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ABSTRACT In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale
Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and
engineering due to their obvious advantages compared to conventional (e.g. correlation- or spectral-based
analysis) approaches like the ability of their direct application to non-stationary signal analysis. However,
high computational complexity remains a common drawback of these otherwise universal and powerful
algorithms. Here we compare similarly designed signal analysis algorithms utilizing either EMD or ITD as
their core functions. Based on extensive computer simulations, we show explicitly that the replacement of
EMD by ITD in several otherwise similar signal analysis scenarios leads to the increased noise robustness
with simultaneous considerable reduction of the processing time. We also demonstrate that the proposed
algorithms modifications could be successfully utilized in a series of emerging applications for processing
of non-stationary signals.

INDEX TERMS Adaptive filter bank, denoising algorithms, empirical mode decomposition, Fourier
transform, Hilbert-Huang transform, internal oscillations, intrinsic time-scale decomposition, spectral

analysis, wavelet transform.

I. INTRODUCTION
Majority of the observational signals considered in various
fields of knowledge are non-stationary indicated by the vari-
ability of their statistical characteristics over time. In most
practical scenarios, the stationarity assumption is validated
for the first- and second-order moments only indicated by the
time independence of both average and variance as well as
the autocorrelation function having only a single time scale
argument. Existing approaches to the non-stationary signal
analysis and processing have several significant drawbacks.

For example, the widely used classical Fourier analysis,
due to its relative calculation simplicity and fast com-
putational algorithms availability, immediately began to
overwhelm all other signal analysis methods. Despite the fact
that the Fourier transform is performed under very general
assumptions such as the Dirichlet boundary conditions and
absolute integrability, there are several significant limitations
on the signals for which it is calculated [1].

Fourier analysis has been originally suggested for strictly
periodic functions that could be directly expanded in a Fourier
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series, i.e. represented by a superposition of multiple har-
monic functions. Otherwise, the frequency domain based
analysis may lead to incorrect results interpretation. It is also
necessary that signals exhibiting the stationarity property for
their certain characteristics such as average values and instant
frequencies [1].

However, the Fourier analysis is ineffective in the study
of signals with a changing frequency content (e.g. linear
frequency modulated, parabolic frequency modulated, hyper-
bolic frequency modulated signals, from which the law of fre-
quency change cannot be inferred from the Fourier spectrum),
since the trigonometric basis contains unmodulated harmonic
functions with a frequency that does not vary with time.
Observational signals can include the components occupy-
ing different frequency bands and with changing instant
frequency values (frequency modulation) [1].

By default, the Fourier transform is determined for the
entire observational time fragment, resulting in the ignorance
of the particular spatiotemporal localization of the energy
dissipation. Therefore, for non-stationary scenarios, direct
application of the Fourier analysis often leads to misleading
results. Moreover, the most commonly used harmonic func-
tions lead to rather low temporal resolution [1].
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Another drawback is that, due to their smoothness, the fit-
ting harmonic functions often appear ineffective for the anal-
ysis of signals containing abrupt and/or stepwise changes.
Therefore, a lot of functions may be required to provide the
needed presentation accuracy. In addition, the well-known
Gibbs phenomenon characterized by oscillations around gap
points is often be observed [1].

To increase the accuracy and reliability of the non-
stationary signal analysis, a special approach that has the
adaptability property to each specific observational signal
is required. One of the currently known approaches bases
on the wavelet dyadic filter bank scheme partially satisfying
this requirement. Moreover, its practical value can hardly be
overestimated due to a set of well-developed mathematical
analysis tools and fast computational algorithms leading to
its wide application area [2].

Due to the wavelet basis design features (based on the
scaling and shifting of the mother wavelet function along
the time axis), it becomes possible to adaptively process
signals by taking a rather accurate account of local time
features. But the main problem is the great variety and the
non-obviousness of the mother wavelet selection for solving a
specific problem, especially when there is no heuristic criteria
available. Nevertheless, the wavelet transform currently plays
one of the leading roles in signal processing due to the pres-
ence of a large number of specially developed bases and its
applicability to various important practical tasks (denoising,
image, and signal compression, etc.) [2].

Matching pursuit algorithm (MPA) is another technique
for spectral analysis. This algorithm allows decomposing
the input signal using the following different basis func-
tions: wavelets, sine waves, damped sine waves, polynomials,
etc. These functions form the atom dictionary (the set of
basic functions) where each function is localized in time and
frequency domains. Generally, the atom dictionary is full
(all types of functions are used) and redundant (the functions
are not mutually independent). One of the main problems
in this technique is the selection of basic functions and dic-
tionary optimization. To solve this problem, a number of
improvements and modifications of the classical algorithm
were proposed [3], [4].

This paper will detail the adaptive technologies EMD
and ITD for signal analyzing and signal processing [5]-[7].
Having properties similar to wavelet decomposition, these
algorithms do not require an a priori basis choice. In other
words, the decomposition according to this functions system
for the purpose of subsequent analysis is carried out taking
into account local features (such as signal extrema and zeros)
and the internal structure (the presence of three main com-
ponents in the signal — noise, trend and seasonal) of each
specific signal. The basic functions are extracted directly
from the original signal, therefore, such a basis is always
unique (individual, does not repeat exactly for other signals),
a posteriori (i.e., it becomes fully known only after data
decomposition) and adaptive (i.e., it adapts to the features and
data properties).

171314

The term ‘“‘basis™ is not used correctly here, because,
by definition, a basis is a linearly independent set of vectors
(functions) whose linear span forms the entire linear space
(that is, each vector of this space can be represented as a linear
combination of basis vectors) [2]. In this case, linear inde-
pendence is not strictly proven and, in addition, the extracted
components in most cases can only be used to process the
signal from which they were extracted. Therefore, such a
basis is empirical, approximate and constitutes a kind of set of
“building blocks” for representing signals. Further, under the
“basis” as applied to the EMD and ITD algorithms, we will
just mean such an approximate basis. In some cases, when
considering several signals from the same class, it is possible
to decompose one of them, and then, using the obtained
components and specially introduced weights for each of
them, present other signals of the same type. In this case,
it can be argued (after checking the linear independence of the
components) that the components extracted from the signal
are the basis.

In this paper, we propose a novel approach to adaptive
signal processing based on EMD and ITD. This approach
is used to design the adaptive filter bank based on ITD
instead of EMD. The complexity of the proposed novel
approach of adaptive filter bank designing is compared with
EMD based approach. The use of ITD as a basis in spectral
analysis algorithm using the Hilbert transform is proposed.
Keeping the idea of the algorithm, we modify it to use ITD
(instead of the modes obtained using EMD, we will use the
modes obtained using I'TD). The complexity of the algorithm,
approximation errors, and energy conservation are estimated.
We modify denoising algorithms to use ITD (instead of the
modes obtained using EMD, we will use the modes obtained
using ITD). Denoising quality and processing time of the
corresponding algorithms when using the ITD algorithm
as the basis instead of the EMD algorithm are compared.
As test signals, we use various test non-stationary signals
of MATLAB.

The paper is organized as follows. A brief review of the
EMD and ITD algorithms is presented in Section II and
Section III. In Section IV, the proposed novel approach to the
synthesis of adaptive filter bank based on ITD is presented.
In Section V and Section VI, the use of ITD as a basis in
spectral analysis algorithms using the Hilbert transform and
adaptive denoising algorithms is proposed. Section VII gives
our conclusions.

Il. ALGORITHM EMD
EMD - an algorithm for decomposing signals into functions
that are called “empirical modes™.

The EMD algorithm is an iterative computational
procedure, as a result of which the original signal is decom-
posed into empirical modes or internal oscillations (Intrinsic
Mode Functions, IMF). In contrast to harmonic analysis,
that setting in advance the signal decomposition basis,
empirical modes are calculated during the process, making
the algorithm adaptive. The EMD algorithm allows analyzing
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local features, therefore, it can be used in processing
non-stationary signals [5], [6].

Definitions: An empirical mode, internal oscillation, or a
mode (Intrinsic Mode Functions, IMF) is a function that has
the following two properties:

° The number of extrema (highs and lows) and the
number of zero crossings should not differ by more than one.
) The average value, which is determined by two

envelopes — upper and lower, should be equal to zero.

Empirical modes have such properties that allow applying
the methods of Hilbert spectral analysis to them.

The algorithm can be written as the following sequence of
steps:

Let X(¢) be analyzed signal.

The essence of the EMD algorithm is the sequential
calculation of empirical modes c; and residues: r; = rj_1 —¢;j,
wherej=1,2,...,nand ryp = X(¥).

As aresult, a signal decomposition is obtained:

X0 =Y ci+rm (1)

j=1

where: n — the empirical modes number that is established
during the processing.

Scheme of the Algorithm: In general terms, the algorithm
is as follows (Fig. 1):

Input signal x

Identify extreme:
maxima Xpay and minima

Xmin

Make upper envelope
Emax ON Xmax and Tlower
envelope Epin ON Xpin
using cubic splines
Compute mea{'n envelope
Emean=CEmax*Emin) /2

Substract Epean from X
proto_IMF=X-Epsan

X=proto_IMF

IMFi=proto_IMF

FIGURE 1. Block diagram of the EMD algorithm.

lll. ALGORITHM ITD

ITD - an iterative algorithm for decomposition of the orig-
inal signal into high-frequency (“‘proper rotation”, H;) and
low-frequency (“‘baseline signal”, L;) components [7]:

D
L=x,=LP+Y Hl: L=0"+8""j=0...D @
Jj=1
Let there be a signal X;. We define an operator £ that
extracts the low-frequency component (‘‘baseline signal’)
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from the signal in such a way that the remainder is the high-
frequency component (‘‘proper rotation’”). Then the signal X;
can be written as follows:

X; =£Xz+(1 _E)Xt =L+ H (3)

L, = LX;— “baseline signal”; H; = (1 — £)X, — “proper
rotation”

Let there is a signal {X;,r > 0} and {xs, k =1,2,...} -
its local extremes. Introduce the notation: X(t;) = Xy and

L(t;) = L.
Then:
Lyy1—Ly
LX,=Li=Li+——— (X, —Xp) 1€t um} @
X1 —Xi
where:

Tk+1—Tk

)(Xk+2—Xk)] +(1—a) Xg 1 (5)
Tkt — Tk

Lyt1=a |:Xk + <
0 < o < 1— parameter.
We define an operator H that extracts the high-frequency
component (“‘proper rotation’’) from the signal. After exclu-
sion of the trend, we can calculate the remainder:

HX, = (1 — ﬁ)Xt = H[ :Xt - Ll (6)

Fig. 7 (a, b) in [7] shows the operation of the EMD and
ITD algorithms, accordingly. The source signal is denoted
as “‘raw signal”. It is noticed that the ITD algorithm allows
decomposition of the signal into a lower number of more
stable components in comparison with the EMD algorithm.
Edge effects in EMD are due to spline interpolation, and a
significantly longer runtime is due to the sifting. The ITD
algorithm does not have these features and can operate in
real-time.

Fig. 7 (d, e) in [7] presents the operation of the EMD
and ITD algorithms, accordingly. The initial signal is shown
in Fig. 7 (c). It is noticed that the ITD algorithm does not
introduce additional distortions in comparison with the EMD
algorithm. ITD allows detecting local features (the original
signal, in this case, has a series of bursts in the area
of 300-350 sec) with high accuracy relative to the EMD
algorithm.

IV. SYNTHESIS OF ADAPTIVE FILTER BANKS USING

EMD AND ITD

Filter bank (FB) is a digital scheme that decompose the
input signal, represented by a sequence of samples, using
of K various digital filters into K various channel signals
(for processing each of them in a certain way), from which
a sequence of samples of the output signal is formed using
output filters and subsequent summation (Fig. 2) [8], [9].

Filter banks are widely used in seismic monitoring, radio
monitoring and hydroacoustic monitoring [10].

In the field of radio monitoring, you need to have tools to
track a rapidly changing environment in real-time. A large
number of emitters on the air, encryption, masking, mod-
ulation necessitate adaptive processing. For hydroacoustics,
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FIGURE 2. Model of a DFT modulated filter bank based on full
modulation.

the propagation medium is of great importance, which at the
slightest change in external conditions (temperature, salinity,
pressure, etc.) instantly changes its properties. This fact also
entails the need for adaptive processing [10].

Consider the possibility of constructing an adaptive FB
using the EMD and ITD algorithms. Since both algorithms
decompose the input signal into internal oscillations (Intrinsic
Functions, IF) and have significant similarities, we can carry
out some general considerations. In this case, adaptability is
understood as the ability to fine-tune the bank to a specific
type of signals taking into account local characteristics.

Obviously, the IF with the first number, extracted before
all, contains the largest number of highs, lows, and zeros
(in some cases, there may be no zeros if the IF turns out to
be completely positive or negative definite) compared to all
other components. It also contains the largest part of noise
from the input mixture of the desired signal with noise. From
this we can conclude that it is the highest frequency (HF).
Further, when extracting the next in order IF, the number of
extrema along which the upper and lower envelopes are built,
is already much lower. This means that the second component
of the decomposition is less HF than the first. Noteworthy is
the fact that the overall dynamics persists as the IF number
increases, up to obtaining the resulting residue [10], [11].

Thus, summing up the line of reasoning, the first IF is the
HF itself, the second is less HF than the first, and k — less HF
(lower frequency (LF)) than k — 1. The resulting remainder
may even turn out to be a constant having, by definition,
a zero frequency, or this remainder may be a slowly changing
trend.

If we take into account the average period IF, considering it
as the inverse of the average frequency, then the dynamics will
be directly opposite, that is, the first IF will have the lowest
period, and the last, on the contrary, the largest until infinity
(in case of a constant). This concept of a period should not
be confused with a strict definition of the harmonic function
period. IF does not have to be strictly periodic, even if the
signal itself has this property.

Having determined the dynamics of IF properties in the
time domain, we will try to transfer it to the frequency
domain. For this, first of all, it is necessary to calculate
the DFT for each IF. It is interesting to note that the DFT may
not make sense for the signal itself (if it is non-stationary), but
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the DFT can nevertheless be applied to IF to obtain a qualita-
tive view of its frequency structure. The frequency spectrum
of the first IF is obviously the most wideband, since there is
a large proportion of spectral components with high frequen-
cies (mainly due to the presence of HF noise). Recall that
the first IF is the highest frequency, i.e., the fastest-changing.
Subsequently, as the IF number increases, the effective width
of its Fourier spectrum decreases, which is associated with a
decrease in the total number of oscillations in its temporal
realization. Finally, the last IF has the narrowest spectrum
explaining its pronounced monotonic nature [11], [12].

The spectral representation features allow us to draw the
following important conclusions. The spectrum of the first IF
is band-pass, i.e., the transmission of the input signal through
afilter with a magnitude response that coincides with the DFT
module of the first IF, and a phase response that matches the
DFT phase of the first IF, allows this IF to be extracted from
the input signal. The spectrum of the second IF, as a rule, also
is a band-pass, however, it is shifted in frequency compared
to the first case towards low frequencies. And again, a filter
based on the calculated DFT spectrum allows one to extract
the corresponding IF from the signal. With an increase in the
number of components, the frequency response of the corre-
sponding filters becomes lower and lower due to a decrease
in the effective spectral width of the corresponding IF.

If one place the frequency response of all filters on the same
frequency axis, then it becomes clear that the decomposition
process is, in fact, a synthesis of a combination of bandpass
filters that overlap in frequency with an effective band that
decreases in width and shifts toward the low frequencies as
the number of the corresponding IF increases. This approach
allows us to create filter banks based on specific signals and
use them both to quickly emphasizing specific IFs and to
analyze signals similar in properties. Thus, it is possible to
significantly increase the hardware and software costs.

As a test signal, we will use the observational signal [13]
(a seismograph record) shown in Fig. 3. We perform the

Seismogram

26 i

e—"

2 ]

x(t)

t,sec

FIGURE 3. Testing signal.
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FIGURE 4. EMD: modes and their corresponding spectra.
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FIGURE 6. ITD: modes and their corresponding spectra.

signal decomposition into internal oscillations using EMD
and ITD (Fig. 4-7):

Fig. 4 shows the signal decomposition using the EMD
algorithm (left: modes; right: corresponding DFT spectra).

Fig. 5 shows the frequency response of an adaptive FB
using the EMD algorithm.

Fig. 6 shows the signal decomposition using the ITD
algorithm (left: modes; right: corresponding DFT spectra).
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FIGURE 8. EMD vs ITD: runtime with averaging over 1000 measurements.

Fig. 7 shows the frequency response of an adaptive FB
using the ITD algorithm.

Fig. 8 shows the dependence of the execution time of the
considered algorithms on the run number and the average
value (averaging over 1000 measurements).

Comments: Fig. 8 illustrates the stability of the ITD
algorithm in comparison with the EMD algorithm (due to the
lack of sifting and interpolation by splines) and a significant
reduction in the computation time (~ 6.08 times) of the ITD
algorithm in comparison with the EMD algorithm.

V. SPECTRAL ANALYSIS OF SIGNALS USING EMD, ITD
AND HILBERT TRANSFORM

Once the EMD algorithm has been applied to decompose the
input signal into a set of IF, one may now analyze the IFs to
extract instantaneous amplitude, phase, and frequency infor-
mation. The conventional approach to obtain instantaneous
amplitude, A;, instantaneous phase, 6; and instantaneous fre-
quency, f;, information from IF, R;, is based on the application
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of the Hilbert transform, A[-], as follows:
At = R + ih[R]
0; = angle (R; + ih [R:]) (7
fo L do
t =S
2 dt
here:
o0
1 R,
h[R]=PV.|— (8)
T r—t
—0oQ

and ‘P.V.” denotes the Cauchy principal value of the integral.

In the Hilbert-Huang transform, at the first stage, the signal
is decomposed using EMD, then the Hilbert transform [5], [6]
is performed.

Keeping the idea of the algorithm, we modify it to use ITD
(instead of the modes obtained using EMD, we will use the
modes obtained using ITD).

Consider a series of seismograms (16 records were used in
total) and their Hilbert spectra (first 3 records) obtained using
EMD and ITD (Fig. 9-11).
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FIGURE 11. Seismogram No3 (maximum 10 modes).
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Comments: Fig. 9-11 illustrate the signal representation
improvement in the time-frequency-energy domain. Hilbert
spectra constructed using ITD have a higher degree of cor-
relation with the original signal in the sense of energy
conservation than Hilbert spectra constructed using EMD.
Fig. 12-14 show approximation errors, energy conservation
rates, and runtimes for all 16 records using the EMD and ITD
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algorithms. The norms of the error vector e were calculated
by the following formulas:

1/p

N
lell,={ > lexl”|
k=1

p=1,2; |lelloo=max e;| ; p=00;
]

®

Comments: Fig. 12-14 illustrate the reduction of approx-
imation energy loss. Hilbert spectra constructed using ITD
have a higher correlation degree with the signal in the sense
of an approximation error than Hilbert spectra constructed
using EMD (~1.68 times). Therefore, such spectra can be
used, for example, as classification features in convolutional
neural networks (CNN) [14] with a significant reduction in
time costs (~7.42 times).

VI. DENOISING USING EMD AND ITD

Based on the EMD algorithm, the researchers pro-
posed a number of denoising algorithms: Ensemble EMD
(EEMD) [15], Conventional EMD (CEMD) [16], Iterative
EMD (IEMD) [16], Exponential EMD (EXP-EMD) [17] and
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FIGURE 16. Comparison of various denoising algorithms for the “Blocks”
signal.
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FIGURE 17. Comparison of various denoising algorithms for the “Bumps”
signal.
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FIGURE 18. Comparison of various denoising algorithms for the “Heavy
Sine” signal.

their various modifications [18]. All algorithms use so called
modes in their work, so we could modify them as follows:
keeping the structure of the algorithms, we modify them with

171319



IEEE Access

A. Voznesensky, D. Kaplun: Adaptive Signal Processing Algorithms Based on EMD and ITD

o4 IError ! .
—+ EEMD
0,351 =— CEMD 4
IEMD
— + EXP-EMD
0.3l EITD
| cITD
0.25¢ \ T Exp 1
) : — EXP-ITD
Y 0.2t |
Z
0.15+ _
0.1} 3
.
0.05 ¢ I
h—
0 | -r”./r,,,,,,,, —_— S — &
05 o 10 20 20 40
SNR, dB

FIGURE 19. Comparison of various denoising algorithms for the
“Doppler” signal.
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FIGURE 20. Comparison of various denoising algorithms for the
“Quadchirp” signal.

using ITD (instead of the modes obtained using EMD, we will

use the modes obtained using ITD). As test signals, we use

various test non-stationary signals of MATLAB (Fig. 15):
Additive white Gaussian noise is used in the paper:

(1) = x(1) + (o) (10)

x(t)— initial signal; z(¢)— noisy signal; n(¢)— noise itself.
We use the standard RMSE metric (Root Mean Square
Error) to estimate the filtering quality:

N
3 (x — %)*
i=1

RMSE = (11)

x;— initial signal; X;— noised signal; N — number of samples.
Compare the denoising quality using various algorithms
based on EMD and ITD (RMSE vs SNR) (Fig. 16-21):
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FIGURE 21. Comparison of various denoising algorithms for the
“Mishmash” signal.
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FIGURE 22. Comparison of computational complexity for various
denoising algorithms.

Fig. 22 shows the dependence of the execution time for the
considered algorithms on the number of input signal samples.

Comments: Fig. 16-21 and 22 illustrate the improvement in
the denoising quality and/or the reduction of the processing
time of the corresponding algorithms when using the ITD
algorithm as the basis instead of the EMD algorithm in most
experiments over the entire signal-to-noise ratio. Note that
the most effective algorithm in terms of denoising, speed and
stability was EITD.

VII. CONCLUSION

The paper provided a brief mathematical description of EMD
and ITD algorithms. The comparative algorithm analysis was
made. The possibility of building an adaptive filter bank
using ITD was considered. The use of ITD as a basis in
spectral analysis algorithms using the Hilbert transform and
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adaptive denoising algorithms was proposed. The computa-
tional complexity of the algorithms was estimated. The use
of ITD algorithm instead of EMD allowed, depending on the
application, to improve the signal representation quality in the
time-frequency-energy domain or to improve the denoising
quality, as well as significantly reduce the processing time.

All experiments were performed using real seismic and
hydroacoustic data. The simulation was performed on a PC
with the following architecture: OS Win 10 64-bit, CPU Intel
Core i7 Skylake 4.0 GHz, RAM DDR4 Kingston HyperX
Fury 64 GB 2.4 GHz, GPU NVIDIA GeForce GTX 1080
1.7 GHz DDRS5 8 GB 10 GHz, CUDA kernel 2560, MATLAB
R2018b 64-bit.
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