
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

Received September 30, 2019, accepted November 7, 2019, date of current version December 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953173

BiN: A Two-Level Learning-Based Bug Search
for Cross-Architecture Binary
HAO WU , HUI SHU, FEI KANG, AND XIAOBING XIONG
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China

Corresponding author: Hao Wu (revinc3up@gmail.com)

This work was supported in part by the National Key Research and Development Project 2016YFB08011601.

ABSTRACT With the popularity of IoT (Internet of Things) devices, the security risks of these devices are
increasing. However, due to the multisource heterogeneity of IoT devices, there are significant differences
between the vulnerability detection of the Internet of Things and the PC-based vulnerability search method.
Therefore, determining how to accurate search for vulnerabilities in large-scale cross-platform binary
executable files is an urgent problem to be solved. At present, the solution to this problem mostly calculates
code similarities by generating a CFG (control flow graph) from binary code, but due to the choice of
architecture, OS (operating system) or compilation options, the same source code will be compiled into
different assembly codes. The performance of existing vulnerability search methods for cross-architecture
binaries has been challenged. To alleviate the vast differences in the assembly codes caused by different
compilation scenarios, this paper proposes a cross-platform large-scale binary vulnerability search method
based on two-level feature semantic learning. The contribution is that we have defined a new functional
structured signature method to mitigate the massive grammatical and structural differences of binary files
caused by different compilation environments. Moreover, we reasonably integrate the hierarchical model
of Structure2Vec and GAT (graph attention network) and implement training from the internal control flow
characteristics of the function and the call relationship between functions to obtain amore accurate functional
semantic expression.

INDEX TERMS IoT, cross-platform, binary vulnerability, structured signature, deep learning.

I. INTRODUCTION
Using open source code or using third-party libraries is a
common approach in the development process, and the same
vendor often reuses code, which also provides fertile ground
for the generation and survival of vulnerabilities. If an orga-
nization does not fully understand all of the code it uses or
there are bugs in the code, it will not be able to withstand
common attacks against known vulnerabilities in these com-
ponents, and it will also be exposed to risk [25], [30]. It is
foreseeable that the same vulnerability function with different
architectures may appear in a large number of IoT devices.
To address this critical issue, researchers are devoting their
efforts to developing automated analysis technologies to meet
the needs of IoT product security testing [1]–[3], [26], [27].
In response to a wide variety of IoT devices, the ability to per-
form vulnerability searches in an efficient and accurate man-
ner is becoming increasingly important. This vulnerability

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

search technology will enable security practitioners to find
problems with high efficiency, saving time and resources.

A. PROBLEM STATEMENT
To solve the general cross-platform vulnerability search,
recent research can be divided into two types. The static
method attempts to extract various robust features that are
architecture-independent from the binary CFG (control flow
graph) and uses the graph matching algorithm to find the
same vulnerability function in the binary file through the fea-
ture representation function. However, for the same function
in different platforms and different compilation configura-
tions, such as the optimization level, the CFG of the compiled
binary function is significantly different [28], which greatly
affects the accuracy of the function search. The dynamic
method can produce accurate matching results by monitoring
their execution, extracting semantic signatures, and compar-
ing code similarities [29], [32]–[34]. The limitation is that it
is very time-consuming to cope with large-scale vulnerability
search work in the real world.

169548 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0236-1470
https://orcid.org/0000-0001-9338-4274


H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

Fortunately, a learning-based approach for solving
cross-platform binary similarity search problems has been
proposed in recent research. The main idea of these studies is
to learn advanced semantic features from assembly instruc-
tions in binary files. Among them, Genius and Gemini are
two methods that work well.

Genius [2] learns advanced feature representations from
control flow graphs and encodes (i.e., embeds) the graph
into embeddings (i.e., high dimensional numerical vec-
tors). Genius uses the graph matching algorithm to cluster
similar functions to generate the codebook by extracting
the robust features of the CFG in the different compila-
tion environments of the cross-architecture, and generate
the function embedding according to the codebook. Then,
the firmware database and the vulnerability function database
are built, and LSH (locality-sensitive hashing) is used for the
large-scale vulnerability search. In our experiments, Genius’s
embedding-generation is not efficient. In addition, the search
accuracy of Genius is not sufficient to meet the large-scale
vulnerability search work in millions of firmware.

In Gemini [4], a method was proposed based on a deep
neural network to generate the embedding of binary functions
for similarity detection, which improved the accuracy and
efficiency to some extent. Gemini extracts the robust features
of the function across the architecture and feeds the extracted
basic block-level features of the function and the representa-
tion of the CFG structure to a DNN model. Through several
layers of Structure2Vec [15] iteration, the basic block node
features are propagated to other nodes related to it, and the
representations of all basic block nodes are aggregated to gen-
erate a high-dimensional vector representation of the func-
tion. However, Gemini did not overcome the limitations of
Genius’s graph-based matching method. In our experiments,
to accurately find the vulnerability function, we need to ana-
lyze at least the top-86 candidate functions in the results. Effi-
cient vulnerability search still requires tremendous manual
analysis.

In addition, none of the above methods fully consider the
impact of different compilation options on the CFG structure
function. In our experiments, program syntax changes may
cause the learning model to fail due to different complex
compilation settings, so it is necessary to find features that
can more accurately describe the semantics of the function in
complex compilation settings.

B. OUR APPROACH
In this article, we focus on how to select, extract, and take
advantage of the characteristics of binary functions to address
these challenges. To alleviate the vast difference of func-
tion binary files in different compilation scenarios, we intro-
duce the concept of the structured signature of functions.
The binary code of the objective function is graphically
described, and the signature information is extracted from
the figure to facilitate comparison. We describe the binary
function through three types of graphs and divide it into the
following two levels:

1) INTRA-FUNCTION LEVEL
The control flow graph and data flow graph describe the con-
trol flow and the data flow of a function. All instructions of
a function can be divided into several basic blocks. However,
the nodes of the CFG and the DFG are composed of the
basic blocks in different division. Therefore, we attach the
data flow transfer information to the structure of CFG and
mark 0 and 1 to indicate whether there is a data transfer
between the two base blocks. The edges between the CFG
nodes represent the control flow direction; The labels on the
CFG edge indicates the data transfer between the two base
blocks.

In the existing research, the functions control flow and data
flow have a certain robustness in different architectures, dif-
ferent OSs and different compilation optimization levels [38].
We try to eliminate the effects by extracting the control flow
and data flow as the semantic features of the function, that is,
extracting the features that are versatile across platforms and
different compilation options, independent of the architecture
and compilation settings. Unlike methods like Gemini, which
directly use the feature sets selected by discovRE for the
graph matching algorithm, we designed a model-oriented
GA(genetic algorithm) to select a suitable feature set.

2) INTER-FUNCTION LEVEL
The function call describes the calling relationship between
the functions to be analyzed. The function call graph involves
the function call relationship of the entire binary file. Each
node represents a function, and each function node can be
represented by function CFG with data flow information.

Even in different compilation environments, the call rela-
tionships between functions are very robust as relatively gen-
eral features [39]. There is no difference in the functions that
the same function calls in different environments. Therefore,
we use the calling relationship between functions combined
with the idea of crowd classification in social networks, and
consider the impact of calling functions on function recog-
nition, generating more accurate feature representations of
functions.

We describe binary functions using the three graphs above
and generate signature information for them based on the
graph. In our method, we extract the basic block-level fea-
tures that are robust under the cross-architecture, different
optimization options in the CFG with data flow information
and the information of the calling function in the function call
graph as the signature factor of the function.

Our model uses two neural networks to learn the two-level
features of functions. For the intra-function level learning
model, our model is based on Gemini, and we add the data
flow information to capture more semantic information of
functions. Since the number of function calls is variable
and the relationship between function calls cannot be well
expressed on Gemini models, it is more difficult to deal
with function calling relationships. Therefore, we need to
introduce new mechanisms or models to learn the semantic

VOLUME 7, 2019 169549



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

information of function calls. Finally, inspired by social net-
work, we introduced GAT(graph attention graph) to try to
solve the above problems.

The DNN (deep neural network) is used to train the learn-
ing function basic block-level features, and the GAT is used
to train the influence of the calling relationship on the func-
tion to generate a high-dimensional feature vector containing
more precise semantics. Finally, the similarity between func-
tions is measured by calculating the distance of the function
eigenvector to identify the vulnerability function.

C. RESULTS OVERVIEW
We propose a vulnerability search method based on hier-
archical semantic learning [44] and implement a prototype
for verification experiments. It performs two-level analysis
of the binary file to extract the more precise features of
the binary function, and uses deep learning [7] methods to
learn the control flow and data flow characteristics of the
function, and combines the function call relationship to gen-
erate high-dimensional function representation to calculate
the similarity of functions.

In this prototype, we use the experience of manual vul-
nerability search [38], [39], adding data flow and func-
tion call information based on the characteristics of existing
research. Accordingly, the limitations of existing architec-
tures are overcome by resolving the effects on binary files
compiled in the different architectures, different compilers,
compilation settings and operating system environments.
Then, several sets of experiments are performed to evaluate
the accuracy and efficiency of our prototype, proving that the
accuracy obtained in the case of a small increase in time is
significantly better than that of the existing work.

D. CONTRIBUTIONS
In summary, our main contributions are the following:

1) Guided by manual vulnerability search, we propose a
solution to reduce the impact of different compilation
environments on function binaries;

2) We attach the function data flow to CFG and designed a
model-oriented GA to select suitable features to obtain
more complete semantics;

3) We apply a artificial neural network GAT to construct
a network architecture based on the attention mecha-
nism of neighbor nodes, and consider the call relation-
ships between functions and generate richer semantic
representations;

4) We establish a hierarchical model to fused the GAT [5]
model and the Structure2Vec [6] model, and train them
together from the intra-function characteristic and the
call relationship between functions to achieve a more
accurate functional similarity comparison;

5) We implemented a prototype called BiN. Our evaluation
shows that BiN can achieve higher AUC than other state-
of-the-art graphics-based matching methods in the test
set built by OpenSSL and BusyBox;

6) We tested our prototypes on a larger data set, and the
results showed that our method implementation was
accurate and efficient enough to handle real-world vul-
nerability detection efforts.

II. BACKGROUND
Most of the existing graph-based function similarity calcu-
lation methods extract features directly from the function
CFG, PDG(program dependency graph) [8], AST(abstract
syntax tree) [9], etc., but in fact, by using different choices
of architecture, OS or compilation options, the same source
code may be compiled into assembly code with different
structures, and the function features extracted by these meth-
ods cannot accurately express the function semantics [35]. In
what follows, we describe examples of such disturbances.

A. LOOP OPTIMIZATION
Loops are a very important program structure, and the com-
piler uses some loop optimization techniques to reduce the
computation time taken by the loop structure [40]. We take
loop unrolling as an example to analyze the impact of the loop
optimization technique function control flow graph. Loop
unrolling is a loop optimization technique that attempts to
optimize the execution speed of a program at the expense of
space, rewrite the loop into a repeating sequence of similar
independent statements, and reduce the number of iterations
of the loop, thereby eliminating this overhead. However, after
the loop is expanded, the assembly instruction of the function
will be changed. The accuracy of the similarity of the function
can be reduced. The accuracy of the method of comparing
function similarity only by the CFG characteristic is reduced.

B. FUNCTION INLINE
To optimize the running speed, the compiler inlines small
functions into the code of the calling function to reduce the
performance cost required for the function to jump back and
forth during the execution of the function call [41]. Thus,
the control flow structure of the function is significantly
changed. If the extracted feature is derived from a function
containing an inline function, or if the target program does
not recognize such an inline function, it will directly affect the
function similarity based on the graph matching. The accu-
racy of the sexual calculations. Moreover, finding inline code
for functions is a challenging task, and current methods are
not able to meet the timeliness requirements of our goals [10].

C. CODE ELIMINATION
Common subexpression elimination is a classic compiler
optimization technique that is mainly used to save comput-
ing resources and avoid redundant calculations. Therefore,
the compiler deletes the time that has been calculated and has
not changed since the calculation as a common subexpres-
sion [11]. In addition to this, code that never executes or code
that does not make sense will be deleted.

Therefore, the directly extracted information is not suffi-
cient for accurate binary code search. To satisfy the analysis

169550 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

of different compilation environments, it is necessary to have
some flexibility in the feature differences in the binary file.
We need to find more characteristic features to reduce the
impact, so we analyze the impact of the compilation envi-
ronment on the binary file and find that the processing of the
function data stream in different compilation environments
is not significantly different. In addition, the current function
similarity calculation methods are mostly concentrated inside
a single function, ignoring the calling relationship between
functions.

III. EXTRACTING FEATURES OF A BINARY FUNCTION
In this section, we will describe how we generate structured
signatures for functions and how we perform the task of
extracting the features of a binary function.

A. INTRA-FUNCTION FEATURE
The existing semantic learning methods rely on the CFG
of the function to extract features for each basic block of
the function and perform similarity comparisons based on
these features. BiN reproduces the Genius extraction feature
by first splitting the binary into the corresponding assem-
bler using the IDA Pro [12] tool. It then creates a CFG for
each assembly function using IDA Python provided by IDA
Pro. Simultaneously, we also use IDA Pro’s plugin named
MIASM [13] to determine whether there is data transfer
between two basic blocks.

Given the impact of the compile environment on the assem-
bly code that we have discussed in the Section Background ,
we have made some changes to the features extracted in
Gemini. Unlike Genius and Gemini directly use the function
features selected by DiscovRE for graph-matching algorithm,
and we designed the model-oriented genetic algorithm and
selected the function features that are more suitable for our
model.

In our implementation, we use genetic algorithms to select
the best subset of features. We extracted 50 features of func-
tions as inWang’s [36] work and selected the best performing
9 features; our experimental code was released on GitHub1

[37]. The model-oriented genetic algorithm for selecting fea-
tures of binary function is summarized in Algorithm 1.

In our model, population [42] is the selected subset of
function features, and the generation refers to the round
number. For each population in our model, we first initialize
the mating set and the offspring, and feed function pairs
with ground truth labels into the BiN model and get the
fitness of this population. Then we rank them by popula-
tion’s fitness, after that we select population using stochastic
sampling with replacement, crossover and mutating. Finally,
we update the population. After T generations, we select
the best performing subset of features as final selection. The
features shown in Table 1 are the initial features of each basic
block we used, including 8 statistical features and 1 structural
feature. The initial features of each basic block of the function

1https://github.com/V1ncent7/GA_feature_select

Algorithm 1 Genetic Algorithm for Feature Selection
Input: function pair set P = pi, i ∈ 1, 2, . . . , 8000
ground truth label L = li, i ∈ 0, 1
extracted features set F = f1, f2, . . . , f50
Number_of _generations T
Number_of _population n

Output: Selected Features set FinalSet
Initialize mating set 5 = π1, π2, . . . , πn,
π = α1, α2, . . . , α50, αi ∈ 0, 1
Initialize offspring O
for i = 1→ T do
Randomly generate probability C1
Randomly generate probability C2
for j = 1→ n do
Input P,L,F, pj into BiN Model
Output AUCj = AUC of BiN

end for
Rank AUC_k, k ∈ k, . . . , 20
Fitnessk = γ × R(k), k ∈ 1, . . . , 20
Add n/2 copies πi to5 randomly according to Fitnessi
Select a pair πk and πp from 5

O = O ∪ crossover(πk , πp) with C1
Switch the αk bit in αp ∈ O with C2
Update the population 5 = Combine(5,O)

end for
return FinalSet =Max Fitness π

(9-dimensional vector) are input to the model to generate a
semantic embedded vector of the function.

In addition, Bingold [38] considered the data flow as a
reliable representation and believed that the data flow among
basic blocks can capture data and variable dependencies,
and they also believed that the data flow analysis provides
the ability to locate the code that has been inlined. Bingold
divided the basic blocks according to the data flow structure.
Different from Bingold, we attach the information of the data
flow to the basic block of the structure of CFG.

We label 0 and 1 on the edge of CFG to represent whether
there is a data transfer between two basic blocks to enrich
the function semantic. In addition, we determine the data
transfer between two basic blocks by checking whether the
instructions in basic blocks have access to the same address
register. Since it considers the control structure and data
flow information within a function, which can effectively
alleviate the structural changes of CFG caused by different
compilation environments. In figure 2(a), the dotted square
illustrates an example of the CFGwith data flow information.

However, this method does not capture the interaction
between these functions when extracting function features
from binary files and will lose considerable structural infor-
mation. To obtain the structural information, a new function
structured signature is introduced, and the call relationship
between functions and the internal control flow information
of the function are used together as the characteristics of the
description function.

VOLUME 7, 2019 169551



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 1. Overall model.

TABLE 1. Robust Intra-function features used by BiN.

B. INTER-FUNCTION FEATURE
The FCG (function call graph) [43] is a directed graph
representation in which the vertices of the graph represent
functions and the directed edges represent the calling rela-
tionships of functions. When extracting the FCG, for the
dynamically loaded third-party function library, the function
name is obtained as a label by reading the import address
table of the executable file; for the local function, we use the
starting address of the local function as the function label.
We represent the caller-callee relationship between functions
as a directed, unweighted edge. Finally, according to the
FCG, the adjacency matrix of the function call relationship
is constructed. In our model, we only consider the inter-
nal functions of the file and the statically linked third-party
library functions, and the function call graph constitutes the
adjacency list to represent the function call relationship of the
binary file.

We extract the function features by the above method and
use the extracted features as the structured signature of the
function.

IV. SEMANTIC LEARNING PREDICTOR
In this section, we present our solution to the problem
of code similarity based on hierarchical feature learning.

We first present the overview of our solution in Section VI.A,
and then, the two-level graph embedding network [15] that
learns the intra-function characteristics and function call
relationships is described in detail (Section IV.B & IV.C).
In Section IV.D, the relationship between the two-level net-
work in the model and the similarity of the training function
is explained.

A. SOLUTION OVERVIEW
As discussed in Gemini, the measure of a code similarity can
be task dependent. We try to find a mapping phi that converts
a binary function into a representation of a high-dimensional
eigenvector. Given two binary functions f1 and f2, the sim-
ilarity of the two functions is judged by a given similarity
calculation function Sim(·, ·), that is, if the two functions
are similar, then Sim(φ(f1), φ(f2)) takes a value of 1. If the
two functions are not similar, Sim(φ(f1), φ(f2)) takes a value
of −1.

In our model, we try to learn how to generate function
embedding by means of deep learning, that is, mapping φ.
Different from Gemini, we fully consider the two-level
characteristics of the function, the characteristics of the
intra-function and the calling relationship between the func-
tions, establishing a learning model for the two-level feature
and integrating the training model of the two-level feature
reasonably and effectively. Vectors are generated that express
more semantics of the function to further improve accuracy.

B. OVERALL MODEL AND TRAINING METHOD
In this section, we will introduce how our model generates
the embedding and how the model trains the similarity of
functions through the learning of two-level features. The pro-
cess of our model is illustrated in Figure 1. In the following
sections, wewill describe the implementation of the two-level
model in detail separately.

169552 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

In Figure 1, the inputs are the extracted CFG with data
flow information extracted from the firmware binary code,
and N is the number of functions in the binary code. We
feed them into the Intra-function Feature LearningModel and
obtain the intermediate embeddings; in this paper, we have
5 iterations in the Intra-function Feature Learning Model and
each iterations has a 2 fully connected neural networks to
train the features. Then, we feed the intermediate embeddings
into the Inter-function Feature Learning Model, as indicated
in Figure 1, and there are a 3 hidden layers in our model.
We use the adjacency matrix to determine the dependencies
of functions and, through the attention mechanism, calculate
the influence of adjacent nodes on the function nodes and
generate the final representation that is graphically unrelated
and contains the function call information.

We illustrate the performance of the model in comparing
the similarities of inline functions. We assume that a function
containing subroutines B is compiled into A and A’ under
different compilation environments, where A inlines function
B, and A’ doesn’t inline function B, but calling function B.
In our model, function A generates a vector representation
containing function B’s semantics in Stage I; function A’ will
include the semantics of function B through Stage II.

As mentioned in the first section of this chapter, we obtain
a mapping φ that converts a binary function into a
high-dimensional representation through deep learning. Next,
we need to find a way to describe the similarity between func-
tions by the high-dimensional representation of the function
and then train our model. In data preprocessing, the function
is divided into L groups of function pairs. If the pair has two of
the same functions compiled by the same source in different
compilation environments, i.e., sim(φ(fi), φ(f ′i )), the function
assigns a ground truth value of 1 to the label labelfii′ ; other-
wise, if there are two different functions, i.e., sim(φ(fi), φ(fj)),
the function assigns a ground truth value of −1 to the label
labelfij . Further, we describe the similarity of functions by the
cosine distance as

sim
(
fi, fj

)
=cos

(
φ(fi), φ(fj)

)
=

〈
φ(fi), φ

(
fj
)〉

‖φ(fi)‖ ·
∥∥φ (fj)∥∥ (1)

In the training phase, the model evaluates the quality of the
mapping by comparing the difference between the generated
similarity and the ground truth value of the function pair.
We use mean square error (MSE) as a measure, the formula
is as follows:

MSE =
1
L

L∑
i=1

(
sim

(
fi, fj

)
− labelfij

)2 (2)

Then, we train the shared parameters W1,W2,P1, · · · ,Pn
in the intra-function model and W, Ea in inter-function model
to minimize MSE in Equation 1. In addition, we improve
the generalization ability of the model by adding the
L2 regularization and Drop out to prevent overfitting.
We optimized MSE with the stochastic gradient descent
algorithm. Ultimately, once the optimal value of shared

parameters are learned, we can easily convert the functions
to a high-dimensional representation for function similarity
comparison.

C. INTRA-FUNCTION FEATURE LEARNING MODEL
The intra-function model is improved in Gemini’s Struc-
ture2vec model, and the main purpose is to obtain
high-dimensional vectors that represent functions, such as
control flow and data flow, that is, to generate an embedding.
Structure2Vec was inspired by the graph model inference
algorithm. The features of its vertices are recursively non-
linearly aggregated according to the graph topology. After
performing enough iterations, each vertex will contain infor-
mation about neighbor vertices. After extracting the basic
block-level 8-dimensional feature representation of the func-
tion in the target binary, the features are input to the learning
model to generate the semantic embedding for similarity
calculation.

Figure 2(a) is a CFG with data transfer representation
denoted as g = (ϑ, ξ, x̃i), containing 3 vertices in the
graph with block-level features x̃, where ϑ and ξ are the
sets of vertices and edges, respectively. After T layer itera-
tions, the DNN model will generate a p-dimensional embed-
ding for each ν ∈ ϑ , and each iteration will generate
p-dimensional vertex-specific features µi containing infor-
mation about their neighborhood and the data-transferred ver-
tices’ features determined by the CFG with the data transfer
representation [14]. After generating the embedding of each
vertex µT , the embedding vector µ of g will be computed as
an aggregation with the formulaW2(

∑
ν∈ϑ µ

T
ν ).

The method of updating the embedding at each iteration
is visualized in Figure 2(b). We now discuss the method of
updating the embedding shown as the following form:

µtν= tanh(W1xν+σc(
∑
i∈N (ν)

µ
(t−1)
i )+σd (

∑
j∈D(ν)

µ
(t−1)
j )) (3)

where xν is a d-dimensional numerical vector for each vertex,
W1 is a d × p matrix. We separately denote N (µ) as the set
of neighbors of vertex µ and D(µ) as the set of vertices that
has data transferred with vertex µ in graph g. In addition, σc
and σd are two nonlinear transformation σ (·), which defines
n-layer fully connected networks to achieve the process of
gathering other vertices’ features as

σc(lν) = Pnc × ReLU (P2 × . . .ReLU (P1lν))

σd (l ′ν) = P′nd × ReLU
(
P′2 × . . .ReLU

(
P′1l
′
ν

))
(4)

where Pi(i = 1, . . . , n) and P′i(i = 1, . . . , n) are p×pmatrix,
and n is the embedding depth. ReLU is the activation function.
The overall algorithm for generating the intra-function-level
embedding is summarized in Algorithm 2.

After T iterations, the feature of each vertex is propagated
to other vertices associated with it, and each vertex embed-
ding contains the semantics of the context.

For intra-function feature learning model, we have added
data flow information to capture more semantic information

VOLUME 7, 2019 169553



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 2. The DNN model of BiN.

Algorithm 2 Intra-Function Embedding Algorithm
Input: Control Flow Graph with data transfer g = (ϑ, ξ, x̃i)
Output: Function Embedding φ(g)
1: Initialize µ0

ν , for all ν ∈ ϑ
2: Function σ (t, lν, l ′ν)
3: ret = σc(lν)+ σd (l ′ν)
4: Return ret
5: for t = 1→ T do
6: for ν ∈ ϑ do
7: lν =

∑
i∈N (ν) µ

t−1
i

8: l ′ν =
∑

j∈D(ν) µ
t−1
j

9: µtν = tanh(W1 xν + σ (t, lν, l ′ν))
10: end for
11: end for fixed point equation update
12: return φ(g) := W2(

∑
ν∈ϑ µ

T
ν )

of functions than DiscovRE, Genius and Gemini’s existing
research. We illustrate the idea of adding data flow by
example.

Figure 3 is the CFG of two binary functions compiled
by GCC 5.4.0 under O0 and O3 optimization level under
arm architecture of function SSL_get_peer_certificate. Obvi-
ously, the CFG structure of the two functions is somewhat
different.

The red dotted block is the data flow information of the
function we observe, and the green line refers to a data
transfer between the two basic blocks. With the help of data
flow information, we can preliminarily judge that there is a

FIGURE 3. Compiled in different optimization level.

strong data dependence and logical correlation between the
basic blocks in the red dotted box. After learning, the basic
block information inside the red dotted square is propagated
to the others in the square through the nonlinear propagation
function. After several iterations, each basic block node will
contain information about its neighborhood determined by
both data flow topology and the involved vertex features.
In other words, the model will learn the semantics that
expressed by all the basic blocks in the red square.

In our example, the semantics of the basic blocks within
the two red dotted squares are roughly the same, that is
to say, the CRYPTO_add_lock function is called after a

169554 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 4. GAT model for generating function embedding.

conditional jump. Since the basic blocks within the two red
dotted squares have a strong data dependence, the seman-
tics expressed by the basic blocks within the two squares
through our model learning will be closer than the seman-
tics expressed by the pure CFG structure learning on Gem-
ini. Therefore, the data flow information alleviates the error
caused by the difference of CFG under different compilation
environments to some extent.

D. INTER-FUNCTION FEATURE LEARNING MODEL
Asmentioned earlier, function calling relationships is a robust
semantic under different compilation environments. Since
the number of function calls is variable and the relationship
between function calls cannot be well expressed on Gemini
models, it is more difficult to deal with function calling rela-
tionships. Therefore, we need to introduce new mechanisms
or models to learn the semantic information of function calls.
Ideally, we want the model to have the following characteris-
tics:

(1) the model can act on the neighborhood of the node,
i.e., the function calls;

(2) the model can assign different importance to the differ-
ent adjacent nodes with functions;

(3) the model is suitable for inductive problems and can
deal with any untrained graph structure.

It should be noted that the function does not have a fixed
number of adjacent nodes in the calling relation matrix.
Therefore, inspired by social network, in the construction
of the embedded network of the function call relationships,
our model is modified on the basis of Petar’s GAT [5] net-
work. GAT uses a hidden self-attention layer [17] to han-
dle problems in some graph convolutions. No complicated
matrix operations or prior knowledge of the graph structure
are required. By stacking the self-attention layer, different
importance is assigned to different nodes in the neighborhood
during the convolution process, and different sizes of neigh-
borhoods are processed at the same time. In addition, due to

the edgewise mechanism, GAT does not depend on the global
graph structure and is easy to apply to the induction prob-
lem. Inspired by the GAT model, our inter-function feature
learning method includes the following main steps, as shown
in Figure 4.

The input is a set of function embeddings, that is, the high-
dimensional representation of the function generated in the
previous stage, µ = {Eµ1, Eµ2, . . . , EµN } , Eµi ∈ RF , where N
is the number of functions, and F represents the dimensions
of features in each function. In addition to this, we also need
to feed the adjacency matrix representation M of the binary
file function call to our model. Considering the first-order
neighbor node set Ci of each function node i, our model
generates the final function vector representation µ′ ={
Eµ′1, Eµ

′

2, . . . , Eµ
′
N

}
, Eµ′i ∈ RF ′ , according to the attention

coefficients αij of node i for each called function node j.
To transform the input features into a higher-level function

embedding that contains the semantics of the function being
called, we need to find a way to indicate the importance of
function node i to each function node j it called. Fortunately,
we perform self attention on function nodes, that is, a shared
attention mechanism a : RF ′

× RF ′
→ R to compute

the importance; we denote it as attention coefficients, eij =
a
(
W Eµi,W Eµj

)
, where Eµi and Eµj are two functions’ initial

features, W is a shared parameterized weight matrix applied
to every feature vertex for linear transformation. Once obtain-
ing the normalized attention coefficients αij, we can compute
the final function embedding after a nonlinear transformation
Eµ′i = σ

(∑
j∈Ci αijW Eµj

)
, where Ci are the functions called by

function i.
For easy understanding, we explain the attention

coefficients, which in our model can also be called
‘‘importance’’, through an example. For the third-party
library Openssl, the ‘‘importance’’ ofBIO_printf to dsa_main
is smaller than the ‘‘importance’’ of EVP_PKEY_get1_DSA
to dsa_main. The reason is a large number of functions
call the function BIO_printf, and only three functions

VOLUME 7, 2019 169555



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 5. Self-Attention mechanism.

dsa_main, d2i_DSA_PUBKEY, pkey_get_dsa call the func-
tion EVP_PKEY_get1_DSA, so the effect of the function
EVP_PKEY_get1_DSA is more important for the recognition
of function dsa_main. We refer to A, B, C as three functions,
dsa_main, BIO_printf, and EVP_PKEY_get1_DSA, respec-
tively. Our example is to illustrates that the ‘‘importance’’ of
function B and C to function A does not depend on function
A itself, but depends on how well functions B and C can be
used to identify function A, that is, when function A calls
a function such as the function EVP_PKEY_get1_DSA that
is called less frequently, A is more easily identified as the
function dsa_main.
Ideally, we want to see that the model learns different

attention weights, that is, one or two function neighbors are
much more important than the others. For function A and
its two subroutines B and C, ‘‘importance’’ refers to the
ability to identify function A through B and C. The reason
is that the model finally generates a vector representation of
function A which contains the semantics of function B and
function C, and if function C is a more special function than
function B, then it is easier to find function A through func-
tion C, and the final vector representation of A should contain
more function C’s semantic information to be more easily
identifiable.

The following will discuss the implementation of the
model. Aswementioned earlier, we need to initialize aweight
matrixW ∈ RF ′×F as a linear transformation shared between
function nodes. Each vertex also needs a self-attention mech-
anism to compute the importance of the function vertex j
to vertex i, thereby finding a way to obtain the importance
between two functions using initial feature vectors.

An overview of the self-attention mechanism is presented
in Figure 5. In our model, the attention mechanism is a
one-layer feedforward neural network, which realizes the
importance of computing nodes through a parameterized
weight vector Ea ∈ R2 F ′ , which can be represented as

eij = LeakyReLU
(
EaT
[
W Eµi‖W Eµk

])
(5)

where LeakyReLU is a nonlinear activation function, ·T rep-
resents transposition and ‖ means the concatenation opera-
tion. Considering efficiency issues, only use first-order calls

to calculate eij and normalize eij using softmax.

αij = softmaxj
(
eij
)
=

exp
(
eij
)∑

k∈Ci exp (eik)
(6)

Now, the attention coefficient is obtained, and the final
function presentation can be calculated by

Eµ′i = σ

∑
j∈Ni

αijW Eµj

 (7)

We choose ELU and softmax as σ (·) in our model. To ensure
the stability of the attention mechanism learning process,
a multihead mechanism is added, that is, K independent
attention mechanisms are executed at the same time, and the
presentation of each function is generated by averaging.

Eµ′i = σ

 1
K

K∑
k=1

∑
j∈Ni

αkijW
k
Eµj

 (8)

The intra-function feature learning model is represented in
Algorithm 3

Algorithm 3 Inter-Function Embedding Algorithm
Input: Intra-FunctionModel Outputµ, adjacencymatrixM
Output: Final Function Embedding h′

1: Initialize shared parameterized weight matrixW
2: Initialize parameterized weight vector Ea
3: for t = 1→ T − 1 do
4: for µi ∈ µ do
5: sumµi =

∑
k∈Cµi

exp (eik)
6: for hj ∈ Cµi do
7: for each head in multihead K do
8: eij = LeakyReLU

(
EaT
[
W Eµi‖W Eµj

])
9: αij =

exp(eij)
sumµi

10: end for
11: Eµti = ELU

(
1
K

∑K
k=1

∑
j∈Ni

αkijW
k
Eµj

)
12: end for
13: end for
14: Eµ′i = softmax

(∑
j∈Ci αijW Eµ

T
j

)
15: end for

V. EVALUATION
Our prototype consists of two modules, a feature extrac-
tion module and a function high-dimensional representation
generation module. Like Gemini, we also use the extractor
generated by Genius’s features, but at the same time, we have
made some modifications based on this to extract more
accurate original features with more semantic information.
The function high-dimensional feature generation module is
divided into two parts: for the feature generation of the control
flow graph in the function, we modify it on the basis of
Gemini so that the model can learn the new original features
extracted; for the feature representation of the call between
functions, we implemented the graph self-attention network

169556 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

model through TensorFlow, so that it can fit the scenario of
function vulnerability detection.

We validate the validity of our BiN model by comparing
Gemini and bipartite graph matching methods. Gemini and
VulSeeker [14] provide two baselines for graph embedding,
and BGM [45] provides a baseline to evaluate the accuracy of
pairwise graph matching approaches. The experiments were
conducted on a server with an NVIDIA 1080Ti GPU and an
8 core with 16 threads, 5 GHz Turbo CPU, with 128 GB
memory and a 1 TB SSD.
Dataset: In our assessment, we collected 3 data sets.
• Dataset I - Baseline evaluation. We obtain the binary
file for training by compiling the source code and keep
the name of the original function as a criterion for
determining the similarity of the function, so this data
set can be compared well with the ground true label
for the homology function under different architectures,
compilers and optimization levels. We have used GCC
v5.4 to compile OpenSSL (version 1.0.1e and 1.0.1u)
and BusyBox (version 1.27.2). The compiler is set to
emit code in x86, AMD64, MIPS, MIPS64 and ARM,
ARM64, with optimization levels O0 - O3. In addition,
we extract the function features by using disassembler
IDA 6.8.

• Dataset II - Real-world dataset. We crawled the
firmware from the network, including routers, IP cam-
eras, printers, etc., and involving vendors such as Cisco,
D-link, Tp-link, Dahua, Hikvision, HP, and Epson,
including 21,350 images. In total, 8753 images can be
unpacked successfully.

• Dataset III - Vulnerability dataset. To build a vulner-
ability database that can be used for searching, we need
to obtain the binary code of the vulnerability function.
Therefore, we found the vulnerability in the open source
library widely used in the firmware on the official web-
site and recorded the firmware version, the name of the
function, and so on. We extract the vulnerability func-
tion feature from the corresponding version firmware
according to the function name and other features, use
the prototype BiN to generate the high-dimensional fea-
ture representation of the vulnerability function, and
store it in a database. Ultimately, we obtained 84 vul-
nerability functions.

A. ACCURACY
We implemented three methods, Gemini, VulSeeker
and BGM, and conducted comparisons with them on
dataset I. We evaluated five groups of functions selected in
dataset I, which are Dataset I(All), Dataset I(32bit), Dataset
I(BGMWeak), Dataset I(Inlined function) and Dataset
I(BGMWeak except inlined function). Since dataset I is
compiled on the source code, we can easily identify the
same function in different files and accurately define the
ground truth label. Figure 6 illustrates the ROC curves for our
model (BiN) and the other three baseline approaches. We can
see that BiN is more accurate than Gemini, Genius and BGM.

For the first group, we evaluated it on dataset I(All).
We randomly selected 4000 pairs of the same functions and
4000 pairs of different functions and divided them into three
parts: train, validation, and test in a ratio of 8:1:1. We treat
two different compiled versions of the same source function
as a pair of similar functions. We performed experiments
on these four implementations, all of which were configured
with optimal parameters.

We observed that the BiN ROC curve is higher than that
for Gemini, which means that it is more likely for BiN to
place the positive sample in front of the negative sample,
that is, the model judges better. The AUC and ACC values
of BiN were 92.73% and 90.12%, which were 12.47% and
19.23%higher thanGemini and 4.24% and 8.83%higher than
VulSeeker, respectively.

In the first set of evaluations, Gemini’s experimental results
were somewhat different from the descriptions in the paper.
We believe that our data set contains 64-bit binaries, and
Gemini’s support for this is not very good. VulSeeker has a
clear optimization of 64-bit support. It reselects features and
adds DFG, but its accuracy can still be improved.

In the second set of evaluations, we evaluated on
dataset(32bit),which only selected the 32-bit binaries com-
piled byOpenSSL.We can see that the Gemini’s ROC is close
to 93%, that VulSeeker can obtain a 94%AUC value, and that
our model increases the value to 96%.

In the third group of evaluations, we demonstrated
whether the improvement of BiN is effective. Our improve-
ments mainly include the feature reselection using by the
model-oriented GA, data flow and the inter-function feature
learning. Therefore, we compared the original Gemini, Gem-
ini with feature reselection, BiN without Stage II, BiN with-
out Data Flow, and BiN for evaluation. The AUC of original
Gemini raised 1.88% by reselecting features. And the AUC
of BiN without Stage II increased to 88.98% by adding data
flow information on Gemini with feature reselection, while
when Gemini with feature reselection adds Stage II, the AUC
go up to 89.12%, that is close to BiN without Stage II. The
results proved that these improvements have positive effects.
When we combined all improvements, the AUC improved to
92.69%, better than others.

In addition to the above three sets of assessments, we per-
formed three sets of evaluations on the set of functions
that did not perform well in Gemini. We define that the
same function does not perform well when the similarity
score is less than 0.7 in Gemini under different compila-
tion environments, and we constitute the BGMWeak dataset.
Further, we found that the inline function is an important
factor in the low similarity score in the dataset. There-
fore, we also evaluated the accuracy of the model, facing
the key challenge of inline function. We chose the inline
function in BGMWeak as a test set. In contrast, we per-
formed a further evaluation of the remaining functions in
BGMWeak.

As illustrated in Figure 6(d), Gemini and VulSeeker are
not ideal in this dataset. The graph matching method or the

VOLUME 7, 2019 169557



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 6. Comparison result on dataset I.

features provided by CFG cannot solve the impact of the
different optimization options and architecture of the func-
tion. Furthermore, for inline functions, the performance of the
three models is not very satisfactory, but BiN still has some
progress in the identification of inline function compared to
Gemini and VulSeeker.

For the functions other than inline function, all models
have been improved, and the effect of BiN is the most obvi-
ous. The AUC can reach 94.15%, which is 4.94% and 8.38%
higher than VulSeeker and Gemini respectively. We illustrate
these two evaluations in Figure 6(e) and 6(f). Fortunately, BiN
has a proven performance in these instances, proving that our
model can further mitigate the impact of optimization options
and architecture.

In summary, BiN is better than Gemini and VulSeeker
in our evaluation. This finding is because we added data
flow information attach to the CFG to track the data transfer
between basic blocks and added information about func-
tion calls. In the process of function semantic generation,
BiN obtains more powerful semantic information through
the learning of two-level features, which is beneficial for
the effective recognition of homologous functions. How-
ever, the study on the similarity of inline functions should
still be explored.

B. EFFICIENCY
We use the firmware function of Dataset II to evaluate
the model efficiency. Our evaluation is divided into two

parts: (1) the function feature extraction and (2) the function
high-dimensional feature generation.

For the extraction of function features, we compare the
time at which the function is extracted in the Gemini method
to use as the baseline. Gemini extracts the six basic intrablock
features in the function and the structural features between the
two basic blocks. The 8 intrablock features and an interblock
feature extracted by our model extract the data stream char-
acteristics of the function and obtain the features. The call
information of the function.

For the high-dimensional feature generation phase of the
function, we still use Gemini as a baseline for comparison.
Note that our evaluation is based on all functions in the binary,
since the call information for the function is extracted from
the entire binary.

1) FUNCTION FEATURES EXTRACTION TIME
Figure 7a illustrates the results. We can observe that the
time required for Gemini to extract features is more than
the time required to extract CFG features and function
call information. However, after adding the extraction of
the function data stream, the time is significantly increased,
which is higher than the extraction time of all other schemes.
This increase in time is tolerable because it is significantly
smaller than Genius’s extraction time, approximately 2× on
Gemini.

2) FUNCTION REPRESENTATION GENERATION TIME
The generation time is represented in Figure 7b. We can
observe that generation representations in our model and

169558 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 7. Efficiency evaluation on dataset III. The figure plots one point for each sample selected in dataset III.

FIGURE 8. Evaluation of different hyperparameters of the intra-model on dataset III.

Gemini require similar time. Although our model is more
complex than Gemini, most of the operations of the model
use matrix operations, and parallelization can be achieved
by the underlying multicore CPU, so the time increment is
acceptable. It should be stated that due to the choice of model
parameters, the final performance of the model will be greatly
affected. Therefore, our evaluation is carried out employing
the parameters with the best results in our experiments.

C. HYPERPARAMETERS
In this section, we evaluate the effectiveness of hyperparam-
eters in the BiN model. Our evaluation is divided into two
parts.

1) INTRA-FUNCTION MODEL HYPERPARAMETERS
Since our intra-function model has changed on Gemini,
we need to re-evaluate the hyperparameters such as the
embedding depth, embedding size, and iteration number. Our
initial settings are the same as those of Gemini, and we
control the variables to test the hyperparameters one-by-one
to find the most appropriate parameter settings, where the
embedding size p is 64, the embedding depth n is 2, and the
number of iterations T per basic block is 5.

a: EMBEDDING DEPTH
We changed the depth of function embedding in the
intra-function model and visually demonstrated the effects of
different parameters through the ROC curve. From Figure 8a,
we observe that when the embedding depth is 2, the ROC
curve can reach a higher level, and when the number of layers
is continuously increased, the improvement effect is almost
negligible.

b: EMBEDDING SIZE
We vary the number of embedding sizes, and we can observe
that the ROC curve reached a stable level when the embed-
ding size is 128, as shown in Figure 8b. The larger sizes
also obtain curves close to size 128, and the larger the size
is, the longer the evaluation time is; thus, we choose the
embedding size to be 128, considering the efficiency.

c: NUMBER OF ITERATIONS
We observe that the model achieves the largest AUC value
when the number of iterations is larger than 4 in Figure 8c.
We trade off efficiency and accuracy and choose 5 as the
number of iterations.

VOLUME 7, 2019 169559



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

FIGURE 9. Evaluation of different hyperparameters of inter-model and overall on dataset III.

FIGURE 10. Attention weight entropy of different layers of inter-model on dataset I.

As a result, the embedding size p is 128, the embedding
depth n is 3, and the number of iterations T per basic block
is 5.

2) INTER-FUNCTION MODEL HYPERPARAMETERS
For the inter-function model, we examine the impact of the
layer number, output vector dimension, units per layer, atten-
tion heads, etc.

a: LAYER NUMBER
We changed the depth in the inter-functionmodel and visually
demonstrated the effects of different parameters through the
ROC curve as well. From Figure 9a, we observe that when the
layer number is more than 3, the ROC curves reach a stable
level, so we set 3 layers in our model.

b: OUTPUT VECTOR DIMENSION
The output vector is the final presentation of a function, and
we set different numbers of dimensions for our model to
generate the vector. As seen in Figure 9b, the larger the vector
is, the larger the AUC value that we obtain. Considering the
efficiency, we choose a 128-dimension vector finally.

c: UNITS PER LAYER
We have chosen different numbers of hidden units per each
attention head in each layer to determine the final choice.
We can observe in Figure 9c that 8 is a good trade-off choice.

d: ATTENTION HEADS
Note that the final layer must have only one head, so the
choice we made is on the other layers. In Figure 9d,

169560 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

we observe that the ROC curves have a good performance
when attention heads are 8 or more.

In order to verify that the attention distribution learned
by our model can distinguish the importance of different
functions under these parameters, we introduce the entropy
of attention distribution [46]. For any function fi,

{
αij
}
j∈N (i)

forms a discrete probability distribution over all functions fi
called with the entropy given by

E
(
αijj∈N (i)

)
= −

∑
j∈N (i)

αij logαij (9)

That is to say, low entropy means a high concentration and
vice versa. An entropy of 0 means that all attention is con-
centrated on one function node.

We performed a verification on dataset I. Since the function
nodes can have different degrees and the maximum entropy
is different, we plot the aggregate histogram of the entropy
values of all functions in the binary file. Figure 10 are the
attention histograms learned at different layers. As a ref-
erence, Figure 10(d) is the histogram if all functions have
uniform attention weight distribution. The entropy value we
expressed is the average of each attention head. Clearly, GAT
does learn sharp attention weights, and the attention gets
sharper in 3 layers.

As a result, the layer number is 3, the output vector dimen-
sion p′ is 128, the units per layer m is 8, and the number of
attention heads for each layer is 16.

3) OVERALL HYPERPARAMETERS
The variation of the number of epochs is also within the
scope of our research. As seen in Figure 9e and 9f, our model
achieves a relatively stable result at approximately 85 epochs.

D. ACCURACY OF VULNERABILITY SEARCH
We use Dataset I to evaluate the effectiveness of BiN in
vulnerability searches and compare Gemini as a baseline. We
extract the features of the function on data set II, involving
a total of 3,619,200 functions, and select the vulnerability
function from Dataset III to search. To facilitate comparison
with Gemini, we selected the same CVE-2015-1791 [23] and
CVE-2014-3508 [24] vulnerabilities as Gemini and extracted
G0 compiled O0-O3 under x86, MIPS, and ARM, three
32-bit architectures. We extract the features of the functions
in the real world firmware and input them into the BiN
model, which then generates a final vector representation of
the function and compares it with the vulnerability function
in Dataset III to find the vulnerability function candidate
set. Four optimization levels of OpenSSL’s correspond-
ing vulnerability functions ssl3_get_new_session_ticket and
OBJ_obj2txt are searched.

We examined the validity of the top-K most similar results
of the search results and compared them with the results of
Gemini. Table 2 is our result. The K value represents the
selection of K functions, the second column is the number
of functions in the first K results, and the third column is the
corresponding percentage. For each firmware, we searched

TABLE 2. Accuracy of vulnerability search.

with 12 functions of 4 optimization levels for each vulnera-
bility, sorted the functions according to the descending order
of similarity, and took the average of 12 function search
results. For these 2 CVEs, we discovered the vulnerability
in vendors such as D-link, Tp-link, Netgear and Cisco. The
result shows BiN On average, the vulnerability function can
be found in the 9th bit, where the maximum is 22, while the
Gemini is ranked 47 and the maximum is 189. A comparison
of all vulnerability functions search result between BiN and
Gemini is shown in Table 3 in Section Appendix, the average
rank of BiN is 8.78, while the average rank of Gemini goes
up to 25.73.

The experimental results demonstrated that the accuracy of
our model in real-world vulnerability search could reach up to
87.9%, which is a great improvement on the search accuracy
compared with Gemini. In our model, we only need to man-
ually analyze the top-50 candidate vulnerability functions
to achieve better results than Gemini’s top-100 vulnerability
function candidates.

VI. RELATED WORK
We discussed our work in detail throughout the paper, and in
this section, we will briefly introduce other related work. Our
work focuses on finding known vulnerabilities through code
similarity in cross-architecture binaries. This section does not
discuss ways to explore unknown vulnerabilities.

A. A BUG SEARCH BASED ON ORIGINAL FEATURES
Many of the current methods for searching for bugs in
cross-architecture binaries are mostly expensive. For exam-
ple, both Zynamics BinDiff [18] and BinSlayer [19] use an
expensive graph isomorphism to quantify code similarity by
calculating the similarity of control flow graphs. Pewny et al.
[20] used the MinHash method to optimize the search match-
ing time, but the graph matching algorithm still could not
cope with the vulnerability search of large-scale firmware.
DiscovRe [1] filters and selects robust CFG features by pre-
processing to further improve the efficiency of graph match-
ing, but the accuracy of prefiltering is difficult to guarantee.
On this basis, Pewny Genius uses the ACFG graph to form a
codebook to generate a high-dimensional feature represen-
tation of the function to obtain the function similarity and
optimizes the search process through LSH; the efficiency is
greatly improved, but the performance in the million-level
function search is still poor.

VOLUME 7, 2019 169561



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

TABLE 3. Vul-func comparison between BiN and Gemini.

169562 VOLUME 7, 2019



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

TABLE 3. (Continued.) Vul-func comparison between BiN and Gemini.

B. A BUG SEARCH BASED ON DEEP LEARNING
Xu Gemini [4] uses the extracted features to learn to generate
graph embedding on the DNN model to efficiently generate
function feature embedding and perform function similarity
comparison. However, this method does not fundamentally
solve the limitation of similarity comparison using graph
matching and generates semantics that embed the inability
to express the function accurately. Wang added a second
phase to improve accuracy, but its method is less efficient and
cannot perform accurate vulnerability mining for large-scale
data. VulSeeker [14] adds a new semantic feature DFG when
extracting function semantics, which improves the integrity
of functional semantic expression, but its characteristics are
still limited to the internal features of the function, lacking
the semantic information of the function call relationship.

C. DEEP LEARNING-BASED GRAPH EMBEDDING
APPROACHES
CNN cannot process data of non-Euclidean structure [47],
that is, the number of adjacent vertices of each vertex in the
topology map must be the same, but since the number of
function calls is not fixed, it is impossible to use convolution
kernels of the same size to perform a convolution operation.
The GCN [21] attempts to generalize and apply the neural
network to any graph structure data, but this method cannot
adapt to the new graph structure and cannot be used for
function search in firmware.

VII. CONCLUSION
In this paper, we propose a two-level feature-based neural
network method, which is used to generate high-dimensional
feature representations of binary functions in an attempt to
solve the problem of detecting vulnerabilities in large-scale
IoT devices in the real world. We implemented a prototype
called BiN. In our evaluation, BiN outperforms the state-
of-the-art approaches in terms of the accuracy and scope
of the function similarity detection and only increased an
acceptable time overhead. In the search for real-world func-
tion vulnerabilities, BiN can more accurately identify the

vulnerability function. We believe that our model has made
effective progress in the application of deep learning in secu-
rity issues. However, our model does not completely solve
the problem of inline function to binary function similarity
comparison, the study of inline function should be continued.

APPENDIX
See Table 3.

REFERENCES
[1] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, ‘‘discovRE: Efficient

cross-architecture identification of bugs in binary code,’’ in Proc. NDSS,
San Diego, CA, USA, Feb. 2016.

[2] F. Qian, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, ‘‘Scalable graph-
based bug search for firmware images,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 480–491.

[3] P. Bryan, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of social
representations,’’ in Proc. 20th SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2014, pp. 701–710.

[4] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural
network-based graph embedding for cross-platform binary code similar-
ity detection,’’ in Proc. SIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 363–376.

[5] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, ‘‘Graph attention networks,’’ 2017, arXiv:1710.10903. [Online].
Available: https://arxiv.org/abs/1710.10903

[6] L. F. R. Ribeiro, P. H. Saverese, and D. R. Figueiredo, ‘‘Struc2vec: Learn-
ing node representations from structural identity,’’ in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017, pp. 385–394.

[7] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] A. K. Srivastava, ‘‘Function embedding generation using program depen-
dency graph based neural network,’’ Ph.D. dissertation, Univ. California,
Riverside, California, CA, USA, 2018.

[9] A. Chandran, L. Jain, S. Rawat, and K. Srinathan, ‘‘Discovering vulnerable
functions: A code similarity based approach,’’ in Proc. Int. Symp. Secur.
Comput. Commun. Singapore, Springer, 2016, pp. 390–402.

[10] J. Qiu, X. Su, and P. Ma, ‘‘Library functions identification in binary code
by using graph isomorphism testings,’’ inProc. IEEE 22nd Int. Conf. Softw.
Anal. Evol. Reeng. (SANER), Mar. 2015, pp. 261–270.

[11] S. Glesner, and J. O. Blech, ‘‘Classifying and formally verifying integer
constant folding,’’ Electron. Notes Theor. Comput. Sci., vol. 82, no. 2,
pp. 410–425, 2004.

[12] The IDA Pro Disassembler and Debugger. Accessed: May 18, 2019.
[Online]. Available: http://www.datarescue.com/idabase/

[13] MIASM. Reverse Engineering Framework. Accessed: May 18, 2019.
[Online]. Available: https://github.com/cea-sec/ miasm

VOLUME 7, 2019 169563



H. Wu et al.: BiN: Two-Level Learning-Based Bug Search for Cross-Architecture Binary

[14] G. Jian, X. Yang, Y. Fu, Y. Jiang, and J. Sun, ‘‘VulSeeker: A semantic
learning based vulnerability seeker for cross-platform binary,’’ in Proc.
33rd ACM/IEEE Int. Conf. Automated Softw. Eng., 2018, pp. 896–899.

[15] H. Dai, B. Dai, and L. Song, ‘‘Discriminative embeddings of latent variable
models for structured data,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2702–2711.

[16] W. Xu, Y. Li, Y. Tang, and B. Wang, ‘‘Research on cross-architecture
vulnerabilities searching in binary executables,’’Netinfo Secur., vol. 9, p. 6,
2017.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017.

[18] D. Thomas, and R. Rolles, ‘‘Graph-based comparison of executable
objects,’’ SSTIC, vol. 5, no. 1, p. 3, 2005.

[19] M. Bourquin, A. King, and E. Robbins, ‘‘Binslayer: Accurate compari-
son of binary executables,’’ in Proc. 2nd SIGPLAN Program Protection
Reverse Eng. Workshop, 2013, p. 4.

[20] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, ‘‘Cross-
architecture bug search in binary executables,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015, pp. 709–724.

[21] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ Sep. 2016, arXiv:1609.02907. [Online]. Avail-
able: https://arxiv.org/abs/1609.02907

[22] J.-B. Hou, T. Li, and C. Chang, ‘‘Research for vulnerability detection of
embedded system firmware,’’ Proc. Comput. Sci., vol. 107, pp. 814–818,
2017.

[23] CVE-2015-1791. Accessed: Jun. 16, 2019. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0224

[24] CVE-2014-3508. Accessed: Jun. 16, 2019. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0224

[25] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, ‘‘A survey on security and
privacy issues in Internet-of-Things,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1250–1258, Oct. 2017.

[26] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, ‘‘αDiff:
Cross-version binary code similarity detection with DNN,’’ in Proc. 33rd
ACM/IEEE Int. Conf. Automated Softw. Eng., 2018, pp. 667–678.

[27] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
‘‘BinGo: Cross-architecture cross-OS binary search,’’ in Proc. 24th SIG-
SOFT Int. Symp. Found. Softw. Eng., 2016, pp. 678–689.

[28] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and H. Yin,
‘‘Extracting conditional formulas for cross-platform bug search,’’ in Proc.
Asia Conf. Comput. Commun. Secur., 2017, pp. 346–359.

[29] J. Ming, D. Xu, Y. Jiang, and D. Wu, ‘‘BinSim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,’’
in Proc. 26th USENIX Secur. Symp. (USENIX Secur.), Vancouver, BC,
Canada, 2017, pp. 253–270.

[30] A. Cui, M. Costello, and S. Stolfo, ‘‘When firmware modifications attack:
A case study of embedded exploitation,’’ Tech. Rep., 2013.

[31] D. Minoli, K. Sohraby, and J. Kouns, ‘‘IoT security (IoTSec) considera-
tions, requirements, and architectures,’’ in Proc. 14th IEEE Annu. Consum.
Commun. Netw. Conf. (CCNC), Jan. 2017, pp. 1006–1007.

[32] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘AVATAR:
A framework for dynamic security analysis of embedded systems’
firmwares,’’ inProc. 21st Symp. Netw. Distrib. Syst. Secur. (NDSS), Reston,
VA, USA: Internet Society, 2014.

[33] D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated
dynamic analysis for Linux-based embedded firmware,’’ in Proc. NDSS,
2016, pp. 1–22.

[34] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, ‘‘Avatar2: A multi-
target orchestration platform,’’ in Proc. Workshop Binary Anal. Res. Colo-
cated NDSS Symp., vol. 18, Feb. 2018, pp. 1–11.

[35] Y. David, N. Partush, and E. Yahav, ‘‘FirmUp: Precise static detection of
common vulnerabilities in firmware,’’ in Proc. 23rd Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2018, pp. 392–404.

[36] Y. Wang, J. Shen, J. Lin, and R. Lou, ‘‘Staged method of code similar-
ity analysis for firmware vulnerability detection,’’ IEEE Access, vol. 7,
pp. 14171–14185, 2019.

[37] Github. Accessed: May 18, 2019. [Online]. Available: https://github.com/
[38] S. Alrabaee, L. Wang, and M. Debbabi, ‘‘BinGold : Towards robust binary

analysis by extracting the semantics of binary code as semantic flow graphs
(SFGs),’’ Digit. Invest., vol. 18, pp. S11–S22, Aug. 2016.

[39] H.-J. Song, S.-B. Park, and S. Y. Park, ‘‘Computation of program source
code similarity by composition of parse tree and call graph,’’ Math. Prob-
lems Eng., vol. 2015, Dec. 2014, Art. no. 429807.

[40] T. Nakahira, and M. Haraguchi, ‘‘Loop optimization compile processing
method,’’ U.S. Patent 5 842 022 A, Nov. 24, 1998.

[41] P. P. Chang and W.-W. Hwu, ‘‘Inline function expansion for compiling
C programs,’’ in Proc. ACM SIGPLAN Symp. Interpreters Interpretive
Techn., 1989, vol. 24, no. 7, pp. 246–257.

[42] J. Yang, and V. Honavar, ‘‘Feature subset selection using a genetic algo-
rithm,’’ in Feature Extraction, Construction and Selection. Boston, MA,
USA: Springer, 1998, pp. 117–136.

[43] X. Hu, T.-C. Chiueh, and K. G. Shin, ‘‘Large-scale malware indexing using
function-call graphs,’’ in Proc. 16th Conf. Comput. Commun. Secur., 2009,
pp. 611–620.

[44] P. Stone, and M. Veloso, ‘‘Layered learning,’’ in Proc. Eur. Conf. Mach.
Learn., Berlin, Germany: Springer, 2000.

[45] K. Riesen, and H. Bunke, ‘‘Approximate graph edit distance computation
by means of bipartite graph matching,’’ Image Vis. Comput., vol. 27, no. 7,
pp. 950–959, 2009.

[46] S. T. Kay, ‘‘The entropy distribution in clusters: Evidence of feedback?’’
Monthly Notices Roy. Astronomical Soc., vol. 347, no. 2, pp. L13–L17,
2004.

[47] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

HAO WU was born in 1995. He received the B.S.
degree in network engineering from Information
Engineering University, Zhengzhou, in 2017. He is
currently pursuing the M.S. degree in cyberspace
security with the State Key Laboratory of Math-
ematical Engineering and Advanced Computing.
His research interests include the Internet of
Things security and binary program analysis.

HUI SHU was born in 1974. He received the Ph.D.
degree in computer science and technology from
Information Engineering University, in 2001. He is
currently a Professor with the State Key Labora-
tory of Mathematical Engineering and Advanced
Computing, China. His research interests include
reverse analysis and the IoT security.

FEI KANG was born in 1972. She is currently
a Professor with the State Key Laboratory of
Mathematical Engineering and Advanced Com-
puting, China. Her research interests include net-
work security mechanism analysis and malware
analysis.

XIAOBING XIONGwas born in 1985. He received
the Ph.D. degree in computer science and tech-
nology from Information Engineering University,
in 2013. He is currently an Assistant Professor
with the State Key Laboratory of Mathematical
Engineering and Advanced Computing, China.
His research interests include reverse analysis and
malware detection.

169564 VOLUME 7, 2019


