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ABSTRACT Multi-view clustering (MVC), which can exploit complementary information of different views
to enhance the clustering performance, has attracted people’s increasing attentions in recent years. However,
existing multi-view clustering methods typically solve a non-convex problem, therefore are easily stuck
into bad local minima. In addition, noisy data and outliers affect the clustering process negatively. In this
paper, we propose self-pacedmulti-view clustering via a novel soft weighted regularizer (SPMVC) to address
these issues. Specifically, SPMVC progressively selects samples to train the MVC model from simplicity
to complexity in a self-paced manner. A novel soft weighted regularizer is proposed to further reduce the
negative impact of outliers and noisy data. Experimental results on real-world data sets demonstrate the
effectiveness of the proposed method.

INDEX TERMS Multi-view clustering, self-paced learning, soft weighting.

I. INTRODUCTION
The aim of clustering [1] is to divide a set of objects into
different groups such that similar objects will be grouped
into the same cluster, while dissimilar ones are placed into
different clusters. Clustering has beenwidely used in different
fields, including pattern recognition, social network analysis,
astronomical data analysis, information retrieval, and bioin-
formatics, etc.

In the past couple of decades, a large number of clus-
tering models have been proposed, such as k-means [2],
fuzzy clustering [3], density-based clustering [4], [5],
distribution-based clustering [6], [7], mean shift clustering
[8], [9], consensus clustering [10]–[12], clustering based on
deep neural networks [13], [14] etc. However, these con-
ventional algorithms can only deal with single view clus-
tering problems. In real-world clustering tasks, data sets are
often described by multiple views, each providing a specific
aspect of data. To take full advantage of complementary
information from different views, multi-view clustering was
proposed [15].
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Recently, a number of multi-view clustering methods
[16]–[23] have been proposed and have been proved to be
effective in solving multi-view clustering problems. How-
ever, existing multi-view clustering methods typically solve
a non-convex optimization problem [24], which results in the
consequence that they get trapped in bad local minima easily.

To address the non-convexity issue, an effective and effi-
cient way is to use curriculum learning [25] and self-paced
learning [26]. The core idea of curriculum learning and
self-paced learning is imitating the mechanisms of cognition
of humans. At first, the model is trained with easy samples,
and then hard samples are involved in the training process
gradually. In clustering tasks, easy samples can be interpreted
as the data points with smaller loss values, while the hard ones
are usually associated with large loss values.

Besides, the existence of noisy data and outliers is another
factor that negatively affects the clustering performance of
conventional multi-view clustering methods. Kong et al. [27]
show that using l2,1-norm rather than Frobenius norm grants
model stronger resistance against noises and outliers. How-
ever, since noises and outliers contribute equally with the
normal samples to the training, the noisy data issue still exists.
To this end, a novel soft weighting regularization term is
developed in this work, which reduces the impact of noises
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and outliers by automatically assigning lower weights to
those samples with larger loss values.

Overall, in this paper, we propose self-paced multi-view
clustering via a novel soft weighted regularizer (SPMVC)
to address the non-convexity issue and noisy data issue.
Concretely, our SPMVC solves the former problem by pro-
gressively selecting samples to train the MVC model from
simplicity to complexity, while a novel soft weighted regu-
larizer is developed to further reduce the impact of noisy data
and outliers.

In summary, the contributions of this paper include:

i) Alleviate the non-convexity issue of conventional
multi-view clustering algorithms by taking advantage
of the self-paced learning.

ii) Reduce the impact of the outliers and noises on the
clustering result by developing a novel soft weighting
regularization term for self-paced learning.

iii) Derive an efficient optimizing method to solve the pro-
posed model. Experiments on real data are concluded
to demonstrate the effectiveness of SPMVC.

II. RELATED WORK
A. MULTI-VIEW CLUSTERING
Multi-view clustering focus on using information given by
the multiple views to enhance the clustering performance.
In recent years, a lot of multi-view clustering algorithms have
been proposed.

Kumar and Daumé [16] proposed a co-trained multi-view
spectral clustering method (Co-train), which assumes that a
data point should be grouped in the same cluster among all
the views. Kumar et al. [17] designed two co-regularization
strategies and achieved a new spectral clustering structure
(Co-reg). To solve the problem of noises and outliers, Tzortzis
and Likas [18] assigned a weight to each view based on its
quality and proposed multi-view kernel k-means clustering
(MVKKM). Cai et al. [19] proposed a robust multi-view
k-means clustering (RMKMC) which utilizes l2,1-norm in
the objective function. Huang et al. [24] proposed a novel
multi-view clustering with multi-view capped-norm k-means
(CAMVC). By exploiting the capped-norm loss as the objec-
tive, CAMVC could decrease the influence caused by noises
and outliers. Huang et al. [28] proposed a joint graph-based
multi-view clustering model and further boosted the learning
performance of multiple kernels.

B. SELF-PACED LEARNING
Similar to the process of human learning, self-paced learn-
ing (SPL) chooses simple examples first and then utilizes
complex samples until all the examples are selected to
train [26]. SPL has been proved that it benefits in alleviating
bad local optima [29]. For its effectiveness, SPL has been
employed to various machine learning tasks, such as classifi-
cation [30], clustering [31], [32], computer vision [33]–[35],
feature corruption [36], boosting learning [37], diagnosis of
disease [38], etc.

Supancic and Ramanan [39] applied self-paced learn-
ing to solve the problem of long-term object tracking.
Ma et al. [40] developed co-training with SPL and proposed
a novel co-training algorithm named self-paced co-training
(SPaCo). Meng et al. [41] provided some theoretical analyses
for SPL. Instead of simply dividing the examples into ‘easy’
and ‘complex’, a series of self-paced learning algorithms
with soft weighting schemes have been proposed [30], [32],
[33], [37], [42]. In [32], Ren et al. designed a self-paced
learning algorithm with soft weighting for multi-task multi-
view clustering (MTMVC), in which the impact of noises and
outliers is effectively reduced.

In this paper, a self-paced multi-view clustering method
(SPMVC) is proposed, which develops a novel soft weight-
ing SPL scheme for multi-view clustering. In contrast to
multi-view self-paced learning (MSPL) [42] which also
applies SPL in multi-view clustering, l2,1-norm is utilized
for objective function instead of Frobenius norm and a novel
soft weighted regularizer is further proposed in this paper
to enhance the robustness to noisy data and outliers. Exper-
iments on real data also demonstrate our method performs
better than MSPL.

III. PROPOSED APPROACH
This section elucidates the proposed self-paced multi-view
clustering via a novel soft weighted regularizer (SPMVC).

As mentioned previously, the non-convexity issue and
noisy data issue are the mainly factors that cause the bad per-
formance of conventional multi-view clustering algorithms.
To address these problems, our method trains the model in
a self-paced manner, by gradually selecting samples from
simplicity to complexity. Meanwhile, a novel soft regularizer
is proposed to address the noisy data issue. The resulting
objective function of our model is:

min
Cv,B,W v

m∑
v=1

||(X v − CvB)W v
||2,1 +

m∑
v=1

n∑
i=1

f (wvi , λ
v)

s.t. Cv
≥ 0, wvi ∈ [0, 1],

bij ∈ {0, 1},
k∑
i=1

bij = 1, ∀j = 1, 2, . . . , n (1)

X v = {xv1, x
v
2, . . . , x

v
n}, v = 1, 2, . . . ,m, denotes the vth

view of the data set, where nmeans the number of data points
and m is the number of views. Cv

= {cv1, c
v
2, . . . , c

v
k} denotes

the cluster centers of the vth view, k is the predefined number
of clusters. The weight matrix W v

= diag(wv1,w
v
2, . . . ,w

v
n),

where the value of wvi represents the weight of the i
th sample

in the vth view. B = {b1, b2, . . . , bn} ∈ Rk×n reflects the
clustering assignment and is shared by all the m views. The
novel soft weighted regularizer f (wvi , λ

v) is written as:

f (wvi , λ
v)= (wvi+γ

ve−λ
v
)ln(wvi+γ

ve−λ
v
)−wvi (lnγ

v
+1) (2)

This regularizer controls how samples in each view contribute
to the training process. In brief, under the influence of this
regularizer, those samples with higher loss values contribute
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less to the training process, and vice versa. As a consequence,
noises and outliers are typically associated with large loss
values and there negative influence can be reduced.

Our method contains two main parts, i.e., initialization and
optimization.

A. INITIALIZATION
Firstly, each X v, v = 1, 2, . . . ,m, is normalized to be non-
negative. Then, cluster center matrices Cv and assignment
matrix B are initialized by solving the following problem:

min
Cv,B

m∑
v=1

||(X v − CvB)||2,1

s.t. Cv
≥ 0, bij ∈ {0, 1},

k∑
i=1

bij, ∀i = 1, 2, . . . , n (3)

Eq. (3) does not learn weights for different views, and thus
can be considered as a simple version of [19]. Following [19],
this optimization problem can be solved by alternately updat-
ing Cv and B. Actually, Eq. (3) can be also seen as a special
case of our model Eq. (1) when all the samples participate in
training the model with default weight 1.

B. OPTIMIZATION
The objective function Eq. (1) can be optimized w.r.t. one
variable while other variables are fixed.

1) STEP 1: FIX CV AND B, UPDATE W V .
When Cv and B are fixed, Eq. (1) can be written as:

min
W

m∑
v=1

||(X v − CvB)W v
||2,1 +

m∑
v=1

n∑
i=1

f (wvi , λ
v)

s.t. wvi ∈ [0, 1] (4)

The contribution given by every data point in each view can
be calculated separately. Thus, wvi can be solved separately
by:

min
wvi

lvi w
v
i + f (w

v
i , λ

v) (5)

where

lvi = ||x
v
i − C

vbi|| (6)

Substituting Eqs. (6) and (2) into Eq. (5), and setting the
gradient w.r.t. wvi to zero, we can obtain:

0 = lvi + ln(w
v
i + γ

ve−λ
v
)− ln(γ v) (7)

Thus, the optimal value of wvi is:

wvi = γ
v(e−l

v
i − e−λ

v
) (8)

Since wvi ∈ [0, 1], wvi achieves the minimum 0 when lvi ≥ λ
v

and reaches the maximum 1 when

lvi ≤ ln
γ v

1+ γ ve−λv
(9)

Here, γ v controls how many samples are associated with
the highest weight 1. It is defined as:

γ v =
1

e−αλv − e−λv
(10)

where α ∈ [0, 1]. Replacing the γ v in Eq. (9) with Eq. (10),
the right side of Eq. (9) is actually equal to αλv. As a
result, the number of samples that obtain the highest weight
1 declines as the value of α increases. Specifically, when α is
set to 1, the regularizer f (wvi , λ

v) plays the same role as the
traditional hard weighted regularizer. That is, those samples
whose loss values are smaller than λv will be assigned with
weight 1.

For simplicity, in this paper, the parameter α is always set
to 0.5. Then, the formula of updating W v becomes:

wvi =


1 lvi ≤

λv

2
γ v(e−l

v
i − e−λ

v
)

λv

2
< lvi < λv

0 lvi ≥ λ
v

(11)

From Eq. (11), our novel soft regularizer enables the
data points with smaller loss values to get higher weights,
as shown in Figure 1. In this way, the impact caused by
noisy data and outliers (which are typically with large loss
values) can be significantly reduced. Moreover, by increasing
the value of λv to let more samples join the training process
in every iteration, our method trains the MVC model from
simplicity to complexity progressively.

FIGURE 1. Curves correspond to soft weighting of Eq. (11).

2) STEP 2: FIX W V , ALTERNATELY UPDATE CV AND B.
a: FIX W v AND B, UPDATE Cv

When the weight matrix W v and assignment matrix B are
fixed, f (wvi , λ

v) in Eq. (1) is a constant. Thus, optimizing
Eq. (1) is equivalent to solving the following problem:

min
Cv

m∑
v=1

||(X v − CvB)W v
||2,1

s.t. Cv
≥ 0 (12)
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It is difficult to optimize this function directly. To solve this
problem, we firstly define Dv = diag(dv1, d

v
2, . . . , d

v
n) where:

dvi =
wvi

||xvi − C
vbi||

(13)

Then, solving Eq. (12) becomes minimizing the following
function for each view:

J (Cv) = Tr
(
(X v − CvB)Dv(X v − CvB)T

)
(14)

where Tr(A) denotes the trace of matrix A.
To solve this problem, as in [27], an auxiliary function

Z (Cv,Cv′ ) of J (Cv) is defined:

Z (Cv,Cv′ ) = Tr(X vDvX vT )− 2Tr(CvTX vDvBT )

+

∑
i

∑
j

(Cv′BDvBT )ijC
v
ij
2

Cv′
ij

(15)

The reason why we choose Z (Cv,Cv′ ) as the auxiliary func-
tion of J (Cv) is that Z (Cv,Cv′ ) satisfies the following condi-
tions that have been proved by Kong et al. [27]:

J (Cv) = Z (Cv,Cv) (16)

J (Cv) ≤ Z (Cv,Cv′ ) (17)

Let f (Cv(t+1)) = Z (Cv(t+1),Cv(t)), then its gradient is:

∂f (Cv(t+1))

∂Cv(t+1)
ij

= 2
(Cv(t)BDvBT )ijC

v(t+1)
ij

Cv(t)
ij

− 2(X vDBT )ij (18)

Setting this gradient to 0, we obtain the optimal solution:

Cv(t+1)
ij = Cv(t)

ij
(X vDvBT )ij

(Cv(t)BDvBT )ij
(19)

The above formula is the updating rule of cluster center
matrix Cv. It decreases the objective value of Eq. (12), which
is proved in Theorem 1.
Theorem 1: Updating rule Eq. (19) decreases the value of

objective function Eq. (12).
Proof: The second order derivatives (Hessian matrix) of

f (Cv(t+1)) is:

∂2f (Cv(t+1))

∂Cv(t+1)
ij ∂Cv(t+1)

kl

= 2
(Cv(t)BDvBT )ij

Cv(t)
kl

δjlδik (20)

where δjl is equal to 1 when j = l, and is equal to 0 otherwise.
Thus, the Hessian matrix of f (Cv(t+1)) is semi-positive defi-
nite, which implies that f (Cv(t+1)) is a convex function. So the
optimal solution shown in Eq. (19) is the global minima
of f (Cv(t+1)). Merging this conclusion and the conditions
represented in Eq. (16) and Eq. (17), the following unequal
relationship can be inferred:

J (Cv(t+1)) ≤ Z (Cv(t+1),Cv(t))

≤ Z (Cv(t),Cv(t)) = J (Cv(t)) (21)

With this relationship, we can further prove the following
formula is satisfied:

||(X v − Cv(t+1)B)W v
||2,1 − ||(X

v
− Cv(t)B)W v

||2,1

≤
1
2
[J (Cv(t+1))− J (Cv(t))] (22)

To this end, we represent the left side (the first line) of Eq. (22)
as LHS and the right side (the second line) as RHS. Then,
we can obtain:

LHS − RHS

=

n∑
i=1

wvi (||X
v
i − C

v(t+1)bi|| −
1
2
||X vi − C

v(t)bi||

−
||X vi − C

v(t+1)bi||
2

2||X vi − C
v(t)bi||

)

= −
1
2

n∑
i=1

wvi
||X vi − C

v(t)bi||
(||X vi − C

v(t)bi||

−||X vi − C
v(t+1)bi||)2

≤ 0 (23)

From Eq. (21), we have RHS ≤ 0. Therefore, LHS ≤ 0,
which means that the updating rule Eq. (19) could decrease
the value of objective function Eq. (12) monotonically. �

b: FIX W v AND Cv , UPDATE B
When the weight matrix W v and cluster center matrix Cv

are fixed, optimizing Eq. (1) is equivalent to solving the
following problem for each data point separately:

min
bi

m∑
v=1

wvi ||x
v
i − C

vbi||

s.t. bij ∈ {0, 1},
k∑
i

bij = 1 (24)

This problem can be easily solved by exhaustive search
method. That is, the optimal solution b∗i is ej, where ej denotes
the jth column of the Identity matrix and is obtained by
solving:

argmin
ej

m∑
v=1

wvi ||x
v
i − C

vej|| (25)

In Step 2, we alternately update Cv of each view by
Eq. (19) and update B by Eq. (25) until the terminating
condition is satisfied.

The Step 1 and Step 2 correspond to an entire iteration.
SPMVC keeps the iteration running until all the data points
are selected in the training process. At first, for each view, λv

is initialized to select half of the data points to train the model.
Then, in each of the following iterations, λv is varied to let
10% more samples to be chosen. Therefore, the algorithm
will finish in only 6 iterations. After that, the final cluster cen-
ter matrix C1,C2, . . . ,Cm and assignment matrix B reflect
the clustering result. The process of SPMVC is summarized
in Algorithm 1.
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TABLE 1. The data sets used in the experiments (dimensionality).

Algorithm 1 The SPMVC Algorithm.
Input: Data set X v, v = 1, 2, . . . ,m; Cluster number k .
Output: The final cluster center matrix Cv, assignment

matrix B, v = 1, 2, . . . ,m.
1: Initialize Cv and B by solving Eq. (3).
2: Initialize λv for each view, v = 1, 2, . . . ,m.
3: repeat
4: for each view v do
5: Fix Cv and B, update W v and Dv:
6: UpdateW v by soft weighting according to Eq. (11).

7: Update Dv according to Eq. (13).
8: end for
9: repeat
10: for each view v do
11: Fix W v and B, update Cv:
12: Update Cv according to Eq. (19).
13: end for
14: Fix C and W , update B:
15: Update B according to Eq. (25):
16: until convergence or exceed the maximal number of

iterations
17: Increase λv to select more samples.
18: until all data points are selected
19: return Cv and B, v = 1, 2, . . . ,m.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
1) DATA SETS
Handwritten numerals 1 data set is chosen from UCI machine
learning repository. This data set consists of 2000 points with
features of handwritten numerals (0-9). For 10 data classes,
each class has the same data quantity. Those data points
are represented by the following six features: 76 Fourier
coefficients of the character shapes, 216 profile correlations,
64 Karhunen-Love coefficients, 240 pixel averages in 2 ×
3 windows, 47 Zernike moments, and 6 morphological fea-
tures.

BBCsport data set originates from sports news reported by
the BBC Sport [43]. BBCsport is comprised of 2012 articles
with 5 genres. Each article was divided into tow segments,
every segment represents a single view and has more than

1https://archive.ics.uci.edu/ml/datasets.php

two hundred words which is related to the original article
logically.

Movies2 is collected from IMDb,3 and contains 617movies
over 17 labels. The two views of data are the 1878 keywords
used for more than 3 movies and 1398 actors starred in more
than 2 movies.

Reuters2 selects 1200 articles from 6 categories
(C15, CCAT, E21, ECAT, GCAT and M11), each providing
200 articles. Every document is written in five different
languages (English, French, German, Italian, and Spanish),
corresponding to five different views in the experiments.

The characteristics of data sets is shown in Table 1.

2) COMPARING METHODS
We compare the proposed SPMVCmodel with seven existing
state-of-the-art multi-view clustering approaches:
• Co-train: Co-trained multi-view spectral clustering [16].
• Co-reg: Co-regularized multi-view spectral clustering
[17].

• MVKKM: Multi-view kernel k-means clustering [18].
• RMVK: Robust multi-view k-means clustering [19].
• AMGL: Auto-Weighted Multiple Graph Learning [44].
• CAMVC: Robust Capped-Norm Multi-View Clustering
[24].

• MSPL: Multi-View Self-Paced Learning for Cluster-
ing [42].

In order to make a comprehensive comparison, we employ
k-means clustering on each single view (e.g., KM(1) means
applying KM on the first view). We also perform k-means on
the concatenated features from all the views (KM(Allfea)).
Features of each view are assigned with the same weight. The
number of clusters is always set to the ground truth number
of classes for all methods.

3) EVALUATION MEASURE
We use clustering accuracy (ACC), normalized mutual infor-
mation (NMI), and purity to evaluate the clustering perfor-
mance. Bigger values of NMI, ACC, and purity mean better
clustering performance. The average results and standard
deviations of 10 independent runs are reported in this paper.
By utilizing t-test, the statistical significance are evaluated at
5% significance level in our experiments.

2http://lig-membres.imag.fr/grimal/data.html
3http://www.imdb.org
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TABLE 2. Results on handwritten numerals.

TABLE 3. Results on BBCsport.

B. CLUSTERING RESULTS ON REAL DATA
In this section, we evaluate the performance of the proposed
method and the comparing approaches on real data sets. The
ACC, NMI, and purity values of different data sets are given
in Tables 2 - 5. In each column, the best and comparable
results are highlighted in boldface. From these tables, the fol-
lowing observations can be concluded:

(i) Multi-view clustering methods generally perform bet-
ter than the single-view algorithm, i.e., k-means, indi-
cating the superiority of employing comprehensive
information from multiple views.

(ii) k-means achieves different performance on different
views. The main reason is that different views exert
different influence on the clustering result.

(iii) Our SPMVC method always obtain the best or compa-
rable clustering results. Specifically, SPMVC performs
better than MSPL on all data sets, which demonstrates
the effectiveness of l2,1-norm and the novel SPL soft
weighted regularizer.

C. STUDY ON THE CONVERGENCE
This section shows the convergence trend of our method.
Figure 2 shows the convergence curve on different data sets
when all the samples participate in the training process. Here,
the abscissa means the number of iterations and the ordinate
is the objective value of Eq. (1). It is obvious that SPMVC

TABLE 4. Results on movies.

TABLE 5. Results on reuters.

FIGURE 2. Convergence curve of SPMVC on all data sets.

converges very fast when all the samples are selected for
training, empirically revealing the efficiency of our model.

V. CONCLUSION
In this paper, a novel clustering method named self-paced
multi-view clustering via a novel soft weighted regular-
izer (SPMVC) is proposed. Self-paced learning is applied in
multi-viewmodel to address the non-convexity issue by grad-
ually choosing samples for training from simplicity to com-
plexity. Meanwhile, l2,1-norm and a novel SPL soft weighted
regularizer are used to significantly reduce the negative
impact of noises and outliers. Experiments on multi-view
data sets demonstrate the effectiveness and efficiency of the
proposed SPMVC.
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