linear time-invariant
vehicle model is written in a state-space form with C and D
denoting the state matrixes as:

ξk+1|t = Cξk|t + Dak|t , (2)

where C andD only depend on1tc, the controller’s sampling
time of AV.

Similarly, we assume the human-driven vehicle fit the kine-
matic point-mass model. What’s more, from the AV control
system perspective, we assume 1tc could characterize the
predicted motions of the human-driven vehicle thus same C

and D could be adopted. The state update equations of the
human-driven vehicle are as follows:

ξ
p
k+1|t = Cξpk|t + Da

p
k|t (3)

where apt denotes the acceleration at time t of the human-
driven vehicle.

Since the AV cannot obtain the future actions of the vehicle
driven by the human, here for the consideration of robustness,
we treat apt as a disturbance in our analysis, and formulate its
value range as follows:

apt ∈ Ap
:= {x : apmin ≤ x ≤ a

p
max} (4)

where apmin and a
p
max are the estimated acceleration bounds of

the human-driven vehicle.

B. RISK EVALUATION
In order to characterize different distraction behaviors more
meticulously thus letting the AV deal with various distraction
scenarios properly, in this subsection, we first define the
risk caused by driver distraction behaviors, followed by the
heuristic definition of the penalty for different distraction
behaviors from a probability perspective.

To facilitate the subsequent analysis, we assume at the
driver side the distraction monitor generates a sequence of
monitoring results {ct ∈ RK

+|c
T
t · 1K = 1, t ∈ T } with time

interval 1td , where the equation property results from the
probabilistic output of the distraction behavior classifier and
K is the number of classes. (For example, in the subsequent
simulation part, we use CNN to get the monitoring results
and consider the distraction behaviors listed in Table 1, and
the readers could get more details in Section V.A.) Then the
human-driven vehicle sends the probably encrypted monitor-
ing results to the following AV through V2V communications
shown in Fig. 1. Next, we assume on the AV side, the AV
receives and decrypts the sequence of monitoring results and
gets {ĉt }t∈T . For simplicity, we assume that we still have
ĉt ∈ RK

+ with time interval 1td , but ĉ
T
t · 1K = 1 may

not hold any more due to the noises resulting from V2V
communications, leading to the confidence evaluation in the
next subsection.

To account for the risk, on the AV side, after receiving the
monitoring result ĉt at time t ∈ T , the risk rt can be evaluated
by using a penalty vector h which characterizes the penalties
of different distraction behaviors as follows:
Definition 1: Consider the car-following scenario as

shown in Fig.1, the risk rt to the AV caused by the distraction
result ĉt from the preceding human driver at time t ∈ T can
be evaluated as:

rt := rnorm ĉTt · h, t ∈ T (5)

where rnorm is the tuning parameter which can normalize the
value of rt .
Notice that under this definition, a bigger value of rt indicates
a higher potential risk suffered by the AV.

Next, inspired by the work in [40], we give a heuristic
definition of the penalty vector h :
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Definition 2: The penalties for different distraction behav-
iors can be calculated in a probability perspective by:

h := P(damage|ĉ) · damage (6)

where damage ∈ RN×1 denotes the normalized
N -dimensional vector describing the N types of damage on
personal safety, vehicles, mental-health and other aspects,
and P(damage|ĉ) ∈ RK×N is the transition probability matrix
with the item P(damagei|ĉk ) representing the probability of
the i-th type of damage caused under the k-th distraction
behavior.

Hence, the risk rt can be computed by:

rt = rnorm ĉTt · P(damage|ĉ) · damage

= rnorm
K∑
k=1

N∑
i=1

ĉtk · P(damagei|ĉtk ) · damagei (7)

whereP(damagei|ĉtk ) can be calculated based on the statistics
on the transition probabilities among the k-th distrac-
tion behavior, accident and the i-th type of damage as
follows:

P(damagei|ĉtk )

= P(damagei|distraction_behaviour = k, accident = true)

×P(accident = true|distraction_behaviour = k) (8)

where distraction_behaviour = k represents the driver stays
in the k-th distraction behavior, and accident = true indicates
that an accident exactly happens.

Note that the penalty vector h can be computed and stored
beforehand to support the calculation of the real-time risk
caused by distraction behaviors. In fact, h should also depend
on factors such as speed and relative distance, since the
risk caused by driver distraction behaviors differs a lot in
different scenarios. For example, a small degree of distraction
on high-speed expressways may lead to devastating damages
compared to low-speed urban roads. Also, a small relative
distance will increase the accident rate like rear-end collisions
as well. Nevertheless, the more meticulous design of h is
beyond the scope of our paper, hence we make it constant
for demonstration here.

Based on the above definitions and analysis, we can con-
strain the value range of rt in the following corollary:
Corollary 1: The value of rt can be constrained to [0,1] by

setting rnorm = 1/
√
K , under the assumption that ĉTt ·1K = 1.

Proof: Please refer to Appendix VI.

C. CONFIDENCE EVALUATION
In this subsection, we evaluate the confidence of the mon-
itoring result based on the received sequences, to modify
the influence of distraction behaviors along with the above-
defined risk.

The reason to consider the confidence of the monitoring
result is based on the fact that the behaviors of a driver are
continuous and highly related in relatively small intervals on

the time horizon; however, the received results may suffer
large fluctuations due to the noises at the part of V2V commu-
nications or even steep drops resulted from the temporal loss
of the communication link. What’s more, the misrecognition
of the driver distraction would inevitably exist, and its effect
should be weakened by the evaluated confidence. Hence,
the introduction of confidence is much necessary which can
improve the robustness of the influence evaluation of distrac-
tion behaviors.

The confidence evaluation is aimed to depict the gen-
erally negative correlation between the confidence and the
difference between two adjacent monitoring results. More-
over, it should pay more attention to sharp fluctuations and
be normalized. A simple example of the confidence θt of
the results {ĉt }t∈T at time t ∈ T could be set as θt =
log(2 − ||ĉt − ĉt−1||2/

√
2)/log(2). For demonstration, if we

let ||ĉt−ĉt−1||2 = x and treat θt as a function of x, namely we
have θt (x) = log(2−x/

√
2)/log(2), then we can demonstrate

that for x ∈ [0,
√
2]: (1) θ ′t (x) < 0; (2) θ ′′t (x) < 0 and (3)

θt (x) ∈ [0, 1], which fits the design criterion well. Note that
the difference will fall into the considered value rangemost of
the time due to the intrinsic probability distribution property
of {ĉt }t∈T .

D. INTEGRATING RISK AND CONFIDENCE
INTO VELOCITY CONTROL
In this subsection, we integrate the risk and the corresponding
confidence, which characterize the influence of the distrac-
tion behaviors of the human drivers, into the cost function of
the temporal velocity control of the AV.

The cost function item at time t ∈ T can be defined :

Rt=θt

(
at−

(
rt

(
−
1
ρ

(
dsafe

dpt − dt

)Q
+

1
ρ
+1

)
+ρ

)
amin

)2

,

(9)

where amin is the minimum acceleration of the AV, and dsafe
is the minimum safe following distance, and Q > 0 is used
to modify the influence of relative distance on the risk, and
ρ < 0 standing for a stimulating parameter for acceleration
when the preceding human drives safely. We could choose
−ρ roughly equaling to the risk at the safe driving scenario,
thus it could be regarded safe when the risk is lower than−ρ.
It is noteworthy to point out that the term −ρ−1(dsafe/(d

p
t −

dt ))Q + ρ−1 + 1 could not only enlarge the risk when the
relative distance drops below dsafe but also relieve poten-
tial conservative driving in the normal and low-risk driving
conditions.

The design of Rt in (9) is mainly inspired by that an
experienced driver will commonly make a strong brake when
monitoring sudden emergency, hence we assume that the AV
makes stronger brakes to deal with higher risk scenarios.
What’s more, the square constraint on at is adopted to make
the subsequent optimization easily solvable and efficient.
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Moreover, the influence of the risk is modified by the cor-
responding confidence θt .

E. SAFETY CONSTRAINTS
We analyze the safety constraints for the velocity control of
the AV in this subsection.

Firstly, the control input of acceleration is bounded by the
physical limitations on the actuators as:

ak|t ∈ A := {x : amin ≤ x ≤ amax}, (10)

where amin and amax are the minimum and the maximum
accelerations of the AV, respectively.

Then the speed limit of the AV leads to

vk|t ≤ vmax. (11)

More importantly, safe following distance should satisfy

dpk|t − dk|t ≥ dsafe(vk|t ), ∀a
p
k−1|t ∈ Ap, (12)

where dsafe(vk|t ) is the minimum safe following distance,
being a function of the longitudinal velocity.

Nevertheless, it’s extremely tough to deal with the above
safe following constraint due to the uncertainty of the future
acceleration of the human-driven vehicle apk|t at time t .
For robustness and simplicity, it’s common to assume the
worst case, namely the disturbance apk|t takes on its lower
bound apmin at every time step in the prediction horizon
[t, t+Nc−1]. It’s trivial that the constraint could be satisfied
when the human-driven vehicle accelerates at a value greater
than apmin.
The predicted worst-case states of the human-driven vehi-

cle, denoted by ξ
p
k|t = [d

p
k|t , v

p
k|t ], are evolved as

ξ
p
k+1|t = Cξ

p
k|t + Da

p
min. (13)

Hence, the safety distance constraint can be turned to

d
p
k|t − dk|t ≥ dsafe(vk|t ). (14)

What’s more, the satisfaction of (14) can ensure that of (12)
since the adoption of the lower bound can lead to

d
p
k|t ≤ d

p
k|t , ∀a

p
k−1|t ∈ Ap. (15)

The constraints (11) and (14) can be compactly
expressed as:

gξ (ξk|t , ξ
p
k|t ) ≤ 0. (16)

By the same way, the constraint (10) can be expressed as:

ga(ak|t ) ≤ 0. (17)

Moreover, from the safety aspect of the control system,
the risk rt and confidence θt should both fall into reasonable
ranges as well, leading to rk|t ∈ R and θk|t ∈ 2. HereR and
2 are the value ranges of rt and θt , respectively.

By the same token, the constraints on rk|t and θk|t can be
expressed as:

gr (rk|t ) ≤ 0 (18)

and

gθ (θk|t ) ≤ 0. (19)

F. PERSISTENT FEASIBILITY
In this subsection, we analyze the persistent feasibility of
the safety constraints, which is of paramount importance to
the practical AV control. It is easy to see that no guarantee
exists to ensure the safety constraints (16)-(19) be satisfied in
closed-loop. In general, to solve this, a suitably chosen target
set (also often called terminal constraint set) is introduced to
constrain the system state at the end of the horizon [30], [41].
Note that (18) and (19) can be guaranteed in closed-loop by
the following evolutionary strategy of rk|t and θk|t .
Remark 1: To cater for the feedback mechanism of MPC,

we assume that the distraction status of the human driver
keeps same in the predicted time horizon, i.e., rk+1|t = rk|t
and θk+1|t = θk|t hold for k = 0, 1, · · · ,Nc − 1.

Next, we adopt the popularmethod of invariant sets to com-
pute the target set for the safety constraints (16) and (17) with
persistent feasibility analysis. We first compute the maximal
robust control invariant (RCI) set under the assumption that
the preceding driver makes a strong brake in the predicted
horizon. Then we use a recursive strategy to compute the
polyhedral target set for the safety constraints at the end of
the horizon.

Before proceeding to the computation of maximal RCI set,
we introduce the definition of RCI set and maximal RCI set
as below, respectively:
Lemma 1: Consider the system xt+1 = f (xt , ut ,wt ),

where the state xt ∈ X , the input ut ∈ U(x) and the
disturbance wt ∈ W(x, u). A set Xf ⊆ X is said to be an
RCI set for the system if

xt ∈ Xf
H⇒ ∃ut ∈ U(x)s.t.f (xt , ut ,wt ) ∈ Xf ∀wt ∈W(x, u).

(20)

Lemma 2: The RCI set which contains all other RCI sets
is called the maximal RCI set.

From Lemma.1, in our case, we can get the state xt =
[ξt , ξ

p
t , rt , θt ], the input ut = at and the disturbance wt = apt

for the AV. Note that the evaluated risk rt and confidence θt
are also included in the state of the system.

To compute the maximal RCI set, we assume that the
preceding human driver makes the maximum brake since
time t with system state ξpt = [dpt , v

p
t ]. It will be demonstrated

that this is sufficient to compute the required RCI set. It is
then assumed that after ts time interval, the preceding vehicle
stops. Hence, we can have vpk|t = 0 for k ≥ ts. And the
maximal RCI set Xs for the predicted AV state at time (t + ts)
can be computed as follows:

Xs = {[ξts|t , ξ
p
ts|t , rts|t , θts|t ]|∃ats|t

s.t. [ξts+1|t , ξ
p
ts+1|t , rts+1|t , θts+1|t ] ∈ Xs,

ξts+1|t = Cξts|t + Dats|t , ξ
p
ts+1|t = ξ

p
ts|t ,

gr (rts|t ) ≤ 0, gθ (θts|t ) ≤ 0,

ga(ats|t ) ≤ 0, gξ (ξts|t , ξ
p
ts|t ) ≤ 0}. (21)
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To compute Xs, we could adopt the Multi-Parametric
Toolbox (MPT) in MATLAB.

Next, we utilize the recursive strategy to compute the target
set Xf at the end of the predicted horizon time t + Nc.
Central to the computation is the commonly used predecessor
set (or one-step backward reachable set) of a given set as
follows [41]:
Lemma 3: Given a set � ⊆ X , the predecessor set Pre(�)

is the set of states for which there exists an admissible input
such that, for all allowable disturbances, the successor state
is in �, i.e.,

Pre(�) := {xt |∃ut ∈ U(x)
s.t. f (xt , ut ,wt ) ∈ �,∀wt ∈W(x, u)}. (22)

To compute the target set Xf at time t + Nc based on the set
Xs at time t + ts, a recursive strategy can be utilized for the
(ts−Nc)-step backward reachable set. Note that here we only
consider the case that ts > Nc, since if ts ≤ Nc, that Xf = Xs
is sufficient to guarantee the persistent feasibility of the MPC
problem.

In our case, the predecessor set takes the following form:

Pre(�) = {[ξk|t , ξ
p
k|t , rk|t , θk|t ]|∃ak|t

s.t. [ξk+1|t , ξ
p
k+1|t , rk+1|t , θk+1|t ] ∈ �,

ξk+1|t = Cξk|t + Dak|t ,

ξ
p
k+1|t = Cξ

p
k|t + Da

p
min,

gr (rk|t ) ≤ 0, gθ (θk|t ) ≤ 0,

ga(ak|t ) ≤ 0, gξ (ξk|t , ξ
p
k|t ) ≤ 0}. (23)

Remark 2: The (ts − Nc)-step backward reachable set of
Xs, Xts−Nc , can be computed recursively :

Xj+1 = Pre(Xj), j = 0, 1, · · · , ts − Nc − 1,X0 = Xs.

(24)

Finally, we can get the following theorem of the target set
Xf for the MPC problem.
Theorem 1: Let Xf be the (ts − Nc)-step backward reach-

able set toXs, namelyXf = Xts−Nc , and theMPC problem can
be persistently feasible with respect to the safety constraints
(16)-(19) if it is satisfied that [ξNc|t , ξ

p
Nc|t , rNc|t , θNc|t ] ∈ Xf .

Proof: On the one hand, it is trivial to prove that the
safety constraints (18) and (19) can be guaranteed in closed-
loop based on the evolutionary strategy shown in Remark 1.

On the other hand, the proof for (16) and (17) can be
completed from three value ranges of k . Firstly, (16) and
(17) can be trivially proved to hold for k ∈ [0,Nc − 1]
based on [ξNc|t , ξ

p
Nc|t , rNc|t , θNc|t ] ∈ Xf and the recursive

strategy. Then, for k ∈ [Nc, ts − 1], since Xf = Xts−Nc ,
there exists a feasible sequence of control inputs {ak|t }

ts−1
k=Nc

such that {[ξk|t , ξ
p
k|t , rk|t , θk|t ]}

ts
k=Nc+1

satisfy (16) and (17)
and [ξts|t , ξ

p
ts|t , rts|t , θts|t ] ∈ Xs for a

p
k|t = apmin. Finally, for

k ≥ ts, (16) and (17) can be guaranteed resulting from the
definition of Xs. Considering here we adopt the a

p
min to get the

worst-case for the preceding vehicle, the safety constraints
can be naturally held for all possible apk|t ∈ Ap for k ∈ N+.

In summary, the safety constraints (16)-(19) can be guar-
anteed in closed-loop for all possible apk|t ∈ Ap for k ≥ 0,
and the proof is completed.

G. MPC FORMULATION
In this subsection, we formulate the optimization problem
based on MPC strategies as well as the aforementioned con-
straints.

First of all, in practice, the safety distance constraint (14)
is usually imposed as a soft constraint with a high penalty P
on the constraint violation ε in the following equation, which
aims to guarantee the AV never collide with the preceding
vehicle:

d
p
k|t − dk|t ≥ dsafe(vk|t )− ε, ε ≥ 0. (25)

Also, the initial conditions for the state and the input are :

ξ0|t = ξt , ξ0|t = ξ
p
t , r0|t = rt , θ0|t = θt (26)

and

a−1|t = at−1. (27)

Then we define the cost function by introducing a control
horizon Nc into the online optimization :

G=
t+Nc−1∑
k=t

[Rk + α(ak − ak−1)2 + β(vmax − vk )], (28)

where α and β are parameters penalizing the jerk and the
deviation from the speed limit, respectively.

Finally, the sequence of control input at = [a0|t , · · · ,
aNc−1|t ] is computed as the solution of the following con-
strained finite-time optimal control problem:

min
at

G+ Pε (29a)

s.t. ξk+1|t = Cξk|t + Dak|t (29b)

ξ
p
k+1|t = Cξ

p
k|t + Da

p
min (29c)

rk+1|t = rk|t , θk+1|t = θk|t (29d)

gξ (ξk|t , ξ
p
k|t ) ≤ ε (29e)

ga(ak|t ) ≤ 0 (29f)

gr (rk|t ) ≤ 0 (29g)

gθ (θk|t ) ≤ 0 (29h)

[ξNc|t , ξ
p
Nc|t , rNc|t , θNc|t ] ∈ Xf (29i)

ξ0|t = ξt , ξ
p
0|t = ξ

p
t (29j)

r0|t = rt , θ0|t = θt (29k)

a−1|t = at−1. (29l)

Importantly, the above optimization problem (29) is a
quadratic program that can be solved efficiently in real time,
which can make the formulation much practical. What’s
more, the intrinsic feature of MPC which only adopts the
current computed acceleration a0|t but based on the prediction
over the time horizonNc could provide more robustness to the
control system [42], [43].
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IV. BENEFIT ANALYSIS OF COLLABORATIVE
FRAMEWORK
In this section, we analyze and visualize the safety benefits
our collaborative framework could help improve, where the
AV takes into consideration distraction behaviors of the pre-
ceding human driver, by comparing the increase of safety
regions with and without our collaborative framework on the
condition of preserving the traffic performance.

As demonstrated by numerous accidents, distraction will
definitely lead to a decrease of the driving ability of drivers.
As a result, it is not uncommon that the driver makes a strong
brake to deal with the sudden emergency when turning back
from distraction, which will largely increase the probability
of rear-end collisions for the following vehicles. On the other
hand, with the help of our collaborative framework, the AV
can predict the potential risks over the predicted time horizon
based on the real-time driver distraction monitoring and spare
more space to avoid rear-end collisions. What’s more, instead
of too cautiously making strong brakes to avoid distracted
drivers, our framework can preserve the traffic performance
by adaptive velocity control based on real-time monitored
results. Next, we make safety analysis to indicate the benefits
of our collaborative framework.

For demonstration, we consider the car-following scenario
and compare the final relative distances resulted from two
schemes: one without our framework that the AV brakes
after receiving the brake signal from the preceding vehicle,
and the other which allows the AV to predict the potential
risks based on distraction monitoring and V2V communi-
cations and decelerate in advance. For brevity, we assume
that the driver falls into distraction during time i to time j
(i < j) with unit time interval we concerned and makes a
strong brake with amin to deal with the sudden emergency
at time j, where amin is the minimum acceleration for both
the human-driven vehicle and the AV. Moreover, as we know,
both the V2V communication latency and the delay caused
by driver distraction detection will postpone the following
AV’s actions. Hence, we assume the V2V communication
delay is τ for both transmission of distraction information
and spreading of braking information, and the delay caused
by online distraction detection is µ. In addition, no matter
whether the collaborative framework is utilized, the AV needs
an operation time η to take control actions once receiving
signals. When the AV detects the distraction of the driver,
it brakes with {at }

j+τ+η−1
t=i+µ+τ+η where at < 0 to spare more

space for safety from time i+µ+ τ +η to time j+ τ +η−1,
and then brakes with amin at time j + τ + η when detecting
the sudden strong brake of the driver.

For initial conditions and constraints, we assume vi =
vpi = v0 and dpi − di = δ0, and suppose that j > i + µ
and v0 >

∑j+τ+η−1
t=i+µ+τ+η |at | to ensure that the AV is not too

conservative to stop before the driver’s vehicle stops. Based
on the analysis, we arrive at the following theorem on final
relative distance:

Theorem 2: Considering the car-following scenario as
shown in Fig.1, with the assistance provided by the collabora-
tive framework, the following AV can predict the risks based
on the real-time distraction monitoring of human driver and
decelerate in advance, thus the final relative distance can be
increased from δ0 − v0τ − v0η to at least following δstop:

δstop = δ0 − v0τ − v0η +
|aave|
|amin|

v0(j− i− µ)

+
1
2
|aave|

[
1−
|aave|
|amin|

]
(j− i− µ)2, (30)

where aave is the average acceleration of
∑j+τ+η−1

t=i+µ+τ+η |at |,

namely aave =
∑j+τ+η−1

t=i+µ+τ+η |at |/(j− i− µ).

Proof: Please refer to Appendix VI.
Remark 3: From the above theorem, we can conclude that

without our collaborative framework, it may cause rear-end
collision if δ0 < v0(τ + η), for example in the cases of high
speeds or small relative distances. Nevertheless, our frame-
work can increase the relative distance by |aave|/|amin|v0(j−
i−µ)+1/2|aave| [1− |aave|/|amin|] (j− i−µ)2 through pre-
dicting the potential risks and decelerating in advance, which
can definitely spare more space to reduce the probability of
rear-end collisions.

FIGURE 2. Demonstration of the increase of safety region resulted from
the framework for aave = 0,1,2,3 m2/s with τ = µ = η = 0.5 s.

To demonstrate the safety region explicitly, we assume the
final relative distance δstop = 0, and come to the safety
regions for the initial speed v0 and initial relative distance
δ0 which can avoid the rear-end collision in Fig. 2. From
Fig. 2, we can see that the initial safety region in yellow is
very restricted, while our framework can increase it by blue
regions to provide safer situations.

V. SIMULATIONS
In this section, we have implemented two simulations to
illustrate the feasibility of our collaborative framework and its

VOLUME 7, 2019 168067



W. Yan et al.: Smart Longitudinal Velocity Control of AVs in Interactions With Distracted Human-Driven Vehicles

efficacy at increasing the safety of transportation networks:
the contrast tests of real-time evaluation of driver distraction
monitoring and the longitudinal velocity control strategy of
AV, both on a server with two 2.10 GHz Intel(R) Xeon(R)
E5-2620 CPUs (each contains six cores) and 64 GB RAM.

A. REAL-TIME EVALUATION OF
DISTRACTION MONITORING
In this subsection, we provide a real-time driver distraction
monitoring implementation based on convolutional neural
networks (CNNs), which have been validated as one type
of neural networks powerful in detection and recognition of
objects and regions in images. First, we introduce the data
which is originated from reality, followed by several pre-
processing steps. Then we explain our CNN model. Finally,
we evaluate the online processing of our model and analyze
the tradeoff between the time cost and the performance under
different configuration conditions.

1) DATA AND PREPROCESSING
To be convinced, we adopted the real-world data from a
public competition of State Farm [44], which aims to improve
alarming statistics and better ensure the customers, by testing
whether dashboard cameras can automatically detect drivers
engaging in distracted behaviors. The task is to classify each
driver’s behaviors such as whether they are driving atten-
tively, wearing their seatbelt, or taking a selfie with their
friends in the backseat.

We used about 4000 labeled images in the data for training,
and 2000 labeled images for testing with the size of each
image being 640 × 480 pixels. Labeled images were divided
into 10 classes from c0 to c9 as explained in Table 1, where
only c0 denotes safe driving state, while others referring to
various distraction behaviors.

TABLE 1. Classification of human driver’s distraction behaviors.

Before moving on to the CNN model, several preprocess-
ing steps were in order. To accelerate the processing and cater
for the 8 × 8-dimension convolutional filters used in the
sequel, we resized the images from 640 × 480 to common
64 × 64. What’s more, note that the raw input is redun-
dant since adjacent pixel values are highly correlated [45].
Therefore, we used ZCA whitening to make the input less
redundant, before which local mean subtraction was adopted
as well.

2) CNN MODEL FOR DISTRACTION MONITORING
The visualized CNN model for distraction monitoring is
shown in Fig. 3. It includes one linear decoder and one CNN

FIGURE 3. CNN model for distraction monitoring.

of three layers (the first INPUT layer excepted): one convo-
lutional layer marked as C1, one pooling layer marked as P1,
and one OUTPUT layer. Notice that other than training the
CNN based on the raw input directly, here we introduced the
unsupervised learning to improve the efficiency of learning
higher-level features based on the lower-level features learned
in advance. We implement the CNN model in MATLAB,
mainly based on the CNNmodule of ‘‘UFLDL tutorial’’ [45].

First of all, the 8 × 8-dimensional color features were
learned as the convolutional filters used in the sequel. Here
we utilized 400 hidden units in the linear decoder to learn
the 400 filters, which lead to 400 feature maps (namely the
map from the input layer to the hidden layer) at the C1 layer.
In more detail, for the linear decoder part, we assumed a
more general scenario where unlabeled data set do not have
the same distribution with the training data set, such that
self-taught learning was used to finish the learning of color
features. We used 100,000 small 8 × 8-dimensional patches
sampled from the public STL-10 dataset [46], which contains
10 classes of colorful images including airplanes, birds and
cars and so on, to learn 400 color features. Hence, the linear
decoder had 400 hidden units. It was trained for 400 iterations
and the learned color features were shown in Fig. 3. It’s
noteworthy that if the unlabeled data has the same distribu-
tion with the training data set, the semi-supervised learning
may result in color features more suitable for the specific
task in practical applications. For the supervised learning
part, we adopted a scaled sigmoid activation function for the
C1 layer and a linear activation function for the P1 layer, and
a softmax activation function for the OUTPUT layer. The
training of the parameters utilized online gradient descent
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with a learning rate. During the training, images were contin-
ually translated, scaled and rotated, whereas only the original
images were used for validation. The training phase ended
once the validation error was small enough (for example
below 0.001) or when the learning rate reached its prede-
termined minimum or the number of iterations reached its
maximum. The initial weights were drawn from a uniformly
random distribution in the range [−0.05, 0.05].
Then, at the C1 layer, every 64 × 64-dimensional image

passed through 400 8 × 8-dimensional filters and gener-
ated 400 57 × 57-dimensional feature pictures (57 resulted
from the convolution operation). At the subsequent P1 layer,
3 × 3-dimensional mean pooling method was adopted to
generate 400 19 × 19-dimensional pooled pictures.

Finally, at the OUTPUT layer, the softmax classifier
was employed as the multi-class classifier. It generated a
10-dimensional vector to present the probability predicted for
each class, which corresponds to the 10 classes of distraction
behaviors of drivers.

After the training of the CNN model, all the parameters
including weights and biases will be stored offline. As for the
real-time monitoring, the pictures of the drivers will be cap-
tured online with a predefined time interval and be input into
the trained CNN model one by one, and then the processor
returns the classification results after acceptable delays.

3) CONTRAST TESTS UNDER DIFFERENT CONDITIONS
After the CNN model being trained, we stored all the param-
eters offline and sent the images from the test data set one
by one to the trained CNN model (with trained convolutional
filters), then we calculated the time cost of the processing.
Afterward, we analyzed the time cost and performance under
different conditions. We also used ‘‘parfor-loop’’ instead of
‘‘for-loop’’ on the MATLAB platform to parallelize the pro-
cedure of pooling and convolution.

TABLE 2. Accuracy and time when varying the number of layers.

TABLE 3. Accuracy and time when varying pooling size.

As shown in Table 2, more layers lead to higher accuracy
without overfitting at the cost of more time, which fits the
intuition well. Though not revealed in the table, overfitting
still appeared when we increased the iterations or reduced the
error rate during the training. The impact of pooling size is
shown in Table 3. We can see that larger pooling sizes lead to

TABLE 4. Accuracy and time when disabling the parallelization.

faster processing but lower accuracy, which is resulted from
the coarser characterization of the convolutional pictures.
Table 4 reveals a distinct improvement of the adoption of
the parallelization of convolution and pooling under the same
3×3 pooling size. Note that the classification accuracy would
affect the AV control performance. For instance, misrecog-
nizing distraction as safe driving, namely the true negative
cases, would lead to aggressive driving of the AV. Inversely,
regarding safe driving as distraction would induce cautious
driving. Moreover, in the case of misrecognizing one type
of distraction as another type of distraction, the influence
on the risk could be constrained which is only resulted from
the different weights of the penalty vector h. Hence, besides
the improvement of hardware resources and the algorithms
at the distraction monitoring part, from the viewpoint of
the whole control system, it is necessary to introduce the
confidence evaluation on the classification results to improve
the safety, as shown in Section III-C.

These contrast tests under different configuration condi-
tions can give guidance to modify the CNN model according
to the available hardware resources. For example, in our
experiments, the case with three layers and pooling size of
3× 3 and parallelization being adopted is suitable since the
classification accuracy can achieve 92.45% in less than 0.3 s.

B. VELOCITY CONTROL OF AV
In this subsection, we simulated two common scenarios to
show the advantages the collaborative framework can bring to
the AV: avoiding the distracted driver and reducing rear-end
collision, thus we can mark the two scenarios as cautious-
avoidance scenario and collision-reduction scenario, respec-
tively. Note that our collaborative framework can preserve
the traffic performance as much as possible by adaptively
anticipatory velocity control other than too cautiously strong
brakes to avoid the potentially distracted drivers.

For demonstration, we took the following particular situ-
ation as an example of the cautious-avoidance scenario that
the preceding driver fell into two types of distractions: talking
on the phone at right (c2) then reaching behind (c7) with a
constant speed, and as a result, the AV drove more cautiously
to spare more relative distance to avoid the driver. The second
scenario was that the driver made a strong brake to handle
the sudden emergency when texting on the phone at left (c3),
which might divert the driver’s attention severely from visual,
cognitive and manual aspects. Moreover, here we made com-
parisons with the case without the collaborative framework
on the assumption that the AV could make strong brakes
with a delay when detecting the brake signal of the preceding
vehicle.
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TABLE 5. Control design parameters.

In detail, we assumed that the initial relative distance
between the AV and the human-driven vehicle was 17 m, and
the minimum safe following distance dsafe(v) = 0.5v+5. The
initial speeds of both were 20m/s, and the initial acceleration
of the AV was 0 m/s2. What’s more, based on the statistical
results on crash risk associated with driver distraction in [47]
and [48] and how many of the three aspects (visual, cognitive
and manual) [49] would be affected by the distraction behav-
ior, we assumed a normalized penalty vector h = [7.56e −
05, 0.60, 0.23, 0.60, 0.23, 0.076, 0.076, 0.38, 0.076, 0.076]T

for demonstration, which could be further modified based
on more experimental data according to the probabilistic
method mentioned in Part III-B. Other parameters used in the
control design are listed in Table 5, where T stands for the
whole control time and is aimed to offer a longer observation
time for the AV’s adaptive control. It’s noteworthy that the
collaborative framework could provide similar results with
the parameters of other reasonable values.

In the cautious-avoidance scenario, to simulate the pre-
ceding driver falling into the states, talking on the phone at
the right side (c2) then reaching behind (c7), we generated
the received monitoring results {ĉt }t=40t=1 with safe driving
(c0) in the majority while talking on the phone at the right
side from 0.8 s to 2 s and reaching behind from 4 s to
5.6 s, where the process was simulated by a predetermined
quadratic concave function. Also, the monitoring result at
each time was scaled to satisfy that the summation of all ele-
ments equaled to 1. Moreover, we assumed the driver drove at
a constant speed without coming across emergencies. What’s
more, to be practical, more operational details should be
taken into consideration, like the time consumption for V2V
communications, image processing, and vehicle’smechanical
operations. Therefore, we made assumptions that the V2V
communication delays for both transmissions of distraction
information and braking information, as well as the delay
caused by online distraction detection and the AV’s mechani-
cal operation time, were all 0.4 s, compared to which the time
on the evaluations of the risk and the confidence at theAV side
could be neglected. Thus, the received monitoring results,
the risk evaluation, and the confidence evaluation all have a
0.8 s delay and the AV control has a 1.2 s delay. The simulated
results can be visualized in Fig. 4 with c0, c2 and c7 in bold.
Based on the received monitoring results, the sequences of
risk and confidence can be evaluated by Equation (5) and
the example function in Section III-C. As shown in Fig. 5,
the risk caused by reaching behind is higher than talking

FIGURE 4. Visualization of the received monitoring results of AV in the
cautious-avoidance scenario.

FIGURE 5. Risk and confidence evaluation in the cautious-avoidance
scenario.

on the phone at the right side due to a bigger penalty value
in h, and the confidence stays stationary except distraction
appearing or ending, which fits the intuition well.

To deal with the distracted preceding driver, the AV chose
to drive more cautiously to avoid the driver. In detail, the AV
could adaptively adjust its speed according to the real-time
predicted risks and confidence as shown in Fig. 6. As a
result, the AV can spare more relative distance in case that
the preceding distracted driver makes suddenly strong brakes
to handle emergencies. Note that the AV could also apply
large accelerations and return to its available maximum speed
gradually as long as the relative distance is safe.

In the collision-reduction scenario, the preceding driver
was assumed texting on the phone at left (c3) since 0.8 s
with a constant speed, then monitoring an emergency like
that a pedestrian suddenly appeared, thus making a strong
brake at 2.6 s. Here compared to the cautious-avoidance
scenario, the driver no more drove at a constant speed while
making brakes to handle emergencies. Considering the delays
of V2V communications and online distraction detection and
the AV’s mechanical operation time, the AV cautiously avoid
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FIGURE 6. Velocity control of AV in the cautious-avoidance scenario.

FIGURE 7. Visualization of the received monitoring results of AV in the
collision-reduction scenario.

the distracted driver since 2 (resulted from 0.8 + 0.4 +
0.4 + 0.4) s, and make strong brakes at 3.4 (resulted from
2.6 + 0.4 + 0.4) s once receiving the brake signals from
the preceding human-driven vehicle, as same as the analysis
in the above section. Note that we assume the AV control
system could adopt the minimum value between the current
computed acceleration of MPC and the received acceleration
value from the preceding human-driven vehicle, which is
practical to keep safe in case of emergency. And the moni-
toring system will be kept on until the AV totally stops, thus
the AV could resume to the normal driving scenario when
the risk goes away as long as it’s not fully stopped. As a
result, Fig. 7 shows the received monitoring results by the
AV in the collision-reduction scenario. Subsequently, the risk
and confidence are demonstrated in Fig. 8. For the velocity
control of the AV, from Fig. 9, we can see that the AV can
predict the potential risks and spare more relative distance
with the driver falling in distractions. On the other hand,
the AV’s adaptively anticipatory velocity control can preserve
the traffic performance as much as possible other than too
cautiously making strong brakes once detecting distraction

FIGURE 8. Risk and confidence evaluation in the collision-reduction
scenario.

FIGURE 9. Velocity control of AV in the collision-reduction scenario.

behaviors. To further demonstrate the effectiveness of our
framework, we also simulated the actions of the AV without
our collaborative framework, namely making brakes at 3.4 s
once received the brake signals from the preceding human-
driven vehicle. From the simulation results, we can show that
our collaborative framework can help the AV reduce the rear-
end collision to some extent. To go a further step, considering
the delays, the framework could take effect if the time interval
exceeds 1.2 s between the start of distraction and the strong
brake of the human driver.

In summary, we can conclude from the experiments that
the AV equipped with our collaborative framework can drive
more cautiously to avoid the distracted driver and reduce the
collisions in the case of sudden brakes.

VI. CONCLUSION
This paper focuses on how the AV could make smart lon-
gitudinal velocity control to deal with the vehicle driven
by a distracted human driver. To achieve the goal, we put
forward a practical collaborative framework to integrate data
acquisition and processing, V2V communications, and the
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AV control from both the human driver side and the AV side.
Then, to utilize the driver’s distraction information effec-
tively, we propose a method of longitudinal velocity control
for the AV based on MPC strategies, considering the risk and
the confidence of driver distraction behaviors. Furthermore,
we analyze and visualize the safety benefits the collaborative
framework could help improve. The simulations show that
the driver distraction monitoring implementation based on
the CNN can be approximately real-time which can achieve
92.45% accuracy in less than 0.3 s; and our velocity control
method is efficacy at guiding the AV to act smartly to predict
the risks caused by the driver’s distraction and improve its
safety by cautiously avoiding distracted drivers and reducing
rear-end collisions.

APPENDIXES
APPENDIX A
PROOF OF COROLLARY 1
Recall (7):

rt = rnorm ĉTt · P(damage|ĉ) · damage. (31)

Thus, we have

|rt | = |rnorm ĉTt · P(damage|ĉ) · damage|

≤ |rnorm| · ||ĉ
T
t ||2 · ||P(damage|ĉ)||F · ||damage||2 (32)

Next, we compute the value range of ||ĉTt ||2. Since
ĉT ∈ RK

+, it is trivial to get

cos(angle(ĉT ,1)) ∈ [1/
√
K , 1] (33)

Then based on ĉT · 1K = 1, we have

||ĉT ||2 · ||1||2 · cos(angle(ĉ
T
,1)) = 1 (34)

Hence, we can have ||ĉTt ||2 ∈ [1/
√
K , 1].

Then we compute the value range of ||P(damage|ĉ)||F .
First, we have

||P(damage|ĉ)||F
(a)
=

√
tr(P(damage|ĉ)PT (damage|ĉ))

(b)
=

√√√√ N∑
i=1

K∑
k=1

P(damagei|ĉk )2

(c)
=

√√√√ K∑
k=1

||P(damage|ĉk )||22 (35)

where P(damage|ĉk ) presents the k-th row of P(damage|ĉ),
and the derivation (a), (b) and (c) result from the definition of
Frobenius norm, matrix trace and 2-norm, respectively.

Moreover, due to the definition ofP(damagei|ĉk ) in Defini-
tion. 2, we can have the following property of P(damage|ĉk ):

P(damage|ĉk ) · 1N = 1 (36)

and

P(damage|ĉk ) ∈ RN
+. (37)

By the same analysis of ĉTt , we can have ||P(damage|ĉk )||2 ∈
[1/
√
N , 1].

Hence, we get ||P(damage|ĉ)||F ∈ [
√
K/N ,

√
K ].

Finally, the result rt ∈ [0, 1] can be obtained given that
rnorm = 1/

√
K and the vector damage is normalized.

APPENDIX B
PROOF OF THEOREM 2
Firstly, we compute the final relative distance without the
deceleration in advance, namely theAVnot equippedwith our
collaborative framework. The relative distance is δ0 − v0τ −
v0η since the AV takes brakes with a delay of τ + η.

Then for the vehicle driven by a human, its position dpj at
time j, can be computed as follows:

dpj = dpi + v0(j− i) (38)

thus

dpstop = dpi + v0(j− i)+
1
2

v20
|amin|

(39)

On the other hand, for the AV with our framework, it can
brake earlier at time i+ µ+ τ + η, thus the vj+τ+η is:

vj+τ+η = v0 −
j+τ+η−1∑

t=i+µ+τ+η

|at | (40)

Hence, dj+τ+η can be computed as follows:

dj+τ+η

= di + (µ+ τ + η)v0 −
j+τ+η−1∑

t=i+µ+τ+η

v2t+1 − v
2
t

2|at |

(a)
≤ di + (µ+ τ + η)v0 +

v0 + vj+τ+η
2

(j− i− µ)

= di + v0(j− i+ τ + η)−
1
2
|aave|(j− i− µ)2 (41)

where the transition (a) to deal with the distance caused by
the deceleration is resulted from the assumption that the AV
brakes uniformly with aave from time i + µ + τ + η to time
j+ τ + η − 1.
Next, we compute dstop:

dstop = dj+τ+η+
1
2

v2j+τ+η
|amin|

= dj+τ+η+
1
2

v20
|amin|

−
v0
∑j+τ+η−1

t=i+µ+τ+η |at |

|amin|

+
1

2|amin|

 j+τ+η−1∑
t=i+µ+τ+η

|at |

2

(b)
= dj+τ+η+

1
2

v20
|amin|

−
|aave|
|amin|

v0(j− i− µ)

+
|aave|2

2|amin|
(j− i− µ)2

(c)
≤ di + v0(j− i+ τ + η)−

|aave|
|amin|

v0(j− i− µ)

+
1
2

v20
|amin|

−
1
2
|aave|

[
1−
|aave|
|amin|

]
(j−i− µ)2 (42)
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where (b) results from the replacement of
∑j+τ+η−1

t=i+µ+τ+η |at |
to aave, and (c) comes from the inequality (41).

Hence, based on (39) and (42), we have:

δstop = dpstop − dstop

≥ δ0 − v0τ − v0η +
|aave|
|amin|

v0(j− i− µ)

+
1
2
|aave|

[
1−
|aave|
|amin|

]
(j− i− µ)2 (43)

Finally, we get the lower bound of the relative distance δstop
in the above inequality and complete the proof.
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