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ABSTRACT With the rapid development of deep convolutional neural networks, more and more computer
vision tasks have been well resolved. These convolutional neural network solutions rely heavily on the
performance of the hardware. However, due to privacy issues or the network instability, we need to run
convolutional neural networks on embedded platforms. Critical challenges will be raised by limited hardware
resources on the embedded platform. In this paper, we design and implement an embedded inference
framework to accelerate the inference of the convolutional neural network on the embedded platform. For
this, we first analyzed the time-consuming layers in the inference process of the network, and then we design
optimization methods for these layers. Also, we design a memory pool specifically for neural networks. Our
experimental results show that our embedded inference framework can run a classification model MobileNet
in 80ms and a detection model MobileNet-SSD in 155ms on Firefly-RK3399 development board.

INDEX TERMS Deep learning, embedded system, mobile computing, mobile sensing.

I. INTRODUCTION
Convolutional neural network (CNN) plays a very important
role in the field of computer vision. Deep Convolutional neu-
ral network has greatly promoted the development of com-
puter vision, especially in object recognition, object detection
and semantic segmentation. Since AlexNet [1] won the Ima-
geNet Challenge: ILSVRC 2012 [2], in order to get higher
accuracy, the CNN has become deeper and more complex,
which has become the trend of designing network [3]–[5].
However, in many real word applications such as self-driving
car, robotics and augmented reality, convolutional neural net-
works need to be deployed on an embedded platform with
limited computing resources.

Many embedded applications often rely on a cloud-based
approach [6]–[12]. In cloud-based approach, embedded plat-
form is only used to capture data, and the inference process is
completed on the server. A cloud-based approach enables the
user of embedded devices to enjoy the huge benefits of con-
volutional neural networks. However, a cloud-based approach
has its disadvantages. First, due to the communication costs,
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the cloud-based applications depend heavily on network qual-
ity. Therefore, in order to ensure the practicability of the
application, we need to limit the amount of data sent by the
embedded platform. Second, cloud-based approaches may
involve private data, and sending personal data to the cloud
is a challenge [13]. With the rapid development of 5G, there
will be a very attractive solution. However, uploading the
data from embedded platforms to cloud can cause privacy
problems.

Another way to use CNN with embedded platform is
on-device approach. In on-device approach, CNN runs
on embedded platform directly. In recent years, there are
many lightweight convolutional neural networks that have
been designed specifically for embedded platforms such
as MobileNet [14] SqueezeNet [15], ShuffleNet [16]. So,
in on-device approach, deploying these lightweight CNNs on
embedded platform is a common feature. A typical frame-
work of on-device approach is TensorFlow-Lite [17].

In this paper, we present our embedded inference frame-
work that uses the CPU cores on embedded platforms
to execute the lightweight CNNs required by applica-
tions. Our inference framework can process lightweight
MobileNet [14] on commodity embedded platform at the
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speed of 12 FPS. This greatly reduces privacy issues due to
cloud participation.

Before implementing our inference framework with any
optimization techniques, we use MobileNet [14] as an exam-
ple to analyze the time-consuming layers in the inference pro-
cess of CNN. Then we design optimization methods for these
time-consuming network layers, greatly improving the infer-
ence speed of lightweight convolutional neural networks. Our
optimization methods include optimization of 1 × 1 convo-
lutional layer and 3 × 3 depthwise-separable convolutional
layer, and also some optimizations for memory.

Our contributions of this work are summarized as follows:

• Design and implement an efficient embedded inference
framework for CNN, by optimizing time-consuming
part in the inference process.

• Design an efficient optimization method for 1 × 1 con-
volutional layer by memory packing.

• Design an efficient optimization method for 3 × 3
depthwise-separable convolutional layer.

• Design a memory pool specifically for deep neural net-
works to further improve the inference performance.

The rest of this paper is organized as follows. Section II
describes the work related to the embedded platform convo-
lutional neural network methods. In Section III, we identify
the time-consuming part of the lightweight MobileNet. The
design considerations of our embedded inference framework
are presented in Section IV. In Section V, the implementation
of our inference framework is presented. Finally, we reported
the results of our experiment in Section VI and concludes this
paper and elaborates on the future work in Section VII.

II. RELATED WORK
Running convolutional neural network with an embed-
ded platform continues to attract researchers’ attention.
There are mainly two types of approaches: cloud-based
approach and on-device approach. In this paper, we only
focus on the on-device approach due to the limitations of
cloud-based approach which we have already mentioned in
the Section I. Next, we provide the overview of modern
on-device approaches. We divide on-device approaches into
two categories: hardware designing and lightweight convolu-
tional neural network designing.

Due to the intensive computing of convolutional neural
network, there has been a lot of work related to specific
hardware design [18]–[22] for CNN and CNN-based com-
puter vision tasks. Zhang et al. proposed a CNN accelerator
on Field-Programmable Gate Array (FPGA) platform using
many optimizing techniques, such as loop tiling and trans-
formation in [19]. In [18], an efficient CNN and an efficient
CNN-based face detection system are implemented using a
single FPGA by Farabet et al. In [21], Chen et al. proposed
theDianNao, which achieved high throughput and low energy
consumption when processing CNNs, by carefully optimiz-
ing the impact of memory on accelerator design, performance
and energy consumption. For some low-cost applications,
adding a specific hardware may not be cost effective.

On the other hand, designing a lightweight convolutional
neural network and deploying it on an embedded platform has
been considered as an alternative approach. In spite of the fact
that a lot of convolutional neural network are designed for
desktop platform, there are many lightweight convolutional
neural network [14]–[16], [23], [24], specially designed for
embedded platform. Forrest N. Iandola et al. used a bottle-
neck approach to design a very small but efficient network
SqueezeNet, which achieves AlexNet-level accuracy on Ima-
geNet with much fewer parameters even ban be compressed
to less than 0.5MB, in [15]. MobileNet in [14] is efficient for
embedded vision applications by using depthwise-seprable
convolution and it has two simple hyper-parameters that can
efficiently trade off between inference efficiency and accu-
racy. In [24],MobileNetV2 has been designed and it has some
performance improvements on both inference efficiency and
accuracy adopting inverted residual structure with linear
bottleneck. In [16], ShuffleNet uses channel shuffle operation
and pointwise group convolution to reduce computation cost
and achieve higher accuracy than MobileNet, but from the
implementation point of view, channel shuffle operation is
not friendly to the cache.

When it comes to how to deploy these lightweight net-
works to embedded platforms, there are some deploying
frameworks such as TensorFlow-Lite [17] or Caffe [25] com-
piled with OpenBLAS [26]. As far as we known, these
frameworks convert convolution layer into matrix multipli-
cation through ‘im2col’ method, and then improve inference
performance by optimizing matrix multiplication. Although
this is effective for convolution layer of any parameters,
it will increase memory footprint. Therefore, in this paper,
we designed and implemented a more efficient embedded
inference framework. We optimized some time-consuming
network layers individually, which not only improves the
inference performance, but also reduces the memory foot-
print. Moreover, we designed a memory pool specifically for
deep neural networks to further improve the inference perfor-
mance. We also compared our framework with the popular
frameworks in the open source community NCNN [27] and
MNN [28].

III. WORKLOAD CHARACTERIZATION
In this section we first show a common optimization tech-
nique: merge the batch normalization layer with pervious
layer. And then, we show the effect of merge the ReLU layer
with previous layer. Finally, we identify the computationally
intensive parts of the MobileNet model through experiments.

A. MERGE BATCH NORMALIZATION
In modern networks, it’s common to include a batch normal-
ization layer after every convolutional or depthwise-separable
convolutional layer. Batch normalization layer takes the out-
put of the pervious layer and applies the following operations
to every single output value:

z = γ ∗
y− µ
√
V + ε

+ β.
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Here, y is an element in the output feature map from the
previous layer. γ and β are the parameters of this batch
normalization layer. µ and V are mean and variance of
that output channel, respectively. Since both convolution
(or depthwise-separable convolution) layer and batch nor-
malization layer are linear transformation, we can combine
these two layers into a single layer.

The math for combine the batch normalization layer
into convolution or depthwise-separable convolution layer is
fairly straightforward. Expand y in the formula:

z = γ ∗

∑n
i=1 xi · wi + b− µ
√
V + ε

+ β.

After rewriting this formula so that γ , β, µ, V only apply to
wi and b, it gives us:

z =
n∑
i=1

xi · (wi ·
γ

√
V + ε

)+ (b− µ) ·
γ

√
V + ε

+ β.

So, as a common optimization trick, we can just update the
parameters of the convolution layer and completely remove
the batch normalization layer without affecting the inference
results.

B. MERGE ACTIVATION LAYER
Fusing the activation layer with the previous layer is a com-
monway to reduce the number ofmemory accesses. It is often
used for inference acceleration on desktop platforms. Usually
a network layer is followed by a non-linear activation layer.
ReLU is the most commonly used activation layer. ReLU
layer takes the output of previous layer and applies a max-
imize operation with zero on each element. So, ReLU layer
can be applied on the input itself without allocate memory
for output. What’s more, ReLU layer is simple enough to be
fused with previous layer: we only need to add a maximize
operation before we store the result of previous layer into
memory. This will reduce the number of data flows between
the CPU register and the memory. In Figure 1, we demon-
strate how does this trick reduce the number of data flows.
Table 1 shows the influence that fusing the ReLU layer does
to the time of inference. The more complex the model is,
the more activation layers are, and the more obvious the
acceleration effect of this method is.

FIGURE 1. Data flow before fuse ReLU (left part) and after fused ReLU
(right part).

TABLE 1. Fuse ReLU performance gain.

C. LATENCY BREAKDOWN
In order to identify the computationally intensive parts of
the MobileNet model, we implemented a multi-cores CNN
inference framework. This framework doesn’t employ opti-
mization techniques such as ARM NEON instruction and
memory optimization.

For the sake of simplicity, we use Caffe’s pretrained
MobileNet model directly, and perform batch normalization
layer fusion under the Caffe framework. Thus, our framework
doesn’t need to implement the batch normalization layer.

In Figure 2, we show the inference time broken down per
layer type. It indicates that the convolutional layer which
kernel size is 1 dominates the inference time. So, we focus
on the optimization of 1 × 1 convolutional layer. On the
other hand, since most lightweight networks currently use
depthwise-separable convolutional layer and 1 × 1 convolu-
tional layer to substitute 3 × 3 convolutional layer to reduce
the amount of computation [14], we also focus on optimizing
depthwise-separable convolutional (kernel size is 3).

FIGURE 2. Inference time break down per layer type of MobileNet model.
We ignore the softmax and pooling layer in this figure because these
layers are very simple and have little impact.

IV. DESIGN CONSIDERATIONS
We design the framework with following goals:

1) No dependency on cloud. Our main goal, for this
paper, is to use the resources of embedded platform
only without any dependency on cloud to process
CNNs. There are many compelling applications in this
area, such as processing privacy data or processing with
poor or expensive network service. In these applica-
tions, cloud is either unallowed (due to privacy con-
cerns) or unstable (due to network issues).

2) Maximize CPU utilization. Embedded platforms typ-
ically have multiple CPU cores and run multiple
applications simultaneously. However, due to process
scheduling and CPU affinity issues, one application
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may use different CPU core at different time, and one
CPU core may run multiple applications. This problem
will lead to cache miss and affect the running efficiency
of applications. So, we assume that some CPU cores
will be specifically allocated to the CNN model, and
other applications on the embedded platform will use
the remaining CPU cores. The framework will maxi-
mize the utilization of the allocated CPU cores.

3) Minimize memory footprint. Multiple CPU cores
share the memory of the embedded platform, which
means that all applications on the embedded platform
share the same memory. If the CNN model is running
with a lot of memory, it will cause other applications
to run slowly or even stop running. So, the framework
will minimize the memory footprint.

4) Focus on the computationally intensive part.
We notice that it is more productive to focus on the
computationally intensive part than on the other parts.
So, we measured the running time of MobileNet model
on a RK3399 system and broken down the processing
latency per layer type. To do this, we implemented
a multi-cores CNN execution framework without any
other optimization techniques applied such as NEON
and memory optimization, as shown in Section III.

5) No accuracy loss. In this paper, we focus on deploy-
ing the original CNN model on embedded platform.
We didn’t use the optimizationmethods that will reduce
the model accuracy such as half floating point precision
and convolutional layer decomposition [29]–[31].

V. IMPLEMENTATION
In this section, we first show the entire architecture of
our inference framework. And then we describe, in detail,
the optimization techniques we adopted to optimize the infer-
ence of CNNs.

A. FRAMEWORK OVERVIEW
The overall architecture of our inference framework is shown
in Figure 3. Different deep learning framework use their
own model format. In order to use many pretrained mod-
els from different framework, we design our own model
format. So pretrained models need to be converted to
our framework format. We didn’t adopt optimization tech-
niques which will reduce the model accuracy such as layer
decomposition [29]–[31]. Therefore, our model conversion

FIGURE 3. Our inference framework overview. Net part and Extractor part
are managed separately in memory.

is very simple, just serialize the trained parameters directly
into our model format.

Our inference framework currently supports the models
from two deep learning frameworks, namely Caffe [25] and
PyTorch [32].

Our inference framework can be roughly divided into two
parts: Net and Extractor. The Net part includes the structure
of the CNN and the trained parameters of each network layer.
The Extractor part includes the input and output of the CNN
and the intermediate results of the network.

During the inference phase, the Extractor gets its input and
sends the input to the Net part, and the intermediate results of
the network are stored in the Extractor. Finally, the output of
the network is obtained from the Extractor.

B. 1 × 1 CONVOLUTION OPTIMIZATION
As shown in Section III, the 1 × 1 convolutional layer is the
main performance bottleneck. We employ memory packing
to accelerate the inference of 1 × 1 convolutional layer. Our
key observation is that the feature maps of CNN are stored
in memory, one channel by one channel. Therefore, the data
in the same channel is continuous in memory, as shown
in Figure 4. However, the computation of 1 × 1 convolu-
tion will access data across input channels to compute one
output value, which is a bad access pattern. This access
pattern doesn’t take full advantage of the memory local-
ity principle. So, memory packing is adopted to solve this
problem.

Moreover, we employ OpenMP [33] to utilize multi-cores,
and we also use ARM NEON instruction to maximize the
CPU utilization.

In the optimization of 1 × 1 convolutional layer, we use
OpenMP [33] to assign each CPU core 8 output channels at
a time. And further, 2 NEON registers are used to represent
a 1× 8 block, which means that we need 16 NEON registers
per CPU for output channels. At each iteration, we compute
2 NEON registers per channel, as shown in Figure 4.
Then, we do memory packing for input feature map every

4 input channels. Note that memory packing for kernel can
be done accordingly in the process of constructing Net part.
We design Alg.1 Memory packing that packs the memory of
input feature map according to the access pattern of 1 × 1
convolution to take full advantage of the cache locality.

As shown in Figure 4, the outermost loop in Alg.1 walks
through input feature map channels with steps of 4. The sec-
ond loop in Alg.1 walks inside the input channel with steps
of 8 (the size of 2 NEON registers). The innermost loop iter-
ates 4 input channels and assigns 8 values of input per channel
to Out continuously in Line 4-11. To ensure continuity, Line
12 moves the Out forward by 8.
During 1×1 convolution, we use 8 NEON registers to load

the input data, 2 registers per input channel, and 8 NEON
registers to load the convolution kernel, 1 register per output
channel, as shown in Figure 4.
Now, we are ready to describe our Alg.2 the optimization

algorithm for 1×1 convolutional layer. The input feature map
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FIGURE 4. 1 × 1 convolution optimization demonstration.

Algorithm 1Memory Packing
Input: Input feature map In
Output: Packed input feature map Out
1: for ic = 1 : In.channels steps of 4 do
2: for k = 1 : In.channelSize steps of 8 do
3: for i = 0 : 3 do
4: Out[1]← In[ic+ i][k]
5: Out[2]← In[ic+ i][k + 1]
6: Out[3]← In[ic+ i][k + 2]
7: Out[4]← In[ic+ i][k + 3]
8: Out[5]← In[ic+ i][k + 4]
9: Out[6]← In[ic+ i][k + 5]

10: Out[7]← In[ic+ i][k + 6]
11: Out[8]← In[ic+ i][k + 7]
12: Out ← Out + 8
13: end for
14: end for
15: end for
16: return Out

of Alg.2 is the feature map after memory packing obtained
from Alg.1. The outermost loop in Alg.2 walks through out-
put feature map channels with steps of 8 and uses 16 NEON
registers oreg to store the computation results, 2 registers
per channel. And in the second, we use 8 NEON registers
ireg to load 4 input channel data, 2 registers per channel,
and load 1 × 1 convolution kernel of size inputChannels ×
OutputChannels = 4× 8 = 32 into another 8 registers kerg.
The innermost loop of Alg.2 iterates 8 output channels.

In Line 8-17, for each output channel, it computes the results
oreg from input feature map ireg and kernel weights kreg,
according to the computing rule of 1×1 convolution. Finally,
results in oreg are store in memory in Line 20.

Algorithm 2 1× 1 Convolution
Input: Packed input feature map In, packed kernel weights

kernel
Output: Output feature map Out
1: for oc = 1 : Out.channels steps of 8 do
2: load output into oreg[1 . . . 16] (according to Figure 4)
3: for ic = 1 : In.size steps of 4 do
4: load input into ireg[1 . . . 8] (according to Figure 4)
5: load kernel into kreg[1 . . . 8] (according to Figure 4)
6: // inner loop will be unrolled for performance
7: for i = 1 : 8 do
8: // first part of one block
9: oreg[i]← oreg[i]+ ireg[1] · kreg[i][1]

10: oreg[i]← oreg[i]+ ireg[2] · kreg[i][2]
11: oreg[i]← oreg[i]+ ireg[3] · kreg[i][3]
12: oreg[i]← oreg[i]+ ireg[4] · kreg[i][4]
13: // second part of one block
14: oreg[i+ 8]← oreg[i+ 8]+ ireg[5] · kreg[i][1]
15: oreg[i+ 8]← oreg[i+ 8]+ ireg[6] · kreg[i][2]
16: oreg[i+ 8]← oreg[i+ 8]+ ireg[7] · kreg[i][3]
17: oreg[i+ 8]← oreg[i+ 8]+ ireg[8] · kreg[i][4]
18: end for
19: end for
20: store oreg[1 . . . 16] into Out
21: end for
22: return Out

C. 3 × 3 DEPTHWISE-SEPARABLE CONVOLUTION
OPTIMIZATION
Although 3 × 3 depthwise-separable convolution does not
account for a large proportion of inference time, we often use
3× 3 depthwise-separable convolution combined with 1× 1
convolution to replace 3 × 3 convolution for performance.

171088 VOLUME 7, 2019



S. Bi et al.: Embedded Inference Framework for CNN Applications

FIGURE 5. 3 × 3 depthwise-separable convolution optimization demonstration. We only show
the optimization approach with stride 1, but our approach is suitable for the other strides.

Algorithm 3 3 × 3 Depthwise-Separable Convolution With
Stride 1
Input: Input feature map In, kernel weights kernel
Output: Output feature map Out
1: for oc = 1 : Out.channels do
2: for i = 1 : Out.height steps of 2 do
3: for j = 1 : Out.width steps of 8 do
4: load input into ireg[1 . . . 4][1 . . . 3] (according to

Figure 5)
5: load kernel into ker[1 . . . 3] (according to

Figure 5)
6: // first part of one block
7: oreg[1]←

∑3
x=1

∑3
y=1 ireg[x][y] · ker[x][y]

8: oreg[3]←
∑3

x=1
∑3

y=1 ireg[x + 1][y] · ker[x][y]
9: load next input registers (according to Figure 5)

10: oreg[2]←
∑3

x=1
∑3

y=1 ireg[x][y] · ker[x][y]
11: oreg[4]←

∑3
x=1

∑3
y=1 ireg[x + 1][y] · ker[x][y]

12: store oreg[1 . . . 4] into Out
13: end for
14: end for
15: end for
16: return Out

Therefore, we also optimized 3 × 3 depthwise-separable
convolution using ARM NEON instruction and then dis-
tributed the computation to every CPU cores by channel using
OpenMP [33].

In Figure 5, we demonstrate the optimization of 3 × 3
depthwise-separable convolution with stride 1 using ARM
NEON instruction. We will calculate 4 NEON registers for
output in each iteration. We load the corresponding part of
input feature map into NEON registers, and compute the
output according to the rule of 3 × 3 depthwise-separable
convolution, as shown in Alg.3 Line 7-11.

Here, we describe how to calculate Oreg[1]’s result
in Figure 5 detailly. In Figure 5, we use different colors to
distinguish registers that load data from different columns.
The red registers contain data from first column to the
fourth column. The purple and yellow registers contain data
from second column to fifth column and third column to sixth
column, separately. Moreover, we use a variable j to represent
registers in different rows. We denote the red register in the
jth row by ireg[j][1]. The purple and yellow register in jth
row by ireg[j][2] and ireg[j][3] separably. According to the
3× 3 depthwish-separable convolution rules, we can get the
following result:

Oreg[1]

= ireg1,1 · ker1,1 + ireg1,2 · ker1,2 + ireg1,3 · ker1,3
+ ireg2,1 · ker2,1 + ireg2,2 · ker2,2 + ireg2,3 · ker2,3
+ ireg3,1 · ker3,1 + ireg3,2 · ker3,2 + ireg3,3 · ker3,3

=

3∑
x=1

3∑
y=1

iregx,y · kerx,y.

Here we denote ireg[j][i] by iregj,i for simplicity, and kerj,i is
the parameter in the jth row and ith column of the kernel. So,
the calculations of Oreg[2], Oreg[3] and Oreg[4] are similar
to Oreg[1] as shown in Alg.3.

Note that we only show the optimization of 3 × 3
depthwise-separable convolution with stride 1, however our
method is also applicable to other strides. We will show the
performance of both stride 1 and 2 in Section VI.

D. MEMORY OPTIMIZATION
1) LIGHT MODE
Convolutional neural networks have to keep track of the
intermediate features maps that are extracted during infer-
ence phase. Once a given layer’s inference computation is
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complete, however, the input feature map(s) of this layer will
be not reused if there is no layer use the input feature map(s)
later. So an optimization trick called light mode will release
the memory of input feature maps which will not be reused
later, after the computation of current network layer. The
light mode will greatly reduce the memory footprint during
inference phase. Experiments in section shows the impact of
light mode.

2) MEMORY POOL
We employ light mode to reduce the memory footprint during
inference of networks. However, light mode introduces a
lot of memory allocation and deallocation operations which
will degrade performance. Therefore, we design a memory
pool specifically for deep neural networks, to improve per-
formance by sacrificing some memory. The normal memory
pool operates on some specific size of memory. Our memory
pool uses feature map as the basic unit for memory allo-
cation and deallocation, which is different from the normal
memory pool. Only the features maps use our memory pool,
the weights of the network do not use, because the weights
of the network will be allocated at the beginning of the
application and be deallocated when the application stop.

We demonstrate the workflow of the memory pool
in Figure 6 for a 4-layer network. First, our memory pool
allocate memory for the input and output of the first layer in
the network. After the computation of the first layer, the input
feature maps of the first layer may not be used anymore.
So we can selectively use the memory of first layer input
feature maps to store the output feature maps of the second
layer. And, if the size of first layer input feature maps is less
than the size of second layer output featuremaps, ourmemory
pool will allocate new memory for the second layer output
feature maps, as shown in Figure 6.

Note that, memory pool will increase the maximum
memory footprint during the inference process as shown
in Figure 6. However, combined with light mode, memory
pool will contribute to inference performance. We will show
it in Section VI.

VI. EXPERIMENTS
This section evaluates the performance gains of the opti-
mization methods we employed in Section V. We first intro-
duce the experimental environment, including the hardware
platform and the model we selected. Next we verify the
performance improvement of various methods through exper-
iments. Finally, we compare our system with other methods.

A. EXPERIMENTAL SETUP
We used a Firefly-RK3399 development board as our exper-
iment platform. It integrates quad-core Cortex-A53 and
dual-core Cortex-A72 with separate NEON coprocessor. Its
memory size is 2GB. In this paper, we did not design a load
balancing scheduling algorithm between CPUs with different
computing powers. Therefore, unlessmentioned, we used two
Cortex-A72 cores as default.

FIGURE 6. Memory pool and light mode demonstration. For brevity,
we use an 4-layer linear network to show the workflow of memory pool.
The left part shows the inference process of the 4-layer linear network,
and the right part shows the evolution of the memory pool during the
inference process.

As mentioned in Section III, for the sake of simplic-
ity, we used Caffe’s pretrained models for both MobileNet
(trained on ImageNet) and MobileNet-SSD (trained on PAS-
CAL VOC0712). The network structures of MobileNet and
MobileNet-SSD have been described in [14]. We used some
layer specifications in the MobileNet model to verify the
performance gain of our optimization methods for 1 × 1
convolution and 3×3 depthwise-separable convolution. Also,
we used MobileNet and MobileNet-SSD model to test the
effect of our memory pool.

B. 1 × 1 CONVOLUTION PERFORMANCE
Table 2 summarizes the performance of 1 × 1 convolution
compared to the non-optimized method. Our experiment tests
several specifications of 1 × 1 convolution in MobileNet
under various CPU core configurations. Comparing to the
non-optimized method, our optimization method for 1 × 1
convolution greatly improves the inference efficiency of 1×1
convolution under almost all CPU core configurations. Our
inference framework maximizes CPU utilization and works
well when using multi-cores. When the number of CPU cores
doubles, our inference framework performance is nearly dou-
bled, as shown in Table 2.
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TABLE 2. 1 × 1 convolution performance gain (in ms).

TABLE 3. 3 × 3 depthwise-separable convolution with stride 1 performance gain (in ms).

TABLE 4. 3 × 3 depthwise-separable convolution with stride 2 performance gain (in ms).

The irregular results do exist in Table 2, which we iden-
tified by underline. Also, the fact exists in Table 2 that the
performance of non-optimized method will be more than
double when the number of CPU cores doubles. It should
be the cause of compiler optimization causing these irregular
results.

The reason why our optimization method can improve
performance is that it enhances memory access locality and
makes cache hit rate higher. The performance gain with input
size of 112×112×32 is at most 30%, whereas the gain of the
other input size is about 70%−90%. This is because without
optimization, the number of input channels directly affects
the hit rate of the cache. The fewer the number of input chan-
nels, the better the locality of cross-channel memory access
due to the calculation of output data. So, the performance gain
with input channel of 32 is relatively small since it has better
locality of memory access.

C. 3 × 3 DEPTHWISE-SEPARABLE
CONVOLUTION PERFORMANCE
The computational intensity of 3 × 3 depthwise-separable
convolution is not particularly high compared to the 1×1 con-
volution. However, optimizing the 3×3 depthwise-separable
convolution still has considerable benefits, since the number
of 3 × 3 depthwise-separable convolution is large in many
lightweight CNN models.

We summarizes the performance of 3 × 3 depthwise-
separable convolution with stride 1 in Table 3, and the

performance of 3 × 3 depthwise-separable convolution with
stride 2 in Table 4. The specifications of 3 × 3 depthwise-
separable convolution are also coming from MobileNet
model, like 1× 1 convolution.
The performance gain of 3 × 3 depthwise-separable con-

volution comes from the usage of ARM NEON instruction.
The gain of stride 1 is larger than stride 2 since the com-
putational cost of stride 2 is much smaller than stride 1
and compiler can optimizes stride 2 better. Although the
performance improvement is not very high, the number of
3 × 3 depthwise-separable convolution is very large. So,
the optimization of 3× 3 depthwise-separable convolution is
valuable (suppose each layer is reduced by 1 second, then n
layers are reduced by n seconds).

D. MEMORY POOL EFFECT
Our memory pool adopts a layer-wise memory allocation
policy. We use MobileNet and MobileNet-SSD to illus-
trate the impact of memory pool on memory footprint and
inference performance with convolutional optimiztions or
without.

In Figure 7, we show the changes in memory usage
during the three inferences of MobileNet, under four dif-
ferent memory strategies, namely no light mode without
memory pool, no light mode with memory pool, light
mode without memory pool and light mode with mem-
ory pool. In terms of maximum memory footprint, light
mode reduces the memory usage, comparing (c) with (a)
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FIGURE 7. Memory usage during three inferences of MobileNet. (a) no light mode without memory pool, (b) no light mode with memory pool,
(c) light mode without memory pool (d) light mode with memory pool.

(without memory pool) and (d) with (b) (with memory pool)
in Figure 7. By comparing (b) with (a) and (d) with (c) in
Figure 7, our memory pool slightly increases some memory
footprint.

However, if we consider from the performance perspective,
our memory pool improves the performance of our inference
framework, regardless of whether there are convolutional
optimizations or not, as shown in Table 5. The performance
improvement of memory pool for MobileNet is not ideal,
so we added the experiment of MobileNet-SSD to show
this.

TABLE 5. Performance under different memory strategies (in ms).

In order to reduce the maximum memory footprint,
we design light mode. But light mode will increase the num-
ber of system calls, because it will allocate and free memory
frequently. So, our memory pool can solve this problem.
This is why our memory pool can enhance the performance.
As described in Section V, our memory pool will slightly
increase themaximummemory footprint during the inference
process. But, our memory pool will contribute to inference
performance when combined with light mode.

E. COMPARISON WITH OTHER APPROACHES
We now compare the performance of our inference frame-
work with TensorFlow-Lite, the open source deep learning
framework for on-device inference developed by Google.
We also compare our framework with Caffe, a very influential
framework, but we compile Caffe with OpenBLAS on the
Firefly-RK3399 development board. Moreover, we compare
our framework with NCNN [27] and MNN [28]. These two
frameworks are popular and with high performance in the
open source community.

As shown in Table 6, our inference framework outperforms
TensorFlow-Lite, Caffe-OpenBLAS and MNN. In the case
of MobileNet, our framework can be comparable to NCNN.
But our framework performs better than NCNN in terms
of MobileNet-SSD. Although our inference framework has
been specifically optimized for very few network layers,
we have optimized those layers that are very time consuming.
Therefore, as long as the network structure uses the network
layer we have optimized, our framework can produce some
acceleration effects.

TABLE 6. Compare with other approaches.

VII. CONCLUSION AND FUTURE WORK
In this paper, we design and implement an embedded
inference framework to accelerate the inference process of
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convolutional neural networks on embedded platform. Our
framework specifically optimizes 1 × 1 convolutional layer
and 3 × 3 convolutional layer, greatly improving the infer-
ence performance of our framework. We also design a mem-
ory pool specifically for deep neural network to achieve
significant speedups.We implement our inference framework
with OpenMP to use multi-cores and with ARM NEON to
maximize the use of a single CPU core resources. The exper-
imental results on Firefly-RK3399 show that our inference
framework outperforms other approaches.

Another interesting aspect of this work that can be explored
in the future would be optimizing general 3×3 convolutional
layer with winograd algorithm to further improve the infer-
ence performance.Wemay support our framework with more
convolutional neural network models in the future.
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