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ABSTRACT In recent years, machine-to-machine (M2M) communications have attracted great atten-
tions from both academia and industry. In M2M communication systems, machine type communication
devices (MTCDs) are capable of communicating with each other intelligently under highly reduced human
interventions. Although diverse types of services are expected to be supported for MTCDs, various quality
of service (QoS) requirements and network states pose difficulties and challenges to the resource allocation
and clustering schemes of M2M communication systems. In this paper, we address the joint resource
allocation and clustering problem in M2M communication systems. To achieve the efficient resource
management of the MTCDs, we propose a joint resource management architecture, and design a joint
resource allocation and clustering algorithm. More specifically, by defining system energy efficiency as the
sumof the energy efficiency of theMTCDs, the joint resource allocation and clustering problem is formulated
as an energy efficiency maximization problem. As the original optimization problem is a nonlinear fractional
programming problem, which cannot be solved conveniently, we transform the optimization problem into
power allocation subproblem and clustering subproblem. Applying iterative method-based energy efficiency
maximization algorithm, we first obtain the optimal power allocation strategy based on which, we then
propose a modified K-means algorithm to obtain the clustering strategy. Numerical results demonstrate the
effectiveness of the proposed algorithm.

INDEX TERMS Machine-to-machine (M2M) communications, resource allocation, clustering, energy
efficiency.

I. INTRODUCTION
Machine to machine (M2M) communication technology has
been considered as one of the promising approaches to realize
the Internet of things (IoT) in the 5th generation network [1].
In M2M, machine type communication devices (MTCDs)
are capable of communicating with each other intelligently
under highly reduced human interventions [2]. To guarantee
the quality of service (QoS) requirements of the MTCDs and
achieve performance enhancement of the M2M communica-
tion systems, efficient radio resource management schemes
should be designed [3].

To further enhance the transmission performance of
MTCDs, clustering mechanisms can be applied where the
MTCDs are divided into groups or clusters with each cluster
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consisting of one cluster head (CH) and certain number of
cluster members (CMs). By applying clustering schemes,
the efficiency of data transmission can be enhanced and the
energy consumption required for the MTCDs to transmit data
packets can be reduced significantly [4].

Although the problem of resource allocation and cluster-
ing has been studied for M2M communications in previous
research work, it can be shown that the two problems are
highly related and the associated strategies may jointly affect
user QoS and network performance. In this paper, we address
the joint resource allocation and clustering problem in M2M
communication systems. To achieve the efficient resource
management of the MTCDs, we propose a joint resource
management architecture, and design a joint resource alloca-
tion and clustering algorithm. More specifically, by defining
system energy efficiency as the sum of the energy efficiency
of the MTCDs, the joint resource allocation and clustering
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problem is formulated as an energy efficiency maximization
problem. As the original optimization problem is a nonlinear
fractional programming problem, which cannot be solved
conveniently, we transform the optimization problem into
two subproblems, i.e., power allocation subproblem and clus-
tering subproblem. Applying iterative method-based energy
efficiency maximization algorithm, we first obtain the opti-
mal power allocation strategy based on which, we then pro-
pose a modified K-means algorithm to obtain the clustering
strategy.

The major contributions of this paper are summarized as
follows.
1) Although resource allocation and clustering problems

have been studied forM2M communications in previous
work [5]–[15], it can be shown that the two problems are
highly related and jointly affect user QoS and network
performance. Hence, in this paper, we jointly inves-
tigate the problem of resource allocation and cluster-
ing of the MTCDs in M2M communication systems.
To achieve the efficient resource management of the
MTCDs, we propose a joint resourcemanagement archi-
tecture, based on which, we design a joint resource
allocation and clustering algorithm.

2) While the problem of joint resource allocation and
clustering has been considered for M2M communi-
cation systems in [16]–[22], previous research work
mainly aims to increase the success probability of
random access [16]–[18], reduce access latency [19],
[20], maximize network lifetime [21] or maximize
sum-throughput [22], they fail to consider the energy
efficiency of the MTCDs which is of particular impor-
tance for achieving the tradeoff between data trans-
mission performance and energy consumption. In this
paper, we jointly consider the energy efficiency of all the
MTCDs in the system and formulate the joint resource
allocation and clustering problem as an energy effi-
ciency maximization problem.

3) Since the formulated joint resource allocation and
clustering problem is a nonlinear fractional program-
ming problem, which cannot be solved conveniently,
we transform the optimization problem into two sub-
problems, i.e., power allocation subproblem and clus-
tering subproblem. Applying iterative method-based
energy efficiency maximization algorithm, we first
obtain the optimal power allocation strategy based on
which, we then propose a modified K-means algorithm
to obtain the clustering strategy.

The rest of this paper is organized as follows. Section II
presents an overview of related work. The system model
and proposed joint resource management architecture are
presented in Section III. In Section IV, optimization prob-
lem is formulated. Section V discusses the solution to the
optimization problem. Complexity analysis of the proposed
algorithm is presented in Section VI. Simulation results are
presented in Section VII. Finally, we make a conclusion and
discuss future work in Section VIII.

II. RELATED WORK
In this section, we present a summary on the resource
allocation and clustering schemes designed for M2M
communications.

A. RESOURCE ALLOCATION SCHEMES FOR M2M
COMMUNICATIONS
In recent years, resource allocation problems have been
addressed for M2M communications [5]–[10].

In [5], [6], the authors aim to maximize system through-
put when designing optimal resource allocation strategy
for the MTCDs. Vilgelm et al. [5] propose a pream-
ble allocation method to maximize system throughput and
design an effective QoS differentiation mechanism across
a wide range of random access loads. To resolve the
intra-cell pilot collision issue of M2M communications in
crowded massive multiple-input multiple-output (MIMO)
systems, Han et al. [6] propose a strongest-user collision
resolution protocol which allows user equipments (UEs)
to contend for the idle pilots so as to increase system
throughput and decrease the number of access attempts
as well.

Stressing the energy consumption of the M2M communi-
cation systems, the authors in [7], [8] develop energy-efficient
resource allocation strategy for the MTCDs. Yang et al. [7]
study energy-efficient resource allocation schemes for an
M2M-enabled cellular network with nonlinear energy har-
vesting. Aiming to minimize the total energy consumption
of the network, the authors propose a joint power con-
trol and time allocation scheme for the MTCDs applying
non-orthogonal multiple access (NOMA) and time-division
multiple access (TDMA) strategies. In [8], Dawaliby et al.
tackle the challenges of scheduling M2M traffic in long-term
evolution (LTE) systems and propose a cross-layer resource
allocation scheme that minimizes the energy consumption of
the MTCDs.

QoS or quality of experience (QoE) enhancement is con-
sidered in [9], [10]. In [9], Yin et al. introduce an eval-
uation model based on mean opinion score for various
MTCDs, and propose a QoE-oriented uplink rate control
and resource allocation scheme to maximize the long-term
QoE of the MTCDs. The original long-term optimization
problem is converted into two subproblems, i.e., admis-
sion rate control subproblem and resource allocation sub-
problem in each time slot, and Gale-Shapley algorithm
is utilized to solve the resource allocation subproblem.
In [10], Salam et al. propose a cooperative data aggrega-
tion (CDA) scheme by employing a fixed data aggrega-
tor (FDA) and multiple mobile data aggregators (MDAs)
to collect the data packets of the MTCDs having variable
QoS requirements. A distributed MDA selection algorithm
is proposed to designate appropriate UEs as aggregators
and a resource allocation scheme is designed to dynami-
cally allocate channels to the MTCDs subject to their QoS
requirements.
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B. CLUSTERING SCHEMES FOR M2M COMMUNICATIONS
To improve the transmission performance of M2M commu-
nications, clustering schemes can be applied. The authors
in [11] demonstrate that by employing relays and clustering
protocols, cooperative communications can be implemented
in M2M systems and network performance enhancement is
expected.

In [12]–[14], the authors investigate the problem of
energy-efficient clustering inM2M systems. In [12], the clus-
tering problem is formulated as an evolutionary game, which
models the interactions among a massive number of MTCDs.
A utility function that captures the tradeoff between the aver-
age transmit power per cluster and the cluster size is defined.
To solve the game model, a distributed algorithm is proposed
which allows the MTCDs to autonomously form clusters.
In [13], the clustering problem inM2M systems is formulated
as a stochastic coalition formation game in which theMTCDs
are the players that seek to form cooperative coalitions to
optimize the utility function that characterizes the energy
consumption of the MTCDs and time-varying queue length.

In [14], the size of clusters is determined and an
energy-efficient CH selection scheme is proposed to min-
imize the energy consumption of the MTCDs and maxi-
mize network lifetime. The communications protocols for
both intra-cluster and inter-cluster communications are inves-
tigated and an energy-efficient and load-adaptive multiple
access scheme is designed, which achieves a tunable tradeoff
between the energy efficiency, delay and spectral efficiency
of the network.

Clustering schemes can also be applied to achieve
energy-efficient routing in M2M communication sys-
tems [15]. To offer data transmission from terminal nodes to a
sink node via CHs, the authors in [15] study the routing prob-
lem in a hierarchical M2M communication system. A mul-
tilevel clustering scheme is designed and a self-organized
routing algorithm from CHs to the sink node is proposed
to prolong network lifetime and enhance the transmission
performance of the terminal nodes.

C. JOINT RESOURCE ALLOCATION AND CLUSTERING
SCHEMES FOR M2M COMMUNICATIONS
Some recent research work jointly considers
resource allocation and clustering schemes for M2M
communications [16]–[22].

In order to increase the success probability of random
access, Jang et al. [16] propose a spatial group based
random access mechanism and a non-orthogonal resource
allocation scheme. To achieve the spatial multiplex of the
preambles, the MTCDs are divided into groups, then for the
MTCDs belonging to individual group, non-orthogonal chan-
nel resources are allocated. To accommodate massive access
for MTCDs in cellular system, Tefek and Lim [17] propose
two single-hop relaying schemes, i.e., signal-to-interference
ratio-based relaying and location-based relaying. Specifi-
cally, theMTCDs are divided into into different clusters based

on their locations and service requirements, then, a local
access point is chosen to forward data packets for theMTCDs
in each cluster. Location-based random access scheme is
also proposed in [18] where the MTCDs are grouped into
different clusters based on their location information in order
to mitigate the severe collision of the MTCDs that access to
the base station (BS) concurrently. The communication of
MTCDs is controlled by a CH, which is assumed to be a
Decode-and-Forward (DF) relay to decode and forward the
information from the MTCD to the BS.

Aiming to achieve low access delay and high resource
efficiency and in a co-existing environment of delay-sensitive
and delay-tolerant services,Wu et al. [19] propose a dynamic
resource allocation scheme with QoS guarantee for clustered
M2Mcommunications. Based on theminimumdelay require-
ment, the MTCDs are divided into into different clusters,
then the available physical random access channel (PRACH)
resources are dynamically allocated to the MTCDs in each
cluster. In [20], Vu et al. propose a two dimension proac-
tive uplink resource allocation with clustering algorithm to
reduce the latency in event-basedM2M communications. The
MTCDs in the disturbance region are spatially clustered into
rings based on their distance to the original event. Then,
these rings are proactively allocated resources for uplink
transmissions.

Stressing the highly limited energy resources of the
MTCDs, Riker et al. [21] propose a two-tier aggregation
approach for multi-target applications in M2M communica-
tions to maximize network lifetime. In the first aggregation
tier, data aggregation is executed to reduce data redundancy,
and in the second tier, the cost incurred by the message
overhead is reduced by further applying data aggregation.
Ghavimi et al. [22] study joint power allocation and cluster-
ing issues for M2M communications in LTE-advanced (LTE-
A) systems. By applying clustering schemes, the MTCDs are
grouped based on transmission protocols and further clus-
tered based on QoS characteristics and requirements. Then,
a sum-throughput maximization-based resource allocation
scheme is proposed of the MTCDs in the clusters.

While the problem of joint resource allocation and cluster-
ing has been considered for M2M communication systems,
previous research work mainly aims to increase the suc-
cess probability of random access [16]–[18], reduce access
latency [19], [20], maximize network lifetime [21] or max-
imize sum-throughput [22], they fail to consider the energy
efficiency of the MTCDs which is of particular importance
for achieving the tradeoff between data transmission perfor-
mance and energy consumption. Furthermore, in previous
clustering schemes, the intra-cluster resource allocation is
mainly discussed, however, the transmission performance
evaluation and mode selection for both direct transmission
and CH forwarding mode fail to be considered extensively.
In this paper, we address the joint resource allocation and
clustering problem for M2M communications and propose a
system energy efficiency maximization-based joint optimal
strategy.
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FIGURE 1. System model.

III. SYSTEM MODEL AND PROPOSED JOINT RESOURCE
MANAGEMENT ARCHITECTURE
A. SYSTEM MODEL
In this paper, we consider an M2M communication system
consisting of a single BS and a number of MTCDs where the
BS is deployed at the center of certain area and the MTCDs
are randomly deployed within the coverage area of the BS.
We further assume that the MTCDs have collected required
information and need to transmit their data packets to the BS.
For convenience, we denote the ith MTCD as MTCDi, 1 ≤
i ≤ M , where M denotes the number of MTCDs.
To enable efficient data transmission, we assume that the

MTCDsmay communicate with the BS in direct transmission
mode, i.e., the MTCDs are allowed to access the BS and
transmit their data packets directly. Alternatively, theMTCDs
may also transmit their data packets to the BS in CH forward-
ing mode. More specifically, the MTCDs are grouped into
various clusters with each cluster consisting of one CH and
certain number of CMs. While the CHs in different clusters
may transmit their data packets to the BS in direct trans-
mission mode, the CMs may apply CH forwarding mode,
i.e., sending their data packets to the associated CHs, which
then forward the received data packets to the BS on behalf of
the CMs. Figure 1 shows the system model considered in this
paper.

We further assume that there are a number of channels
with equal bandwidth. Let B denote the bandwidth of each
channel. For simplicity, it is assumed that enough bandwidth
resources are available and all the transmission links can be
allocated with one channel, hence, no transmission interfer-
ence exists among transmission links.

B. PROPOSED JOINT RESOURCE MANAGEMENT
ARCHITECTURE
To achieve the efficient resource management in M2M com-
munication systems, we propose a joint resource manage-
ment architecture. Figure 2 shows the proposed architecture,
in which two functional controllers, i.e., global resource con-
troller (GRC) and local resource controller (LRC), are intro-
duced to tackle the resources of the system and to conduct
joint resource allocation and clustering for the MTCDs. The
major roles and functions of GRC and LRC are as follows.

FIGURE 2. Proposed joint resource management architecture.

1) LOCAL RESOURCE CONTROLLER
Being deployed at the BS and the MTCDs, and each LRC
acts as a local controller of the BS or that of one MTCD.
Through interacting with the associated BS and the MTCDs,
the LRCs collect the state information of the BS and the
MTCDs, and then forward the collected information to the
GRC. In addition, the LRCs receive the joint resource alloca-
tion and clustering strategy from the GRC, and forward the
strategy to the associated BS and the MTCDs.

2) GLOBAL RESOURCE CONTROLLER
Being deployed over the BS and theMTCDs, the GRC acts as
the centralized controller of the system. Through interacting
with the LRC associated with the BS, the GRC receives the
status information of the M2M communication system, such
as the channel bandwidth, the maximum allowable number
of CHs in the network and the maximum number of CMs
that associate with one CH, etc. Similarly, through interacting
with the LRCs associated with theMTCDs, the GRC receives
the status information and QoS requirement of the MTCDs,
such as the channel characteristics, the maximum transmit
power and the minimum transmission rate of the MTCDs,
etc. Based on the obtained information, the GRC may con-
duct the proposed energy efficiency maximization-based
joint resource allocation and clustering algorithm, obtain the
power allocation and clustering strategy of the MTCDs and
send the strategy to the LRCs.

IV. OPTIMIZATION PROBLEM FORMULATION
The power consumption is one of the important metrics
for MTCDs, as in many MTCD applications, MTCDs can
be battery-driving sensors or small-size devices with radio
frequency identity (RFID) embedded. Charging or replac-
ing the battery of these MTCDs is in general very dif-
ficult or impractical. In the case that the battery of one
MTCD runs out, the MTCD cannot work properly any more.
Since data transmission consumes considerable energy of
the MTCDs, designing energy efficient data transmission
schemes to achieve low power consumption and long life-
time of the MTCDs is highly desired. On the other hand,
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while minimizing power consumption is important, the trans-
mission performance of the MTCDs should be guaranteed.
To achieve the tradeoff between transmission performance
and energy consumption, we may stress the metric of energy
efficiency, which is defined as the ratio of the achievable data
rate to the overall power consumption of the MTCD.

In this section, we examine the energy efficiency of the
MTCDs in various data transmission modes and define sys-
tem energy efficiency as the total energy efficiency of the
MTCDs. Then, jointly considering the constraints on trans-
mission mode selection, the minimum data rate requirement
and the maximum transmit power of theMTCDs, etc., we for-
mulate the joint resource allocation and clustering problem as
system energy efficiency maximization problem.

A. OBJECTIVE FUNCTION
The system energy efficiency of the M2M system can be
expressed as

η =

M∑
i=1

ηi (1)

where ηi denotes the energy efficiency of MTCDi. The
expression of ηi is given by

ηi = δ
d
i η

d
i +

M∑
l=1,l 6=i

K1∑
k=1

αl,kδ
c
i,kη

c
i,l (2)

where δdi ∈ {0, 1} is the direct transmission mode selection
variable of MTCDi, i.e., δdi = 1, if MTCDi transmits its
data packets to the BS in direct transmissionmode, otherwise,
δdi = 0, ηdi denotes the energy efficiency of MTCDi in direct
transmission mode. The expression of ηdi can be defined as
follows:

ηdi =
Rdi

pdi + pcir
(3)

where Rdi and p
d
i denote respectively the transmission rate and

transmit power of MTCDi in direct transmission mode, pcir
denotes the circuit power consumption of MTCDi. Without
loss of generality, we assume that pcir is a constant for various
MTCDs. Rdi can be expressed as

Rdi = B log2

(
1+

pdi h
d
i

σ 2

)
(4)

where hdi and σ
2 denote respectively the channel gain and the

noise power of the transmission link betweenMTCDi and the
BS.

In (2), αl,k is the CH selection variable, i.e., αl,k = 1,
if MTCDl is selected as the CH of the kth cluster, otherwise,
αl,k = 0. For convenience, we denote CHk as the CH of the
kth cluster. δci,k is the association variable ofMTCDi and CHk
in CH forwarding mode. We set δci,k = 1, if MTCDi is the
CM of the kth cluster and chooses CHk to forward its data
packets to the BS, otherwise, δci,k = 0. ηci,l denotes the energy

efficiency of MTCDi when transmitting data to MTCDl in
CH forwarding mode. ηci,l can be computed as

ηci,l =
Rci,l

pci,l + pcir
(5)

where Rci,l and p
c
i,l denote respectively the transmission rate

and transmit power of MTCDi when forwarding data packets
to MTCDl . Rci,l is given by

Rci,l = B log2

(
1+

pci,lh
c
i,l

σ 2

)
(6)

where hci,l denotes the channel gain of the link between
MTCDi and MTCDl . In (2), K1 denotes the number of CHs,
i.e.,

K1 = max k, ∃ αl,k = 1, ∀ 1 ≤ l ≤ L. (7)

B. OPTIMIZATION CONSTRAINTS
The optimal design of the joint resource allocation and clus-
tering strategy should be subject to certain constraints as
discussed in detail in this subsection.

1) MAXIMUM NUMBER OF CHS
The clustering strategy should meet the constraint on the
maximum number of CHs. Let Nmax denote the maximum
allowable number of CHs in the network, we may express
the constraint on the maximum number of CHs as:

C1 : K1 ≤ Nmax. (8)

2) MAXIMUM NUMBER OF CMS IN EACH CLUSTER
Assuming that the maximum number of CMs that associate
with one CH isM1, hence, we obtain the following constraint:

C2 :
M∑
i=1

δci,k ≤ M1, 1 ≤ k ≤ K1. (9)

3) CH ASSOCIATION CONSTRAINT
Assuming each MTCD can choose at most one CH for asso-
ciation, i.e.,

C3 :
K1∑
k=1

δci,k ≤ 1, 1 ≤ i ≤ M . (10)

4) CH SELECTION CONSTRAINT
As each CH can only be selected from individual MTCD,
we obtain

C4 :
M∑
l=1

αl,k ≤ 1, 1 ≤ k ≤ K1. (11)

Similarly, each MTCD can at most be selected as one CH,
i.e.,

C5 :
K1∑
k=1

αl,k ≤ 1, 1 ≤ l ≤ M . (12)
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5) MODE SELECTION CONSTRAINT
We further assume that each MTCD can either choose direct
transmission mode or CH forwarding mode, i.e.,

C6 : δdi +
K1∑
k=1

δci,k ≤ 1, 1 ≤ i ≤ M . (13)

It should be noticed that the CHs can only apply direct
transmission mode to transmit their own data packets to the
BS. Furthermore, to forward the data packets received from
their associated CMs, the CHs also apply direct transmission
mode. Hence, we obtain the following constraint on the trans-
mission mode of the CHs:

C7 : δdl = 1, if
K1∑
k=1

αl,k = 1, 1 ≤ l ≤ M . (14)

6) MAXIMUM TRANSMIT POWER CONSTRAINTS
As the transmit power of the MTCDs must be less than their
maximum transmit power, we obtain

C8 : pdi ≤ pmax
i , 1 ≤ i ≤ M , (15)

C9 : pci,l ≤ pmax
i , 1 ≤ i 6= l ≤ M (16)

where pmax
i denotes the maximum transmit power of MTCDi.

7) TRANSMISSION RATE CONSTRAINT
Stressing the various QoS requirements of MTCDs,
we assume that there is a minimum rate requirement for
each MTCD, thus, the achievable transmission rate of the
MTCDs should be higher than theminimum transmission rate
requirement, i.e.,

C10 : Ri ≥ Rmin
i , 1 ≤ i ≤ M (17)

where Rmin
i and Ri denote respectively the minimum trans-

mission rate and the actual achievable transmission rate of
MTCDi, 1 ≤ i ≤ M . Ri can be expressed as

Ri = δdi R
d
i +

M∑
l=1,l 6=i

K1∑
k=1

αl,kδ
c
i,kRi,l (18)

where Ri,l denotes the transmission rate of the two-hop link
betweenMTCDi and the BS viaMTCDl and can be expressed
as Ri,l = min

{
Rci,l,R

d
l

}
.

C. OPTIMIZATION PROBLEM
Considering the aforementioned objective function and opti-
mization constraints, we formulate the energy efficiency
maximization-based joint resource allocation and clustering
problem as

max
αl,k ,δ

d
i ,δ

c
i,k ,p

d
i ,p

c
i,l

η

s.t. C1− C10. (19)

V. SOLUTION TO THE OPTIMIZATION PROBLEM
The optimization problem in (19) is a nonlinear fractional
programming problem, which cannot be solved conveniently,
however, it can be demonstrated that given the clustering
strategy, the power allocation strategy of MTCDs in var-
ious transmission modes can be designed independently.
Hence, we may transform the optimization problem formu-
lated in (19) into two subproblems, i.e., power allocation
subproblem and clustering subproblem, and solve the two
subproblems successively.

A. POWER ALLOCATION SUBPROBLEM
In this subsection, we suppose MTCDi chooses CH forward-
ing mode and transmits its data packets to MTCDl which is
selected as CHk , i.e., αl,k = 1, δci,k = 1, 1 ≤ i 6= l ≤ M ,
1 ≤ k ≤ K1, the power allocation subproblem of MTCDi in
CH forwarding mode can be expressed as

max
pci,l

ηci,l

s.t. C1 : pci,l ≤ p
max
i ,

C2 : Rci,l ≥ R
min
i , 1 ≤ i 6= l ≤ M . (20)

1) ITERATIVE METHOD-BASED ENERGY EFFICIENCY
MAXIMIZATION ALGORITHM
The optimization problem formulated in (20) is a non-convex
problem with the objective function being a nonlinear frac-
tional function, which cannot be solved directly using tra-
ditional optimization tools. In this subsection, we apply an
iterative algorithm to solve the optimization problem.

Let q denote the energy efficiency of MTCDi when trans-

mitting to MTCDl , i.e., q =
Rci,l

pci,l + pcir
, pc,∗i,l denote the opti-

mal transmit power of MTCDi and q∗ denote the maximum
energy efficiency, we obtain [24]

q∗ =
Rci,l

(
pc,∗i,l

)
pc,∗i,l + pcir

= max
pci,l

Rci,l(p
c
i,l)

pci,l + pcir
. (21)

It can be proved that the maximum energy efficiency q∗ is
achieved if and only if the following condition meets:

Rci,l
(
pci,l
)
− q∗

(
pci,l + pcir

)
= 0. (22)

Hence, the optimization problem formulated in (20) can be
transformed into the following problem:

max
q,pci,l

Rci,l − q
(
pci,l + pcir

)
s.t. C1 : pci,l ≤ p

max
i

C2 : Rci,l ≥ R
min
i . (23)

While the optimization problem formulated in (23) is a
non-convex optimization problem of the optimization vari-
ables q and pci,l , which cannot be solved easily, it can be
demonstrated that by applying iterative method, the opti-
mization problem can be solved, and the maximum energy
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efficiency q∗ and the optimal power allocation strategy pc,∗i,l
can be obtained.

The iterative method-based energy efficiency maximiza-
tion algorithm can be summarized briefly as follows.

a) Starting from an initial value of q, the locally optimal
power allocation strategy can be obtained through applying
traditional convex optimization tools;

b) The energy efficiency q can be updated based on the
obtained power allocation strategy;

c) Given the updated q, the power allocation process can
be re-conducted;

d) The process continues until the algorithm converges,
i.e.,

∣∣∣Rci,l (pci,l)− q (pci,l + pcir)∣∣∣ ≤ ε0, where ε0 denotes the
maximum tolerance, and the optimal energy efficiency and
power allocation strategy can be obtained.

Let ηc,∗i,l denote the maximum energy efficiency corre-
sponding to the optimal power allocation strategy pc,∗i,l . The
proposed iterative method-based energy efficiency maxi-
mization algorithm is summarized in Algorithm 1 and the
convergence of the algorithm can be guaranteed [25].

Algorithm 1 Iterative Method-Based Energy Efficiency
Maximization Algorithm
1: Set the maximum number of iterations T0 and the maxi-

mum tolerance ε0
2: Set the initial energy efficiency q = 0 and iteration index
t0 = 0

3: repeat
4: Given q, solve the power allocation subproblem to

obtain the locally optimal power allocation strategy
pc,0i,l

5: if
∣∣∣Rci,l (pc,0i,l )− q (pc,0i,l + pcir)∣∣∣ ≤ ε0 then

6: Convergence = true

7: return q∗ =
Rci,l

(
pc,0i,l

)
pc,0i,l +pcir

, pc,∗i,l = pc,0i,l
8: else

9: Set q =
Rci,l

(
pc,0i,l

)
pc,0i,l +pcir

and let t0 = t0 + 1

10: end if
11: until Convergence = true or t0 = T0

2) LAGRANGE DUAL METHOD-BASED POWER ALLOCATION
ALGORITHM
In Algorithm 1, given energy efficiency q, we need to solve
the local power allocation subproblem and obtain the locally
optimal power allocation strategy. In this subsection, we pro-
pose a Lagrange dual method-based power allocation algo-
rithm to solve power allocation subproblem.

Given energy efficiency q, the power allocation subprob-
lem of MTCDi can be expressed as

max
pci,l

Rci,l − q
(
pci,l + pcir

)
s.t. C1 : pci,l ≤ p

max
i

C2 : Rci,l ≥ R
min
i . (24)

The optimization problem formulated in (24) is a con-
strained convex optimization problem which can be solved
by applying Lagrange dual method. The Lagrange function
can be formulated as [26]

L
(
ϕ,µ, pci,l

)
= Rci,l − q

(
pci,l + pcir

)
− ϕ

(
pci,l − p

max
i
)
− µ

(
Rmin
i − R

c
i,l

)
= B log2

(
1+

pci,lh
c
i,l

σ 2

)
− q

(
pci,l + pcir

)
− ϕ

(
pci,l − p

max
i
)

−µ

(
Rmin
i − B log2

(
1+

pci,lh
c
i,l

σ 2

))
(25)

where ϕ, µ are Lagrange multipliers.
The optimization problem in (24) can then be transformed

into Lagrange dual problem:

min
ϕ,µ

max
pci,l

L
(
ϕ,µ, pci,l

)
s.t. ϕ ≥ 0, µ ≥ 0. (26)

The optimization problem formulated in (26) consists of
two subproblems, i.e., internal maximum subproblem and
external minimum subproblem, which can be solved iter-
atively. Given a set of Lagrange multipliers, the internal
maximum subproblem can be solved to obtain the locally
optimal power allocation strategy, which can then be applied
to solve the external minimum subproblem to obtain the
updated Lagrange multipliers.

By calculating the derivative of the Lagrange function with
respect to pci,l and setting the derivative to zero, the locally
optimal power allocation strategy can be obtained. Let pc,0i,l
denote the locally optimal power allocation strategy of
MTCDi when forwarding data packets to MTCDj, we obtain

∂L
(
ϕ,µ, pci,l

)
∂pci,l

=
(1+ µ)Bhci,l

ln 2
(
σ 2 + pci,lh

c
i,l

) − q− ϕ = 0. (27)

Solving the above equation, we obtain

pc,0i,l =

[
(1+ µ)B
(q+ ϕ) ln 2

−
σ 2

hci,l

]+
(28)

where [x]+ = max {x, 0}.
To solve the external minimum subproblem in terms of

the Lagrange multipliers, we apply the gradient descent
algorithm. The Lagrange multipliers can be calculated
as [26], [27]

ϕ (t1 + 1) =
[
ϕ (t1)− ω1

(
pmax
i − pc,0i,l

)]+
, (29)

µ (t1 + 1) =
[
µ (t1)− ω2

(
Rc,0i,l − R

min
i

)]+
(30)

where t1 denotes the iteration index, ω1 and ω2 are step-

size, Rc,0i,l = B log2

(
1+

pc,0i,l h
c
i,l

σ 2

)
. The proposed Lagrange

dual method-based power allocation algorithm is shown in
Algorithm 2.
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Algorithm 2 Lagrange Dual Method-Based Power Alloca-
tion Algorithm
1: Set the maximum number of iterations T1, and the max-

imum tolerance ε1
2: Initialize Lagrange multipliers ϕ (t1), µ (t1) for t1 = 0
3: repeat
4: Compute power allocation strategy

pci,l =
[
(1+µ)B
(q+ϕ) ln 2 −

σ 2

hci,l

]+
5: Update the Lagrange multipliers:

ϕ (t1 + 1) =
[
ϕ (t1)− ω1

(
pmax
i − pci,l

)]+
µ (t1 + 1) =

[
µ (t1)− ω2

(
Rci,l − R

min
i

)]+
6: if |ϕ (t1 + 1)− ϕ (t1)| + |µ (t1 + 1)− µ (t1)| ≤ ε1

then
7: The algorithm terminates
8: Convergence = true
9: return pc,0i,l = pci,l
10: else
11: t1 = t1 + 1
12: end if
13: until Convergence = true or t1 = T1

The proposed iterative method-based energy efficiency
maximization algorithm and the Lagrange dual method-based
power allocation algorithm can be applied in a straightfor-
ward manner to solve the power allocation strategy of the
MTCDs in direct transmission mode. Let pd,∗i denote the
optimal power allocation strategy of MTCDi in direct trans-
mission mode, ηd,∗i denote the maximum energy efficiency of
MTCDi corresponding to pd,∗i .

B. CLUSTERING SUBPROBLEM
Based on the optimal power allocation strategy obtained from
previous subsection, the clustering subproblem can be formu-
lated as follows:

max
αl,k ,δ

d
i ,δ

c
i,k

η

s.t. C1− C7, C10. (31)

In this subsection, we propose a modified K-means algorithm
to obtain the clustering strategy.

1) DIRECT TRANSMISSION MODE SELECTION
It can be understood easily that oneMTCDmay tend to trans-
mit its data packets to the BS directly provided that the maxi-
mum energy efficiency can be achieved in direct transmission
mode compared to CH forwarding mode. Hence, we may
assign direct transmission mode to the MTCDs simply by
comparing the energy efficiency of the MTCDs obtained in
different transmission modes.

Table 1 shows the optimal energy efficiency of theMTCDs
in different transmission modes. In the table, each row
represents the energy efficiency of one MTCD, and the
columns correspond to different transmission modes of the

TABLE 1. Energy efficiency of the links between MTCDs and BS, and that
between MTCDs.

MTCDs. Without loss of generality, in CH forwarding mode,
we assume that anyMTCD can be selected as the CH of other
MTCDs. For simplicity, we define the energy efficiency of
MTCDi as 0 when the MTCD selects itself as CH for data
forwarding, i.e., ηc,∗i,i = 0, 1 ≤ i ≤ M .

Examining Table 1, we can see that in the case that MTCDi
achieves the maximum energy efficiency when applying
direct transmission mode compared to CH forwarding mode,
i.e., ηd,∗i ≥ η

c,∗
i,l , 1 ≤ l ≤ M , l 6= i, we should assign

direct transmission mode to MTCDi, i.e., δ
d,∗
i = 1, δc,∗i,k = 0,

1 ≤ k ≤ K1. For convenience, we denote 8 as the set of all
the MTCDs, i.e., 8 = {MTCDi, 1 ≤ i ≤ M} and denote 8d
as the set of MTCDs which are assigned direct transmission
mode, i.e., 8d =

{
MTCDi|δ

d,∗
i = 1, 1 ≤ i ≤ M

}
. It should

be mentioned that MTCDi ∈ 8d cannot be the CM of any
clusters, however, it may act as the CH of other CMs.

2) CANDIDATE CH SELECTION
To reduce the computation complexity of the clustering
scheme, we propose a candidate CH selection scheme which
selects the qualified CHs based on the transmission perfor-
mance of the MTCDs.

Since the CHs should forward data packets for their asso-
ciated CMs within the clusters, the characteristic of the links
between the CHs and the BS, i.e., the direct transmission link
of the CHs, is of particular importance as it may affect the
transmission performance of the data packets significantly.
To avoid selecting the MTCDs with highly limited trans-
mission performance in direct transmission mode, we set an
energy efficiency threshold on the direct transmission link
of the MTCDs and only select the MTCDs with the energy
efficiency of the direct transmission link being greater than
the threshold as the candidate CHs.

Let ηmin denote the energy efficiency threshold of the direct
transmission link of the MTCDs, we select MTCDi as a
candidate CH provided that ηd,∗i ≥ ηmin, 1 ≤ i ≤ M .
Denoting 80 as the set of the candidate CHs, we obtain

80 = {MTCDi|η
d,∗
i ≥ ηmin, 1 ≤ i ≤ M}. (32)

Let K0 denote the number of candidate CHs, i.e., K0 = |80|,
where |x| represents the number of elements in set x.

3) MODIFIED K-MEANS ALGORITHM-BASED CLUSTERING
SCHEME
The K-means algorithm is commonly used for solving clus-
tering problems [28].

168514 VOLUME 7, 2019



R. Chai et al.: Energy Efficiency Optimization-Based Joint Resource Allocation and Clustering Algorithm

According to the original K-means algorithm, the ini-
tial CHs are chosen randomly and both user association
and CH update are conducted based on the Euclidean dis-
tance, which may not result in the desired performance
of energy efficiency. Furthermore, the K-means algorithm
mainly addresses the problem of CH selection and user asso-
ciation, fails to consider the direct transmission links between
the CHs and the BS, and the two-hop transmission links
between the CMs and the BS, hence, the original K-means
algorithm cannot be applied directly to solve the formulated
clustering subproblem. In this paper, we propose a modified
K-means algorithm to solve the clustering problem of the
MTCDs.

The basic idea of the proposed algorithm can be summa-
rized briefly. We first set the initial number of CHs, i.e., K1 =

min {Nmax,K0}, then, for individual MTCDs, we examine the
energy efficiency sum of both the direct link and the asso-
ciation links with other MTCDs, and select the CHs which
offer the highest energy efficiency sum. Given the initial CHs,
CH association can be conducted. More specifically, for each
potential CM, the energy efficiency of the association links
between the CMand the CHs is examined and the CHoffering
the maximum energy efficiency is chosen as the associated
CHof the CM.Within each cluster, the CH selection and asso-
ciation processes are repeated until the algorithm achieves
convergence.

The steps of the modified K-means algorithm-based clus-
tering strategy are as follows:
a) Initialization: Set the maximum number of iterations

T ′, the maximum tolerance 1, iteration index t ′ =
1, and determine the number of CHs, i.e., K1 =

min {Nmax,K0}.
b) Initial CH selection: For MTCDi ∈ 8, 1 ≤ i ≤ M , cal-

culate the energy efficiency sum of both the direct link
and the association links with other MTCDs, denoted as
ψi, i.e.,

ψi = η
d,∗
i +

M∑
l=1,l 6=i

η
c,∗
i,l , 1 ≤ l 6= i ≤ M . (33)

Select K1 MTCDs which offer the highest energy
efficiency sum as the CHs. Specifically, ordering
MTCDik ∈ 8 according to ψik , i.e.,

ψi1 ≥ ψi2 ≥ · · · ≥ ψik ≥ · · · ≥ ψiM ,∀MTCDik ∈ 8.

The firstK1 MTCDswill be selected as the CHs. Let8ch
denote the set of CHs, we set

8ch = {MTCDik

∣∣MTCDik ∈ 8 , 1 ≤ k ≤ K1}.

Let 8cm denote the set of CMs, we obtain

8cm = {MTCDi|MTCDi ∈ 8, MTCDi /∈ {8ch ∪8d}}.

c) Initial CH association: For MTCDi ∈ 8cm, compute
the energy efficiency of the links between MTCDi and
MTCDik ∈ 8ch, and choose the CH which offers
the highest energy efficiency as the associated CH. Let

MTCDik′ denote the associated CH of MTCDi, and
assume that MTCDik′ is selected as the CHk ′ , we obtain
α∗ik′ ,k ′

= 1, δc,∗i,k ′ = 1, and

CHk ′ = argmax
MTCDik′ ∈8ch

{
η
c,∗
i,ik′

}
, MTCDi ∈ 8cm.

d) System energy efficiency calculation: The set of the
MTCDs in direct transmission mode can be updated
by removing those MTCDs which are selected as CHs.
Let 8′d denote the updated set of the MTCDs in direct
transmission mode, we may express 8′d as

8′d = {MTCDi|MTCDi ∈ 8d, MTCDi /∈ 8ch}.

For MTCDi ∈ 8′d, set the direct transmission mode
selection variable δd,∗i = 1. Based on the obtained trans-
mission mode selection and clustering strategy, we cal-
culate system energy efficiency denoted by ηt ′ , i.e.,

ηt ′ =
∑

MTCDi∈8′d

η
d,∗
i +

∑
MTCDi∈8ch

η
d,∗
i

+

∑
MTCDi∈8cm

∑
MTCDik′ ∈8ch

η
c,∗
i,ik′

(34)

e) CH reselection: Assuming MTCDik′ ∈ 8ch is selected
as one CH, we denote 8k ′ as the set of the CMs which
are associated with MTCDik′ , i.e.,

8k ′ = {MTCDi|MTCDi ∈ 8cm, δ
c,∗
i,ik′
= 1}.

For ∀MTCDi ∈ 8k ′ , compute the energy efficiency sum
of the direct link between MTCDi and the BS, the link
between MTCDi and MTCDik′ , and the links between
MTCDi and MTCDi′ ∈ 8k ′ , i 6= i′. Let ζi denote the
energy efficiency of MTCDi ∈ 8k ′ , we express ζi as

ζi = η
d,∗
i + η

c,∗
i,ik′
+

∑
MTCDi′∈8k′ ,i

′
6=i

η
c,∗
i,i′ .

Choose MTCDi ∈ 8k ′ which offers the highest energy
efficiency as the updated CH, i.e.,

CHk ′ = argmax
{MTCDik′ }∪8k′

{ζi} .

Accordingly, update the set of 8ch and 8cm.
f) CH reassociation: For MTCDi ∈ 8cm, compute the

energy efficiency of the link between MTCDi and
MTCDik ∈ 8ch, and choose the CH which offers the
highest energy efficiency as the associated CH.

g) System energy efficiency update: Re-calculate the sys-
tem energy efficiency based on (34), denoted by ηt ′+1.

h) Check the convergence of the algorithm: If |ηt ′+1−ηt ′ |≤
1, the algorithm stops, the corresponding clustering
strategy can be obtained, elseif t ′ = T ′, the algorithm
fails, otherwise, set t ′ = t ′ + 1, return to Step e).
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VI. COMPLEXITY ANALYSIS
In this paper, we address the joint resource allocation and
clustering problem in M2M communication systems. As the
original optimization problem is a nonlinear fractional pro-
gramming problem, which cannot be solved conveniently,
we transform the optimization problem into two subprob-
lems, i.e., power allocation subproblem and clustering sub-
problem. Applying iterative method-based energy efficiency
maximization algorithm, we first obtain the optimal power
allocation strategy based on which, we then propose a mod-
ified K-means algorithm to obtain the clustering strategy.
In this section, we analyze the computation complexity of the
two subproblems, respectively.

A. POWER ALLOCATION SUBPROBLEM
As power allocation is conducted for individual MTCDs
when interacting with the BS directly or in CH forwarding
mode. In the case that one MTCD accesses the BS directly,
the upper bound of the complexity is O (MT0T1). Since in
general, the iteration number required for the Lagrange mul-
tipliers and the transmit power of the MTCDs to achieve
convergence is relatively small, the complexity is relatively
low. In CH forwarding mode, as each MTCD may select
other MTCDs for data forwarding, the required complexity
is O (M (M − 1)T0T1).

B. CLUSTERING SUBPROBLEM
Based on the optimal power allocation obtained from
previous power allocation subproblem,we formulate the clus-
tering subproblem and propose a modified K-means algo-
rithm to obtain the clustering strategy. The complexity of
the algorithm proposed in this paper is similar to that of the
K-means algorithm. In each iteration, the complexity can be
calculated as O (M + |8cm|K1). Let t ′ denote the number of
iterations, the computational complexity can be rewritten as
O
(
t ′(M + |8cm|K1)

)
.

VII. SIMULATION RESULTS
In this section, simulation results are presented to show
the performance of our proposed scheme. For comparison,
we also examine the performance of the previously pro-
posed algorithm in [22] via simulation. In the simulation,
we consider an M2M communication system consisting of
one BS and M MTCDs. The size of the simulation region is
set as 500m×500m. The BS is located at the center of the
simulation area and the MTCDs are randomly located in the
area. Unless otherwise mentioned, the simulation parameters
are listed in Table 2.

In Figure 3, we examine system energy efficiency ver-
sus the number of iterations obtained from the proposed
algorithm for different circuit power consumption. From the
figure, we can see that the energy efficiency converges within
a small number of iterations. Comparing the results obtained
from different circuit power, we can see that the energy
efficiency decreases with the increase of circuit power.

TABLE 2. Simulation parameters.

FIGURE 3. Energy efficiency versus the number of iterations (different
circuit power).

FIGURE 4. Energy efficiency versus maximum transmit power (different
circuit power).

Figure 4 shows system energy efficiency versus the max-
imum transmit power of the MTCDs for different circuit
power consumption. We can see from the figure that for
small pmax

i , the energy efficiency increases with the increase
of pmax

i for both schemes, indicating that a higher power
threshold is desired for achieving the maximum energy effi-
ciency. However, as the maximum transmit power reaches
to a certain value, the energy efficiency obtained from our
proposed scheme converges to a constant while that obtained
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FIGURE 5. Energy efficiency versus maximum transmit power (different
noise power).

FIGURE 6. Energy efficiency versus the number of MTCDs (different circuit
power).

from the scheme proposed in [22] decreases as the power
increases. This is because the scheme proposed in [22] aims
to achieve the maximum transmission rate, thus may require
higher power consumption, resulting in undesired energy
efficiency. It can also be observed from the figure that the
energy efficiency obtained from both algorithms decreases
with the increase of circuit power consumption.

In Figure 5, we examine system energy efficiency versus
the maximum transmit power of the MTCDs for different
noise power. From the figure, we can see that the energy
efficiency decreases with the increase of noise power. This
is because larger noise power results in deteriorated trans-
mission performance and lower energy efficiency in turn.
Comparing the results obtained from two algorithms, we can
see that our proposed scheme offers better performance than
that proposed in [22].

In Figure 6, we plot system energy efficiency versus the
number of MTCDs for different circuit power consumption.

FIGURE 7. Energy efficiency versus the number of MTCDs (different noise
power).

FIGURE 8. Energy efficiency versus the bandwidth of MTCDs (different
circuit power).

We can observe from the figure that as the number of MTCDs
increases, the energy efficiency obtained from both algo-
rithms increases accordingly. It can be seen from the fig-
ure that the energy efficiency obtained from both algorithms
decreases with the increase of circuit power consumption.
In addition, we can see that our proposed scheme is more
energy-efficient than the algorithm proposed in [22].

Figure 7 shows system energy efficiency versus the num-
ber of MTCDs for different noise power. From the figure,
we can see that the energy efficiency decreases with the
increase of noise power and increases as the number of
MTCDs increases. This is because larger noise power results
in worse transmission performance and lower energy effi-
ciency. In addition, we can see that our proposed algorithm
outperforms the algorithm proposed in [22].

In Figure 8, we plot system energy efficiency versus
the bandwidth of MTCDs for different circuit power con-
sumption. Examining the system energy efficiency resulted
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FIGURE 9. Energy efficiency versus the bandwidth of MTCDs (different
noise power).

FIGURE 10. Energy efficiency versus maximum transmit power (different
algorithms).

from the two schemes, we can observe that system energy
efficiency increases with the increase of the bandwidth of
MTCDs. This is because larger bandwidth results in higher
transmission rate, and higher energy efficiency in turn.
In addition, we can see that our proposed scheme is more
energy-efficient than the algorithm proposed in [22].

Figure 9 shows system energy efficiency versus the band-
width of MTCDs for different noise power. From the figure,
we can see that the energy efficiency increases as the band-
width of MTCDs increases and decreases with the increase
of noise power. Comparing the results obtained from the two
algorithms, we can see that our proposed algorithm outper-
forms the algorithm proposed in [22].

In Figure 10, we examine system energy efficiency ver-
sus the maximum transmit power of the MTCDs obtained
from the proposed algorithm and two other algorithms,
i.e., K-means algorithm and random algorithm. For both
K-means algorithm and random algorithm, the optimal power

allocation strategy is obtained through applying our pro-
posed iterativemethod-based energy efficiencymaximization
algorithm; we then apply different clustering strategies. For
K-means algorithm, the CHs are initially randomly selected,
and then updated based on the Euclidean distance between the
CMs and the CH. While for random algorithm, we randomly
select CHs and conduct user association. It can be seen from
the figure that the proposed algorithm outperforms the two
other algorithms.

VIII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
In this paper, we consider the resource allocation and cluster-
ing problem in an M2M communication system. To achieve
the efficient resource management of the MTCDs, we first
propose a joint resource management architecture, and then
design a joint resource allocation and clustering algorithm
which achieves the maximum system energy efficiency.
Numerical results show that our proposed algorithm outper-
forms previously proposed algorithm.

B. FUTURE WORK
While the analysis presented in this paper is based on some
simplified assumptions, the basic system model and the
methodology developed can be extended to more general
system models and assumptions, as briefly discussed below.

We may extend current system model to the one consisting
of multiple BSs. In this case, as the MTCDs and the CHs may
select different BSs for accessing, network selection schemes
or user association scheme should be jointly designed with
power allocation and clustering scheme. We may also extend
our current assumption on spectrum utilization to a more
general case. For instance, spectrum sharing can be allowed
among various MTCDs. In this case, spectrum allocation
or subchannel allocation should be jointly considered with
power allocation and clustering in order to utilize system
spectrum more efficiently. However, it should be mentioned
that transmission interference may occur due to spectrum
sharing, and our proposed power allocation strategy cannot
be applied in a straightforward manner. To further enhance
the transmission performance of the M2M communication
systems, we may also consider applying NOMA schemes,
or jointly applying orthogonal frequency division multiple
access (OFDMA) and NOMA for offering channel access to
the MTCDs.
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