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ABSTRACT Pavement crack detection and characterization is a fundamental part of road intelligent
maintenance systems. Due to the high non-uniformity of cracks, topological complexity, and similar noise
from crack texture, the challenge arises in this domain with automated crack detection and classification in a
complex environment. In this work, an overarching framework for a universal and robust automatic method
that simultaneously characterizes the type of crack and its severity level was developed. For crack detection,
we propose a novel and efficient crack detection network that captures the crack context information
by establishing a multiscale dilated convolution module. On this foundation, an attention mechanism is
introduced to further refine the high-level features. Moreover, the rich features at different levels are fused
in an upsampling module to generate more detailed crack detection results. For crack classification, a novel
characterization algorithm is developed to classify the type of crack after detection. The crack segment
branches are then merged and classified into four types: transversal, longitudinal, block, and alligator;
the severity levels of cracks are assessed by calculating the average width and distance between the
crack branches. The proposed crack detection method effectively detects crack information in a complex
environment, and achieves the current state-of-the-art accuracy. Compared to manual classification results,
the classification accuracy of transversal and longitudinal cracks is higher than 95%, and the classification
accuracy of block and alligator is above 86%.

INDEX TERMS Pavement crack detection, crack classification, convolutional neural network, multiscale
feature extraction, attention mechanism.

I. INTRODUCTION
Automatic detection and classification of pavement cracks
is an important part of intelligent transportation systems and
acts as a primary rapid analysis of pavement distresses. The
implementation of a fast and accurate automatic pavement
crack detection system is essential for maintaining and mon-
itoring complex transportation networks, and is an effec-
tive way to improve the road service quality [1]. Pavement
crack automatic detection and characterization systems per-
form three primary tasks: data acquisition, crack detection,
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and crack classification. With the development of mobile
mapping technology and hardware storage devices, fast
acquisition devices are becoming more widely used in pave-
ment distress screening [2] as they can quickly obtain road
distress data. Fig. 1(a) shows a road surface image acquisition
device installed on a roof, whereas Fig. 1(b) is a pavement
image taken vertically, which can be used to measure the
crack location and for qualitative analysis. In recent years,
a numerous experts and scholars have devoted themselves
to researching automatic detection of pavement cracks, and
have obtained promising research results [3], [4]. At present,
the research on automatic detection of pavement cracks
is roughly divided into three methods: traditional image
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FIGURE 1. Road surface distress acquisition image: (a) road surface
image acquisition device installed on the roof; (b) road surface distress
image data after collection.

processing methods, machine learning methods, and deep
learning methods.

In the traditional methods, the crack region was usually
detected using the threshold approach [5]–[7]. These algo-
rithms can quickly detect the results in the input image by
setting different thresholds. Ideally, cracks can be detected
easily, as cracks always absorb more light than other areas
and typically appear as darker areas in the image. However,
when there is a certain amount of noise, the pixels with
intensity is lower than that of the cracked pixels seriously
degrade the overall detection performance. These methods
lack a description of the global information, are sensitive
to noise, and rely primarily on the choice of thresholds.
Other researchers use artificially designed feature descriptors
to detect cracks in images. For example, Gabor filters [8]
and wavelet transforms [9] show significant progress in
detecting simple cracks. However, due to complexity, diverse
topologies, arbitrary shapes and widths, as well as oil spots,
weeds, stains, and other strong disturbances on the road, the
performance is still limited.

Upon further development, the machine learning method
became widely adopted in the field of crack detection. The
improved active contour model and greedy search-based
Support Vector Machine (SVM) have been used to study
the detection of bridge cracks [10]. Ai proposed [11] an
SVM-based approach to calculate probability maps using
information from multi-scale neighborhoods. Through the
fusion algorithm, multiple probability maps obtained from
the Probabilistic Generation Model (PGM) and SVM meth-
ods are merged into a fusion map, which can detect cracks
with higher precision than any original probability map.
Prasanna et al. [12] classified multiple spatially adjusted
visual features using the random forest method. However,
these detection methods are limited to detecting learned
cracks, and therefore have difficulty detecting new cracks.
To overcome the above problems, CrackForest [13] was
proposed based on randomly structured forest for automatic
crack detection; it effectively suppresses noise by selecting
crack features manually and learning the internal structure.
However, it fails to consider the different categories of dam-
age under the complex situation of crack extraction. As tra-
ditional methods simulate cracks by setting color or texture
features manually, the features set manually can only sat-
isfy crack extraction in some specific situations. The main

weakness of these methods is their failure to address robust
detection in the changeable environment. Therefore, manual
design features are inefficient for extracting cracks from
different road images in complex situations.

Recent theoretical developments have revealed that deep
learning can solve complex problems by learning features
at different levels automatically [14]. The rich hierar-
chical features of Deep Convolutional Neural Network
(DCNN), and the end-to-end trainable framework, have
made significant progress in pixel-level semantic segmenta-
tion tasks [15]–[17]. Recently, several crack detection meth-
ods based on object detection [18], [19] and image block
segmentation [20]–[22] and utilizing deep learning have been
proposed. However, because these rough estimate methods
fail to extract cracks at the pixel-level, they cannot accurately
characterize crack classification and severity level assign-
ment in the subsequent step. Huang et al. [23] proposed a
solution to this problem that uses the FCN [17] network
for pixel-level crack extraction. However, this method did
not consider that cracks with different widths and topolo-
gies require different sizes of context information. Moreover,
in this method, the different contributions of crack features to
crack detection were ignored, and all crack features treated in
the same manner. Several studies in the literature [24], [25]
have proposed 3D crack detection networks based on DCNN
for automatic pixel-level crack detection from 3D asphalt
pavement. However, as the network uses a convolutional
layer with uniform convolution kernels, this can lead to con-
fusion between the target and the context. Zou et al. [26]
implemented the DeepCrack network on the encoder-decoder
architecture of SegNet, and merged the convolution features
generated in the encoder and decoder network in pairs on the
same scale to achieve pixel-level crack detection. However,
based on the SegNet network structure, the characteristics of
learning in the encoding-decoding stage are relatively simple,
and most of the spatial information that is lost during the
upsampling process cannot be restored through shallow lay-
ers. Song et al. [27] developed a crack segmentation network
with the DeepLabv3 [28] framework to achieve pixel-level
precise segmentation of tunnel cracks. Although this method
makes full use of the Atrous Spatial Pyramid Pooling (ASPP)
[29] module to obtain multi-scale information, it fails to
fully acknowledge the significance of the upsampling oper-
ating for refining detection results. In general, deep-learning
based methods produce better results than traditional meth-
ods. However, there is still a lack of research on robust pixel-
level crack detection for trainable DCNN models that utilize
rich semantic information. The above crack detection based
on DCNNmethods does not consider crack classification and
damage severity levels.

After crack detection, there is a further task to classify
and assign severity levels of cracks in the second stage.
Ouyang et al. [30] used a beamlet transform-based algorithm
to analyze the crack image of the road surface, and connected
the crack segments. Their classification algorithm is very
robust and can detect four different cracks types classified
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FIGURE 2. Proposed crack detection system structure.

according to the crack direction. However, their method does
not consider the severity levels of cracks after classification.
Oliveira and Correia [31] use the average width of the cracks
to quantify the severity, which can be estimated from the total
number of pixels in both the crack and crack skeleton. This
method can better complete the severity assignment of linear
cracks; however, the density factor and the severity levels
of miscellaneous cracks are not considered. Subsequently,
Wang et al. [32] proposed a Laplace equation-based crack
width definition method and formulas for continuous, unam-
biguous, and more accurate measurement of crack width.
Cubero-Fernandez et al. [33] evaluated multiple cracks in
one image as a whole, without considering the spatial distri-
bution relationship between multiple individual cracks. This
method also did not consider the severity levels of cracks.
In summary, few studies have yielded a universal and robust
automaticmethod to simultaneously characterize the type and
severity levels of cracks.

In summary, the existing automatic detection and
classification algorithms for pavement cracks mainly focus
on pixel-based analysis of the road pavement image to gen-
erate a global image analysis result, and then classify the
type of crack detected in the image. However, because of the
complexity of the road surface, and the variability in the data
acquisition process, the automatic detection and classification
of pavement cracks still presents challenges. This is espe-
cially true for the classification of cracks, which is relatively
simple and cannot satisfy the requirements of automatic
crack assessment. Given the above problems, in this study
it was of the upmost importance to investigate the automatic
detection and classification of pavement cracks towards the
following two goals: 1) pixel-level robust crack detection in
the complex background; 2) crack classification and severity
levels assignment.

The overall structure of the automatic crack detection and
classification system proposed in this study is shown in Fig. 2.
For the first goal, we propose deep multi-scale convolu-
tional features to achieve automatic detection of pavement
cracks. The multiscale dilated attention (MDA) module is
used in the encoding stage to achieve accurate detection of

high-level crack features. Secondly, by combining low-level
features and high-level semantic information with attention
information, the feature fusion upsampling (FFU) module is
used to restore the crack spatial resolution. Then, the MDA
and FFU modules are integrated into the DCNN for crack
detection. For the second goal, we investigate the crack clas-
sification and severity level assignment after detecting the
crack from the complex background. The crack is divided into
transversal, longitudinal, block, and alligator types by using
the connected component labeling algorithm and the spatial
distribution of cracks. Moreover, the severity of each type of
crack is evaluated by using the average distance and width
between the crack branches.

The contributions of this research are as follows:
(1) A novel trainable pixel-level crack detection network

that fully exploits the semantic information of hierarchical
convolution features from complex backgrounds is proposed.

(2) For feature detection, a multi-scale feature extraction
module with a channel-wise attention mechanism to capture
rich context information is presented. For spatial information
recovery, the features at different levels are fused in the
upsampling module to generate more detailed results.

(3) A fully integrated classification and severity level
assignment system for crack characterization is presented.

II. MATERIALS AND METHODS
In this section, the novel automatic pixel-level crack detection
network is first developed according to theMDAmodule, and
the FFU module. Secondly, a fully automated crack classifi-
cation and severity levels assignment strategy is developed to
characterize the detected cracks in detail.

A. CRACK DETECTION NETWORK
1) MULTI-SCALE DILATED ATTENTION MODULE
Receptive fields are critical to the performance of pixel-level
prediction tasks. To increase the receptive field, PSPNet [34],
ASPP [29] and LargeKernels [35] have been proposed to cap-
ture enough receptive fields. However, the features produced
by receptive fields of different scales have discriminating
power at different scales, which leads to erroneous results.
To overcome this problem, some networks use attentional
mechanisms to guide the learning of feedforward networks
using advanced information [36], [37], generating more dis-
criminative feature representations. Based on this observa-
tion, we propose amulti-scale feature detectionmodulewith a
channel-attention mechanism to enhance the feature expres-
sion ability of small targets. The proposed MDA module is
shown in Fig. 3.

In Branch1, a channel-wise attentionmodule is constructed
for high-level feature maps to capture the rich context fea-
tures. The high-level feature f h ∈ RW×H×C is represented
as f h = [f h1 , f

h
2 , . . . , f

h
C ], where f

h
i ∈ RW×H is the i-th slice

of feature f h, C is the total number of channels, H and W
are the height and width of the high-level feature, respec-
tively. A global maximum pooling (GMP) is used to capture
the global semantic information and reduce the number of
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FIGURE 3. Multiscale dilated attention module.

model operations. When the feature map has a higher reso-
lution, GMP will select the maximum response point as the
global representation of the response feature map [38]. The
maximum pooling operation is performed for each feature
to capture global semantic information, and the high-level
channel aspect feature vector is obtained as follows:

V h
= Fgmp(f h) = argmax

xC (i,j)
f (f h(i, j)) (1)

where Fgmp represents the GMP operation. Afterwards, the
1× 1 convolution is used to increase the nonlinear character-
istics of the network without losing the resolution. Then we
utilize batch normalization to balance the feature scale. Next,
the normalization processing is used to measure the encoded
channel-wise feature vector mapped to [0, 1] by using the
sigmoid operation:

WCA = F(V h,W ) = σ (y) (2)

where σ refers to the sigmoid operation. The module finally
outputs the feature map f h

′

by weighting the f h with WCA:

f h
′

= WCA · f h. (3)

In Branch2 and Branch3, the standard convolutional layer
of differently sized convolution kernels is used to obtain
accurate localizationmapping, so that the features with strong
target features are highlighted. A two-way convolution oper-
ation is used in Branch2 to divide the 3 × 3 convolution
operation into 3×1 and 1×3 addition calculations to reduce
the computational complexity of the model. Similarly, the use
of two consecutive 3 × 3 convolutional layers in Branch
3 represents a 5× 5 convolution operation, to further reduce
the model parameters. To further capture more discriminant
features, convolution operations with different dilation rates
are used after standard convolutional feature maps to increase
the receptive field. The multi-scale dilated convolution mod-
ule thus constructed obtains the crack semantic information
at multiple scales, and then fuses the semantic information at

different levels to obtain a global prior, achieving the purpose
of merging different features. In the two-dimensional signal,
the dilated convolution can be expressed as follows:

y[i] =
K∑
k=1

x[i+ r · k]w[k] (4)

where x[i] is the input feature map, y[i] is the output signal,
w[k] is the filter of length K , and parameter r refers to
the dilation rate that corresponds to the input signal sam-
pling step, which is equivalent to convolving the input x
into each spatial dimension. Then we insert r-1 zero values
between the two consecutive filter values to increase the
effective receptive field of the kernel. In standard convolution,
r = 1. In Branch 2 andBranch 3, the dilation rates are 3 and 5,
respectively.

Finally, the feature maps generated by the three branches
are concatenated, the input features are directly connected to
the shortcut connection, and the output features are calculated
by the ReLU activation function, as follows:

f = max(0, concat(f1, f2, f3)+Wsi) (5)

where f1, f2, and f3 are the feature maps of the final output
of the three branches. f and i are the output and input feature
maps of the module respectively, and ws is the linear projec-
tion used to match the two input dimensions.

2) FEATURE FUSION UPSAMPLING MODULE
Although the MDA module in the encoding stage could
capture rich semantic features from the input image, these
features have a coarse spatial resolution [29] and the purpose
of this upsampling module is to restore these features to the
input image resolution. Inspired by the decoder network in
Deeplabv3+ [39], the upsampling module proposed in this
study mainly contains two inputs: low-resolution features
with discriminative semantic information generated by the
MDAmodule, and high-resolution features in shallow layers.
We therefore use different scales of extracted features to
provide local and global context information. The upsam-
pling module first concatenates the low-level and high-level
features, then uses batch normalization to balance the feature
scales. Secondly, the weighted feature vector is calculated by
using the attention mechanism similar to that in the MDA.
This weight vector can re-select and combine the features,
further try to refine the merged features, and improve the fea-
ture representation ability. Finally, the two 3×3 convolutions
are continuously used to improve the feature representation
and restore to that of the original input pavement image.
The upsampling module can use high-level and low-level
hierarchical features to restore the positioning of crack pixels.

3) NETWORK ACHITECTURE
According to the proposed MDA and FFU modules, a crack
detection network is developed as shown in Fig. 5. Given
the input crack image, the ResNet [40] pre-training model is
first used to extract the crack features. After the high-level
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FIGURE 4. Feature fusion upsampling module.

FIGURE 5. Crack detection network with the MDA and FFU modules.

features of deep neural networks are extracted, the MDA
is employed to extract the crack features of multiple sizes
under multi-scale. Then the semantic information at different
levels is merged to obtain the global prior, which is taken as
the high-level feature of the network. Next, through fusing
the low-level features generated in a shallow layer by the
FFU module, the feature map size of the network output
is consistent with the input image resolution, and finally,
the probability that each pixel belongs to a crack or a non-
crack is calculated.

There are only two classes in crack detection, which
can be seen as a binary classification problem. Therefore,
the Generalized Dice Loss (GDL) function is used as the
loss function of the crack detection network in the training
process:

GDL = 1− 2

∑2
l=1 wl

∑
n rlnpln∑2

l=1 wl
∑

n rln + pln
(6)

where wl is the weight provided for different label set
properties. In this paper, we use wl = 1/(

∑N
n=1 rln)

2
, and

rn refers to the reference foreground segmentation voxel
value, while pn refers the prediction probability map of the
foreground target.

B. CRACK CLASSIFICATION AND SEVERITY LEVELS
After detecting the pixel region containing cracks, the
characterization of crack types based on the connected com-
ponent labeling and the spatial distribution of each crack joint
branch is investigated. The crack type is divided into transver-
sal, longitudinal, block, and alligator types in this paper. We
investigate the assignment of crack severity levels based on
the average width of crack pixels and the distance between
branch spaces. From this we propose a new algorithm for
severity level assignment in this section.

FIGURE 6. Classification of cracks. (a) Example of calculating the
centroid distance between crack branches. (b) Result of merger of
the crack targets.

1) CRACK CLASSIFICATION
Different from a simple transversal and longitudinal crack,
the space distribution of netted type cracks is more com-
plicated. To classify cracks as a whole, we merge the sin-
gle extracted adjacent crack branches into a new target and
then characterize the crack type as a whole. In our method,
the crack connection analysis and classification are mainly
divided into the following steps: firstly, the connected com-
ponent labeling is performed on the extracted crack binary
images, and the cracks are divided into independent objects.
To analyze the relationship between adjacent cracks, we gen-
erate a Minimum Enclosing Rectangle (MER) for each crack
target. Each MER record consists of the target coordinates
(x and y), width and height. Secondly, the centroid coordinate
of each crack rectangle is calculated to obtain the distance
between adjacent cracks. Then, these MERs are merged into
a new one by determining whether the MERs are adjacent or
intersecting, and then the distance between the two branches
of centroids and the number of branches are calculated.
An example of calculating the distance between the centroids
is as shown in Fig. 6(a), and R0 is adjacent to R1, R2, and
R3, respectively. The average distance of the crack branches
included in the generated new rectangle can be expressed as
follows:

d =

N∑
n=1

dn

N
=
d1 + d2 + d3

3
(7)

where dn refers to the distance between contiguous branches.
Finally, if the number of branches is smaller than the
branch threshold, the angle between the diagonal of the
rectangle and the horizontal direction is determined as a
transversal or a longitudinal crack. When the number of
branches is greater than the branch threshold, the merged
target is determined as a netted crack. Then, the block
and alligator types are classified based on the average
distance of recorded centroids. The characteristic thresh-
old of the crack classification is shown in Table 1. The
example of merged results of crack branches is shown
in Fig. 6(b).
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TABLE 1. Crack classification feature threshold.

TABLE 2. Type of pavement distresses and definitions.

2) SEVERITY LEVEL ASSIGNMENT
According to different types of distresses, the damage sever-
ity of cracks can be divided into different levels. The severity
of alligator cracks can be divided into light, medium, and
heavy levels. The severity of block, transversal, and longi-
tudinal cracks can be divided into light and heavy. Detailed
classification criteria are shown in Table 2. The main feature
for judging the damage degree is the average crack widthW ,
and the distance D between the main crack branches, where
D can be calculated by (7).
As the crack width can be measured at different locations,

it is difficult to quantify its width. Similar to Oliveira and
Correia [31], the average width of the crack is calculated at
the pixel level. We can calculate the average width of the
crack as follows:

Wcs =
Wc

Ws
· Rc (8)

where Wc is the total number of cracked pixels in the image
and Ws is the total number of cracked pixels in the skele-
ton. Then, the average width Wcs of the crack is calculated
according to the spatial resolution Rc of the pavement images.
As shown in Fig. 7, the two marked black areas are detection
results, and the number of pixels is 473 and 4313, respec-
tively; whereas the number of pixels after skeleton detection
is 101 and 223, respectively. Based on the known image spa-
tial resolution (for the data set herein, one pixel corresponds
to an actual distance of 0.91 mm), from which the average
width of the crack is calculated to be 4.3 mm and 17.6 mm,
respectively.

Finally, the pavement crack damage rate DR can be
calculated by the following formula:

DR = 100×

i0∑
i=1

wiAi

A
(9)

FIGURE 7. Crack width measurement: (a) Crack detection result;
(b) computed width.

where Ai is the area of the crack type i (m2), A is area of the
surveyed pavement surface (m2), and wi is the weight of i-th
crack type, which is valued as described in Table 2. i refers to
the crack types, which contain severity levels (light, medium,
and heavy), and i0 is the total number of crack types.

III. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETUP
1) DATASET
CrackDataset: The dataset consists of pavement survey
images from 14 cities in the Liaoning Province, China. The
data employed in this study were primarily from plane array
and charge-coupled device (CCD) cameras, which covermost
of the road surface conditions and contains images from
different roads and illuminations. The pavement image from
the sensors have resolutions of 2330 × 1750 and 3120 ×
2048. As the large size of pavement crack images, training
our network with them would require a large amount of
memory, resulting in overburdening of the training process.
Additionally, the crack areas occupy only a small proportion
of the whole image, and the remaining background areas are
useless for the training process. Therefore, we divided the
original road crack images into several small blocks with a
size of 256×256 pixels. Subsequently, a subset was manually
labeled by human experts and taken as ground truth. The
ground truth in the dataset provides two types of labels: cracks
and non-cracks. We also divided the dataset into three parts,
in which the training set and the validation set comprised
4736 and 1036 crack images, respectively, and the test set
contained 2416 images. Furthermore, the dataset contained
300 hand-marked classification labeling results from human
experts. Example of the crack images are shown in Fig. 8,
where some of the images are accompanied by noise such as
shadows, oil spots, and water stains; the cracks contained in
the same image also have more complex topologies.

2) IMPLEMENTATION DETAILS
We implemented our proposed crack detection network
using TensorFlow, which is an open source platform for
deep learning. To improve the robustness of the model,
several transformations were applied to the data, including
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FIGURE 8. Example of a road surface data image in which some images
are affected by noise such as shadows, oil spots, and water spots.

random flip, color enhancement, and enlargement. We also
utilized the Adam optimizer to converge the network. The
network was trained with an initial learning rate of 0.0001,
and the momentum and weight decay were set to 0.9997 and
0.0005, respectively. All experiments in our work were per-
formed using an NVIDIA GTX 1080 GPU and 8 GB of
onboard memory.

3) EVALUATION METRICS
Accuracy refers to the consistency and difference between
crack regions generated at the pixel-level measurement and
those in the reference mask. In crack accuracy evaluation,
cracked pixels and non-cracked pixels are considered as
two separate types. In this study, Precision (P), Recall (R),
F-Score, and mIoU were used as the accuracy indicators for
quantitative performance evaluation. These four indicators
can be calculated as follows:

P =
TP

TP+ FP
(10)

R =
TP

TP+ FN
(11)

F − Score =
2P · R
P+ R

(12)

mIoU =
1
N

N∑
k=1

TPk
TPk + FPk + FNk

(13)

where TP represents the number that is correctly divided
into positive examples, FP represents the number that is
incorrectly divided into positive examples, and FN represents
the number that is incorrectly divided into negative examples.
TPk , FPk , and FNk represent true positive, false positive, and
false negatives, respectively; these are measured by the class
throughout the test set.

B. CRACK DETECTION RESULT
The automatic crack detection network proposed in this
study was compared with other state-of-the-art deep learn-
ing semantic segmentation models, including SegNet [17],
U-Net [16], PSPNet [34], DeepLab v3+ (DL-v3+) [39] and
Discriminative Feature Network (DFN) [37]. Table 3 shows
the quantitative comparison results of the test in the
crack data set. Compared to the other deep learning-based

TABLE 3. Comparison of results on crack test data sets between our
method and other detection methods.

segmentation methods, the crack detection network achieves
the highest performance with Precision 97.70%, Recall
98.00%, F-score 97.34%, and mIoU 75.24%. In detecting
imageswith a resolution of 2330×1750, our network detected
cracks at a rate of 0.71 s per image. PSPNet and DFN are
faster, at 0.63 and 0.69 s per image, respectively. Conversely,
SegNet, U-Net, and DL-v3+ detect cracks at slower speeds
of approximately 0.84 s, 1.16 s, and 1.30 s, respectively.

The crack detection visualization comparison results were
performed on the six crack images (a-f) in Fig. 8, in which
some images are affected by noise such as shadows, oil spots,
and water stains; the cracks that are contained in the same
image have complicated topologies and are shown in Fig. 9.
From a (1) to f (1), in which the results of crack detection
using the SegNet network are shown, a (1) and b (1) are incor-
rectly extracted with more shadows and stains, indicating that
the method is sensitive to noise. As the network does not
have contextual information to acquire diverse types of crack
topological structures, an apparent discontinuity occurs in
e (1), where the position of crack width changes dramatically.
As can be seen from a (2)–f (2), the results obtained by U-Net
detection are better than those of SegNet, but they still retain
considerable noise. Since most of the spatial information lost
during the pruning process cannot be effectively recovered,
more fractures occur. It can be seen from Fig. 9 a(3)–a (4)
that PSPNet effectively eliminates the influence of noise, but
it loses more detailed information, such as d (3) and e (3).
DeepLabV3+ performs better in extracting light cracks and
can eliminate most of the noise interference in a (4)–f (4), but
the large dilation rate produces non-existent cracks, and its
single convolution kernel size may cause loss of crack infor-
mation. The high-level features introduced in the channel-
attention block in DFN [37] provide semantics that guide the
selection of low-level features, which results in more discrim-
inative feature selection than SegNet, U-Net, and PSPNet.
As can be seen from the detection results in a (5)–f (5), DFN
effectively detects cracks on a complex background, which
indicates that the attention mechanism can also improve the
precision of crack detection. However, the network does
not consider the multi-scale feature extraction and effective
upsampling operation, which limits its performance in terms
of detail information recovery.

As shown in Fig. 9 a (6)–f (6), our proposed method
has fewer false detection and missed detection results,
indicating that the proposed method is more robust.
The performance improvement is mainly due to the
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FIGURE 9. Crack detection results (from top to bottom: SegNet, U-Net, PSPNet, DeepLab v3+, DFN and the proposed method).

integration of themulti-scale dilated convolutionmodule, and
the attention mechanism in the encoding phase that captures
multi-scale context information for accurate feature extrac-
tion. In addition, the fusion of high-level semantic infor-
mation and low-level high-resolution features by the FFU
module helps to recover the boundary information of the
crack, enabling the network to more accurately extract cracks
from complex backgrounds.

C. CRACK CLASSIFICATION AND SEVERITY LEVELS
This paper provides more detailed qualitative and global
assessment results than other published crack classification
methods. It is possible to divide multiple crack types simul-
taneously in one image and assign corresponding severity
levels to them. In [31], although the crack type can be

effectively divided, the classification criteria are relatively
simple, and only the influence of the crack width on the sever-
ity is considered. In [41], according to the angle between the
crack and the horizontal, the classification of longitudinal and
transversal cracks can be classified. If there is a crack branch
in the extracted image, no matter what angle it is, it will be
considered a block crack. In addition, the method does not
include assignment of severity levels, and the corresponding
category cannot be assigned a corresponding weight.

In this study, according to the spatial distribution of cracks
after the binary detection, the multiple crack targets in each
image are discriminated, and the corresponding crack types
are assigned: transversal, longitudinal, block, and alligator
cracks. Crack classification and severity level assignment are
mainly based on the number of crack branches, the average
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TABLE 4. Detailed crack classification results.

FIGURE 10. The results of automatic classification. Even in the case of
fracture, the overall analysis of cracks can still be achieved.

crack width, and the distance between branches. The classi-
fication accuracy is evaluated in the crack type test dataset.
The crack classification results of the six images in Fig. 8 are
shown in Fig. 10, and theMER is calculated for the combined
cracks into independent crack types. The detailed classifica-
tion results are shown in Table 4. In classifying crack types
from 2330×1750 resolution binary images, our classification
method can perform crack evaluation at an approximate rate
of 0.5 s per image.

To validate the influence of weight on the area mea-
surement in the severity of crack characterization, 50 crack
images were randomly selected in the crack classification test
dataset and compared to the area of the hand-drawn crack
area. The comparison results are shown in Fig. 11. These
results illustrate that the area evaluated by the automatic
detectionmethod in this paper has a high degree of uniformity
with the manually measured area, demonstrating that the
crack classification method is highly reliable.

IV. DISCUSSION
In this section, the crack detection and classification results
are discussed in detail for each module proposed. In this
experiment, ResNet50 was used as the backbone network,
and the effectiveness of the method was evaluated given the
crack data set proposed in this paper.

A. CRACK DETECTION
1) MULTI-SCALE DILATED ATTENTION MODULE
To compare the influence of the MDA module on the crack
extraction more clearly, the feature map was up-sampled

FIGURE 11. Comparisons between manual and automatic measurements
of crack area.

16 times by simple bilinear interpolation in the upsampling
stage to obtain the final prediction result. In the experiment,
the ResNet-50 network structure was used as the backbone
network for verifying the multi-scale dilated convolution
module, and several variant experiments were carried out on
themulti-scale dilated convolutionmodule. The experimental
results are shown in Table 5, the mIoU of the baseline model
using ResNet50 as the feature detection network is only
65.07%, the ASPP [29] module improves the performance
of baseline by 1.25%, indicating that the dilated convolu-
tion improves the crack detection result. The dilation rate
introduced here is an important hyperparameter that enables
changing of the size of the receptive field of theMDAmodule
in the network.

To verify the ability of the dilated convolution mechanism
to capture rich features, the dilation and convolution opera-
tions of three different dilated rates groups—{6,12}, {2,4}
and {3,5}—were performed on the final high-level features,
and the size of the receptive field increased. The experimental
results show that the multi-scale dilated convolution module
increased the mIoU by 1.40%, 1.23% and 2.05%, demon-
strating that the advanced features with different dilation rates
and convolution kernel sizes at multiple scales have stronger
characterization capabilities and are better able to help locate
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TABLE 5. Comparison results of different dilation rates.

TABLE 6. Different upsampling features and structural comparison
results.

cracked pixels during the encoding process. Although dilated
convolution with a larger dilation rate, {6,12}, has a larger
receptive field, it introduces other unrelated regions while
capturing crack characteristics, which affects the final crack
identification outcome. However, an overly small dilation
rate, {2,4}, cannot effectively increase the receptive field.
With the dilation rate {3,5}, better optimal convergence and
better detection effect can be obtained in model training.

To further improve the feature detection performance, this
study specially designed a channel-wise attention optimiza-
tion module that contains a GMP for encoding output func-
tions as vectors. The attention vector was then calculated
using convolution, batch normalization, and ReLU units. The
original high-level features were re-weighted by the attention
vector. For the original features of the input, global context
information can be easily captured without the need for com-
plex upsampling operations. The multi-scale dilated module
with the attention mechanism increased the performance of
mIoU from 67.12% to 69.30%. The proposed MDA module
can effectively capture the cracks with discriminative feature
extraction capacity and attention mechanisms, directing the
network to focus on crack objects.

2) UPSAMPLE MODULE
It can be observed from the results in Table 5 that the mIoU
obtained from the simple bilinear interpolation upsampling
method is only 69.30%. To further improve the crack
detection performance, fusion of high-level semantic infor-
mation and low-level features by the FFU module was
introduced. The MDA features were used as the advanced
input of the upsampling module, as it has a stronger dis-
crimination ability. The low-level features in the network
have a higher spatial resolution in which crack edge detail
information is preserved. After the low-level semantic infor-
mation was merged with the high-level features with discrim-
inative power, the convolution operation is then used in the
upsampling module to restore to the original size for obtain-
ing finer segmentation results. The experimental results are
shown in Table 6. The selection of different convolution times
had a great influence on the final crack detection results
of the model. The best effect was obtained by using two
[3 × 3, 256] convolutions in Deeplabv3+ [39]; the mIoU
increased by 3.38% compared to the direct upsampling

TABLE 7. Crack classification results.

method, indicating that the combination of advanced features
and low-level features can greatly improve the detection per-
formance. To further refine the fused features, the attention
mechanism is used to refine the feature representation in the
feature fusion stage. Compared to the simple feature fusion
method in Deeplabv3+ [39], the mIoU value is increased
by 2.13%. In summary, the FFU module is used to combine
the shallow crack information with deep powerful semantic
information, helping to fuse the multi-level features of the
cracks and improve the overall crack detection accuracy.

B. CRACK TYPE LABELING AND SEVERITY ASSIGNMENT
For simple linear cracks, assigning the severity level of the
detected crack segment depends on the measurement of the
crack width, which is calculated as the ratio of the crack
area to the number of cracked pixels in the skeleton. The
severity level of damage is assigned as a light crack with a
width of less than 3 mm, and a heavy crack with more than
3 mm width. The crack classification algorithm was verified
in 300 crack classification samples; and Table 7 shows the
crack classification system evaluation results.

The netted cracks include block and alligator cracks.
In general, they have different crack densities and widths.
However, due to the crisscrossing of the netted cracks,
the width was difficult to calculate and measure, and the more
intensive density of block cracks often exceeded the alligator
cracks. Therefore, it was difficult to estimate the width and
density of each block and alligator crack; thus, it is impos-
sible to characterize the type and severity level accordingly.
By further observing and comparing, it was found that the
key difference between block and alligator cracks is that both
of them break the road surface into pieces, but the former
has fewer pieces and the distance between the branches is
larger, whereas the latter has more blocks and the distance
between the crack branches is smaller. From the perspective
of intuitive perception andmachine recognition, the block and
alligator cracks can be effectively distinguished according to
the branch distribution between the cracks. They also have
practical physical meanings, such as the smaller the distance
between the crack branches, the higher the severity level.

It can be seen from Table 7 that the proposed algorithm
classifies four crack types (transversal, longitudinal, block,
and alligator) and has competitive performance. The classifi-
cation accuracy of themethod for transversal and longitudinal
cracks is 95% and 96.1%, respectively. For the classification
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of netted cracks, the distance between the cracks and the
average width are considered comprehensively. The classifi-
cation accuracy of block and alligator cracks is 87.9% and
86.2%, respectively. The classification accuracy of netted
cracks is significantly lower, the reason for this confusion
is that influence is exerted on the threshold for selecting the
average distance and the average width when characterizing
the netted crack. Nonetheless, the crack type classification
method proposed has significant benefits in terms of a deal
with the adjacent and intersecting crack targets, and it can
still be treated as a whole when discontinuity occurs between
cracks. It can be seen that the classification method is highly
consistent with the definition of cracks. At the same time,
thanks to accurate calculation of the size distribution between
cracks, the quantitative characterization criteria are further
clarified.

V. CONCLUSION
In this paper, a novel trainable convolutional network was
proposed for automatic detection of cracks in complex envi-
ronments. In consideration of the different characteristics of
different level features, we designed an MDA feature extrac-
tion module containing different dilated convolutions at mul-
tiple scales and a channel-wise attention module to capture
the semantic high-level features. Then, crack pixel-level pre-
diction is achieved by an FFU module that is combined with
low-level features and continuous convolution. The experi-
mental results show that both the MDA module and the FFU
module contribute to the improvement of crack detection
performance. Compared to other segmentation networks, our
proposed crack detection network achieves state-of-the-art
performance with Precision 98.74%, Recall 98.05%, F-score
98.39% and mIoU 74.81%. The experimental results indicate
that our network is insensitive to noise crack marking and can
effectively distinguish the low contrast caused by shadows,
stains, and exposures during data acquisition.

Cracks were labeled according to the types defined in the
Chinese distress category, with each different crack present
in a given image receiving the appropriate label. Moreover,
a novel methodology for the assignment of crack severity
levels was introduced. The conclusion can be drawn from the
experiment that our method is a universal and robust auto-
matic method to simultaneously determine the type of crack
and severity levels—both of which are crucial for roadway
agencies to assess pavement quality. For future developments
in research, we will continue to investigate the influence of
the attention mechanism on crack feature extraction. Like-
wise, the crack classification algorithm will be optimized,
especially for classification of the block and alligator cracks.
Additionally, other types of distress, such as potholes and
crack sealings will be taken into account to improve the
procedure of automatic crack detection.
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