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ABSTRACT Unsupervised domain adaptation (UDA) aims to learn a prediction model for the target domain
given labeled source data and unlabeled target data. Impressive progress has been made by adversarial
learning-based methods that align distributions across domains through deceiving a domain discriminator
network. However, these methods only try to align two domains and neglect the boundaries between
classes, which may lead to false alignment and poor generalization performance. In contrast, consistency-
enforcing methods exploit the target data posterior distribution to make the target features far away from
decision boundaries. Despite their efficacy, these approaches require additional intensity augmentation to
align distributions when encountering datasets with large domain discrepancy. To solve the above problems,
we propose a novel UDA method that unifies the adversarial learning-based method and consistency-
enforcingmethod together to take both domain alignment and boundaries between classes into consideration.
In addition to the supervised classification on the source domain and the adversarial domain adaptation,
we introduce interpolation consistency into the UDA task. To be specific, we first construct robust and
informative pseudo labels for target samples, and then we encourage the prediction at an interpolation
of unlabeled target samples to be consistent with the interpolation of the pseudo labels of these samples.
The extensive empirical results demonstrate that our method achieves state-of-the-art results on both digit
classification and object recognition tasks.

INDEX TERMS Domain adaptation, transfer learning, deep learning, image classification.

I. INTRODUCTION
Deep learning approaches have achieved remarkable success
in various computer vision tasks and applications. However,
these achievements often rely on large-scale labeled datasets.
In many cases, the collection and annotation of training data
on novel domains are extremely expensive or sometimes
impossible. Hence, there is a strongmotivation to train a good
classification model for a target domain by using readily-
available annotated data from a source domain with a dif-
ferent distribution. However, this attractive transfer learning
paradigm suffers from the data shift problem [1], which is a
huge challenge for adapting classificationmodels to the target
domain. Learning a classifier under data shift between the
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labeled source domain and unlabeled target domain is known
as unsupervised domain adaptation (UDA) [2].

Many UDA approaches directly align the marginal
distributions across domains to bridge the domain gap
[3]–[9]. Notably, approaches based on adversarial learning
[3], [4] divide the base model into a feature extractor G and a
task-specific classifier C , and add a domain discriminator D.
The domain discriminator D takes the features extracted by
G and predicts which domains the features come from. The
feature extractor G is learned to extract domain-invariant
feature representations by deceiving the domain discrimi-
nator. Domain alignment is expected when the adversarial
training reaches an equilibrium. However, these approaches
may fail to create discriminative features because they do
not consider the decision boundary. The feature extractor can
extract ambiguous target features near the decision boundary,
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FIGURE 1. Comparison of the adversarial method and our method. Left:
The adversarial method tries to match different distributions by deceiving
the domain discriminator. It ignores the decision boundaries between
classes. Right: Our method tries to deceive the domain discriminator and
make the features far away from the decision boundaries simultaneously.

as it simply attempts to make the two domains similar (left
side of Fig. 1).
In contrast, consistency-enforcing methods [10]–[12]

exploit the target data posterior distributions to learn target
discriminative features in UDA tasks. These methods encour-
age consistent predictions over augmented copies of the
same target samples. This observation can be formalized as
p(y|x̃1) ≈ p(y|x̃2), where x̃1 and x̃2 are augmented/perturbed
versions of the unlabeled sample x. These approaches move
the decision boundary to low-density regions of the feature
space by following the low-density separation assumption.
Thus, the target features are far away from task-specific
decision boundaries. Despite their efficacy, these approaches
face a critical limitation. When applied to datasets with large
domain discrepancy, they require additional intensity aug-
mentation to sufficiently align the dataset distributions. This
drawbackmakes thesemethods less efficient and less general.

We can find that the above two paradigms are complemen-
tary and suffer from the neglect of the other. Thus, we argue
that to perform well on the target data, the adaptation model
must take both domain alignment and decision boundaries
between classes into account (right side of Fig. 1).
In this paper, we propose a novel UDA method that unifies

the above two paradigms together to learn feature represen-
tations that are both domain-invariant and target discrim-
inative. On the one hand, we align the two distributions
across domains through the adversarial learning the same as
DANN [4]. On the other hand, we refine the decision bound-
ary using the consistency-enforcing method similarly to
[10], [12]. However, random perturbations exploited by [12]
are inefficient in high dimensions because only a part of per-
turbed inputs can move the decision boundary to low-density
regions. To mitigate this problem, we introduce the inter-
polation consistency method [13] that is derived from the
mixup [14] into the UDA task. Specifically, we first propose
two techniques to produce robust and informative pseudo
labels for unlabeled target samples. We average the predic-
tions of two duplicate images differing only with respect to
the adopted image augmentation to acquire a more accu-
rate pseudo label. Then we apply a sharpening function to
the average prediction to reduce the entropy of the label

distribution, which can build a more informative common
pseudo label for the two corresponding target samples. Sec-
ond, we construct interpolations of the unlabeled target sam-
ples and interpolations of the corresponding pseudo labels
using the mixup [14] operation. Then, we encourage the pre-
diction at an interpolation of unlabeled samples to be consis-
tent with the interpolation of the predictions at those samples.
Notably, the interpolation has been proven to be a more effi-
cient perturbation for consistency-based regularization [13].
We name the proposed method as ALIC, which is short for
Adversarial Learning and Interpolation Consistency.

Experiments have proven our method yields state-of-the-
art results on several standard datasets. Our contributions are
summarized as follows:

• We argue that to perform well on the target data, the
adaptation model must take both domain alignment and
decision boundaries between classes into consideration.
To this end, we propose a novel method for UDA
which unifies the adversarial learning-based method and
consistency-enforcing method together.

• We introduce interpolation consistency into the UDA
task, which can move the decision boundary to
low-density regions more efficiently. And we adopt two
critical techniques to acquire more accurate and infor-
mative pseudo labels for unlabeled target samples to
facilitate the success of interpolation consistency in the
UDA task.

• We evaluate our method thoroughly by considering
detailed comparisons against the state-of-the-art meth-
ods on several standard benchmark datasets. And we
also conduct an empirical analysis using ablation study,
feature visualization, distribution discrepancy, conver-
gence performance and parameter sensitivity of our
method.

II. RELATED WORKS
A. UNSUPERVISED DOMAIN ADAPTATION
Extensive UDA approaches have been proposed over the
years, including both shallow methods and deep learning
models. We focus primarily on deep learning approaches for
UDA because they are more relevant to our method.

UDA approaches leverage different strategies to reduce the
discrepancy between the source and target domains and can
be divided into different groups. Inspired by the great achieve-
ment of GANs [15], adversarial learning has been applied to
UDA and achieved impressive results [3], [4], [8], [16]–[20].
DANN [4] adds a subnetwork as domain discriminator after
feature extractor layers to determine which domains the
features come from, while the feature extractor is trained
to fool the discriminator. In such an adversarial process,
domain-agnostic features are learned to reduce the domain
discrepancy. ADDA [8] outlines a generalized framework for
adversarial adaptation which provided a simple and easy view
to relate prior researches and introduces a novel UDAmethod
that chooses the GAN loss and untied weight sharing.
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Many domain adaptation approaches leverage a distance
metric between the two domains to measure the domain
discrepancy. Some methods [5], [21]–[23] utilize maxi-
mum mean discrepancy (MMD) to compare the differences
between the source and target distributions. Reference [21]
incorporates MMD into the last fully connected layer to
learn transferable feature representations. Reference [5]
embedsmulti-kernelMMD into task-specific layers to further
enhance the feature transferability. Reference [23] aligns the
joint distributions of different domains using joint MMD cri-
terion. In contrast, [7] tries to align the second-order statistics
of the two distributions.

Several approaches are based on GANs, which reduce
the domain discrepancy at the pixel level [24]–[30]. These
methods directly translate source images to the target domain,
and a predictor can then be trained on the transformed source
images using the known source labels. Whereas GANs-based
methods obtain impressive results on some simple scenarios,
they behave badly when applied to complex datasets.

Entropy minimization is a successful strategy in
semi-supervised learning. One way to enforce entropy min-
imization is to encourage the classifier outputs low-entropy
predictions on unlabeled data [31]. ‘‘Pseudo Label’’ [32] is
another way to achieve this implicitly by constructing hard
labels form high-confidence predictions on unlabeled data.
Due to its effectiveness, several UDA approaches [23], [25],
[33], [34] have leveraged the entropy-loss to train deep neural
networks.

Another popular paradigm in UDA is the consistency-
enforcing methods that leverage the idea that a classifier
should output the consistent predictions for an unlabeled
target sample even after it has been perturbed. Several UDA
methods have adopted this consistency strategy, as shown
in [10], [33], [34].

B. MIXUP
Reference [14] have recently proposed a regularization
method called mixup for supervised learning, achieving
impressive performance in diverse tasks. Mixup regularized
the neural network to have linear behavior between training
samples, by enforcing that the network’s output for inter-
polation of two inputs is close to the interpolation of the
corresponding labels. Reference [35] improves mixup by
performing interpolation in the hidden space representations.
Furthermore, mixup has been applied to semi-supervised
learning [13], [36]. Reference [13] trains a prediction model
to penalize inconsistent predictions at interpolations between
unlabeled training samples and [36] mixes labeled and unla-
beled data together by using mixup.

III. METHOD
In the UDA problem, we are given ns labeled examples of
the source dataset Ds =

{(
xsi , y

s
i

)}ns
i=1 and nt unlabeled

examples of the target dataset Dt =

{
xtj
}nt
j=1

. The P (xs, ys)

and Q (xt , yt) are joint distributions of the source and target

domains respectively. The i.i.d. assumption is violated as
P 6= Q. We assume that the two domains have an identical
number of categories. The goal of UDA is to learn a classifier
which gives accurate predictions on target test examples.

We unify the adversarial learning-based method and inter-
polation consistency together to take both domain alignment
and decision boundaries between classes into consideration.
Specifically, there are three losses in our method. In addition
to the standard classification loss on labeled source data,
we also have a domain adversarial loss on both source and
target data and interpolation consistency loss on unlabeled
target data. The domain adversarial loss is based on the adver-
sarial domain adaptation method. As for the interpolation
consistency loss, we first produce robust and informative
pseudo labels using the prediction average and label sharpen-
ing techniques. Then, we apply mixup both to target samples
and corresponding pseudo labels and encourage the predic-
tion at the interpolation of these unlabeled target samples to
be consistent with the interpolation of the predictions at these
samples. The architecture of the proposed method is shown
in the left side of Fig. 2.

In the rest of this section, we first briefly review the concept
of adversarial domain adaptation in Section III-A. Second, we
introduce interpolation consistency for domain adaptation in
Section III-B. Finally, we summarize the overall objective of
the proposed method in Section III-C.

A. ADVERSARIAL DOMAIN ADAPTATION
Adversarial domain adaptation methods, starting from
Domain Adversarial Neural Network (DANN) [4], have
delivered remarkable performance on UDA tasks by extract-
ing domain-invariant features to bridge the gap between the
two domains. They divide the base model f into a feature
extractor G and a classifier C , and add a domain discrimi-
nator D. The domain discriminator D attempts to tell which
domains the features come from while the feature extractorG
is trained to fool the domain discriminator.

To learn domain-agnostic feature representations, domain
discriminator D learns its parameters θd by minimizing the
loss of the domain discriminator, while the feature extractorG
learns its parameters θg by maximizing the loss of the domain
discriminator D. The domain discriminator is optimized by:

Ld
(
θg, θd

)
=

1
m

∑
xi∈Bs

logD(G(xi))

+
1
m

∑
xi∈Bt1

logD(1− G(xi)), (1)

where Bs and Bt1 denote data batches of source and target
domains respectively.

In addition, the parameters θc of classifierC and the param-
eters θg of feature extractor G are learned simultaneously by
minimizing the classification loss of the source samples:

Ly
(
θg, θc

)
=

1
m

∑
xi∈Bs

CE(f (x), y), (2)

where CE is the cross-entropy loss, f = F(G(x)).
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FIGURE 2. An illustration of the proposed ALIC. Left: The architecture of the proposed ALIC. The network includes feature extractor G, classifier C,
domain discriminator D and with associated parameters θg, θc , θd . The EMA means the parameters θ ′ of the teacher model is the exponential
moving average of the parameters θ of the student model(θ =

{
θg, θc

}
). The whole model is optimized by minimizing the cross-entropy loss plus

the domain adversarial loss and interpolation consistency loss in an end-to-end manner. Right-top: Diagram of prediction average and label
sharpening. Two duplicate images differing only with respect to the adopted image augmentation are fed through the teacher model fθ ′ . Then,
the average of the two predictions is ‘‘sharpened’’ by adjusting the distribution’s temperature. Right-bottom: an illustration of the computation
process of the interpolation consistency loss. Mixup operation: Mixλ(a,b) = λ · a+ (1− λ) · b. For more details, please refer to the text.

Formally, the ultimate goal of DANN is to optimize the
following objective:

min
θg,θc

max
θd

L = Ly
(
θg, θc

)
+ λdLd

(
θg, θd

)
, (3)

where λd is a trade-off parameter between the two objectives.

B. INTERPOLATION CONSISTENCY FOR DOMAIN
ADAPTATION
1) PREDICTION AVERAGE
Sincewe have no access to the labels of target data, we need to
produce pseudo labels for corresponding target samples using
the model’s predictions. These pseudo labels are later used in
the mixup operation.

We apply standard data augmentations (i.e. random hori-
zontal flips and crops) on Dt . There are two different target
batches (Bt1 and B

t
2), which contain duplicate pairs of samples

differing only with respect to the adopted augmentation.
Let Bt1 =

{
xt11 , . . . , x

t1
m
}
and Bt2 =

{
xt21 , . . . , x

t2
m
}
be two

batches of the augmented target samples. To produce a more
robust pseudo label, we compute the average of the model’s
predictions across two samples by

pb =
1
2

(
fθ ′
(
xt1b
)
+ fθ ′

(
xt2b
))
, (4)

where xt1b ∈ Bt1 and xt2b ∈ Bt2 are samples from the
two augmented target batches, θ ′ is a moving average of
θ (θ =

{
θg, θc

}
).

2) LABEL SHARPENING
In generating a pseudo label, we perform one additional step
inspired by the success of entropy minimization in UDA
(discussed in section II). Given the average prediction over
the two augmented target samples pb, we apply a sharpen-
ing function to reduce the entropy of the label distribution.

In practice, we use the common approach of adjusting the
‘‘temperature’’ of this categorical distribution [37] as the
sharpening function, which is defined as the operation

Sharpen(p,T )i := p
1
T
i /

C∑
j=1

p
1
T
j (5)

where p is some input categorical distribution, C is the
number of the classes and T is a hyperparameter. As
T → 0, the output of Sharpen(p,T ) will approach a Dirac
(‘‘one-hot’’) distribution. Since we will later use ŷb =
Sharpen

(
pb,T

)
as the pseudo label for the two augmented

target samples, lowering the temperature encourages the
model to make lower-entropy predictions. It is worth noting
that ŷb is the pseudo label of both xt1b and xt2b . An illustration
of the prediction average and label sharpening is shown in the
right-top of Fig. 2.

3) MIXUP
Mixup, first proposed in [14], is a powerful regularization
method in supervised learning which enforces the classifi-
cation model to change linearly in between samples. In a
nutshell, mixup constructs virtual input-target vectors

x̃ = λxi + (1− λ)xj,

ỹ = λyi + (1− λ)yj, (6)

where (xi, yi) and
(
xj, yj

)
are two input-target vectors sam-

pled randomly from the training set, and λ ∈ [0, 1].
Here we extend mixup to UDA setting to refine

the target decision boundary. First, we collect two
batches of target samples and corresponding pseudo
labels into B̂t1 =

((
xt1b , ŷb

)
; b ∈ (1, . . . ,m)

)
and B̂t2 =((

xt2b , ŷb
)
; b ∈ (1, . . . ,m)

)
. Then, we shuffle the two

target batches B̂t1 and B̂t2. The shuffled batches are
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Algorithm 1 Interpolation Consistency Loss Computation

Input: Two target batches Bt1 =
{
xt11 , . . . , x

t1
m
}
and Bt2 ={

xt21 , . . . , x
t2
m
}
(same images with different image aug-

mentations), Student network fθ , Teacher network fθ ′ (θ ′

equal to the moving average of θ ), Sharpening tempera-
ture parameter T , Beta distribution parameter α.

1: for b = 1 to m do
2: pb =

1
2

(
fθ ′
(
xt1b
)
+ fθ ′

(
xt2b
))

3: ŷb = Sharpen
(
pb,T

)
4: end for
5: B̂t1 =

((
xt1b , ŷb

)
; b ∈ (1, . . . ,m)

)
6: B̂t2 =

((
xt2b , ŷb

)
; b ∈ (1, . . . ,m)

)
7: B̃t1 = Shuffle(B̂t1) =

((
xt1i , ŷ

t1
i

)
; i ∈ (1, . . . ,m)

)
8: B̃t2 = Shuffle(B̂t2) =

((
xt2i , ŷ

t2
i

)
; i ∈ (1, . . . ,m)

)
9: Sample λ ∼ Beta(α, α)
10: for i = 1 to m do
11: x̃ti = λx

t1
i + (1− λ)xt2i

12: ỹti = λŷ
t1
i + (1− λ)ŷt2i

13: end for
14: B̃t =

((
x̃ti , ỹ

t
i

)
; i ∈ (1, . . . ,m)

)
15: Lic(θg, θc) = 1

m

∑
(x̃ti ,ỹ

t
i )∈B̃

t `
(
fθ (x̃ti ), ỹ

t
i

)
16: return Lic

formalized as: B̃t1 =
((
xt1i , ŷ

t1
i

)
; i ∈ (1, . . . ,m)

)
and B̃t2 =((

xt2i , ŷ
t2
i

)
; i ∈ (1, . . . ,m)

)
.

Now, we can constructs the following interpolations of
training samples using mixup:

x̃ti = λx
t1
i + (1− λ)xt2i ,

ỹti = λŷ
t1
i + (1− λ)ŷt2i , (7)

where λ ∼ Beta(α, α), for α ∈ (0,∞). Our goal is to train
the student model fθ to predict the fake label ỹti at the inter-
polation point x̃ti . The discrepancy between the prediction
fθ (x̃ti ) and ỹt is measured by the mean squared loss in our
experiment. We formalize our interpolation consistency loss
as follows:

Lic(θg, θc) =
1
m

∑
(x̃ti ,ỹ

t
i )∈B̃

t

`
(
fθ (x̃ti ), ỹ

t
i
)
, (8)

where B̃t =
((
x̃ti , ỹ

t
i

)
; i ∈ (1, . . . ,m)

)
. An illustration of

interpolation consistency is shown in the right-bottom of
Fig. 2. The full algorithm of computing the interpolation
consistency loss is provided in algorithm 1.

C. OVERALL OBJECTIVES
As discussed in section I, domain adversarial methods and
consistency-enforcing methods are complementary to each
other. So we unify domain adversarial method and interpola-
tion consistency together. Combing the losses (1), (2) and (8)
together, we have the following training objective:

min
θg,θc

max
θd

L=Ly
(
θg, θc

)
+λdLd

(
θg, θd

)
+λcLic

(
θg, θc

)
,

(9)

where λd and λc are weights that trade-off among the three
objectives.

D. DISCUSSION
In this section, we show the differences between our method
and two relevant methods DANN [4] and SE [10]. (1) Both
DANN and our method try to align the feature distribu-
tions to reduce the domain discrepancy by using adversarial
learning, but only considering domain alignment for UDA
is far from enough. Our method not only considers domain
alignment but also takes decision boundaries between classes
into account, which can learn feature representations that are
both domain-invariant and target discriminative. (2) SE is
a consistency-enforcing method, which pushes the decision
boundary away from data points by penalizing inconsistent
predictions over randomly perturbed copies of the same target
samples. Different from SE, we replace randomly pertur-
bations with the interpolation perturbations following the
interpolation consistency [13], which can refine the decision
boundaries more efficiently. To facilitate the success of inter-
polation consistency in the UDA task, we also adopt two key
techniques to acquire more accurate and informative pseudo
labels for unlabeled target samples. Additional, Our method
alleviates the dependency of consistency-forcing methods on
additional intensity augmentation by exploiting the adversar-
ial domain adaptation to align the feature distributions.

IV. EXPERIMENTS
In this section, we first illustrate the datasets, baseline meth-
ods, and implementation details. Then, we show extensive
empirical results and further analysis.

A. DATASETS
Digits We investigate three digits datasets: MNIST [38],
USPS [39] and SVHN [40]. The three datasets all contain dig-
its of 10 classes ranging from 0 to 9. In particular, MNIST and
USPS contain 28× 28 and 16× 16 grey images respectively;
SVHN consists of 32× 32 color images which might contain
more than one digit in each image. We conduct experiment
on three transfer tasks: MNIST to USPS (M→ U), USPS to
MNIST (U→ M) and SVHN to MNIST (S→ M). In our
experiment, we use all training data and report results on
standard test sets. Fig. 3(a) shows image samples from these
three digits datasets.

Office-Home [41] is a very challenging dataset for UDA
task, which consists of 15,500 samples in total from 65 cat-
egories of everyday objects in office and home scenes
(Fig. 3(b)). There are four domains: Art (Ar), Clipart
(Cl), Product (Pr) and Real-World (Rw). The images of
these domains have significantly different appearances and
backgrounds.

B. BASELINE METHODS
We unify domain adversarial method and consistency-
enforcing method together to improve the performance of
the adaptation model. Apparently, the adversarial method
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FIGURE 3. Samples from datasets used. (a) Samples from MNIST, USPS,
and SVHN datasets. (b) Samples from four domains of Office-Home
dataset.

DANN [4] and the consistency-enforcing method SE [10] can
be regarded as the main baselines of our approach. To further
verify the efficacy of our approach, we also compare it with
a variety of state-of-the-art deep UDA models.

All baseline methods are listed as follows: (1) Source
Only trains a classification model only on labeled source
data to predict target test samples directly, which can serve
as an empirical lower bound of target performance. (2) DAN
[5] learns a transfer model by embedding multi-kernel
MMD into several task-specific layers. (3) JAN [23] utilizes
joint MMD criterion to align joint distributions of different
domains. (4) DANN [4] enables domain adversarial learn-
ing by training the feature extractor to deceive a domain
discriminator which tries to classify features of different
domains. (5) ADDA [8] designs a generalized framework
for UDA and proposes a novel adaptation model using
GAN loss and united weight sharing. (6) SBADA-GAN
[25] jointly optimizes bi-directional image transformations
to learn a robust and general adaptation model. (7) I2I-
Adapt [30] learns transferable feature representations by
unifying cycle-consistency, image reconstruction and domain
adversarial learning together. (8) UNIT [29] proposes a
novel image translation framework based on the shared-latent
space assumption, and this framework can also be applied
to domain adaptation. (9) GTA [26] utilizes a generator-
discriminator pair to match the feature distributions across
domains in the learned feature space. (10) CyCADA [42]
adapts between domains on both pixel level and feature level.
(11) SE [10] explores the use of self-ensembling for UDA.
(12)CDAN [18] conditions the domain discriminator on clas-
sifier predictions to capture the multimodal data structures.
(13) SWD [43] aligns feature distributions between domains
by using the Wasserstein metric to measure the discrepancy
of two task-specific classifiers. For a fair comparison, we re-
implement DANN using the same network architecture and
image augmentation as our method, and the results of other
approaches are taken from the corresponding papers.

C. IMPLEMENTATION DETAIL
1) NETWORK ARCHITECTURES
We adopt the same base network following CDAN [18] in
the digits experiments. For discriminator, we also use the
same architecture with CDAN, x → 500 → 500 → 1.
Only random image cropping is adopted in this setting. For
the Office-Home dataset, we employ a 50 layer ResNet [44]
network pre-trained on ImageNet [45]. Following RTN [22]
and DANN [4] , a bottleneck layer fcbwith 256 units is added
after the fc7 layer for safer transfer representation learning.
For discriminator, we use the same architecture with DANN,
x → 1024 → 1024 → 1. We adopt image random flipping
and cropping following JAN [23].

2) PARAMETERS
Our method is implemented by Pytorch. We use mini-batch
SGD with a momentum of 0.9. The learning rate is adjusted
by a decay strategy proposed by [4]: lrp =

lr0
(1+ωp)φ , lr0 =

0.01, ω = 10, φ = 0.75, and p is changed from 0 to
1 as the training goes on. The learning rate of the pre-trained
layers is divided by 10. We set the batch size to 64 for each
domain in the digits experiment. As for Office-Home dataset,
the batch size is selected as 36 due to thememory limitation of
GPU.We adopt the same schedule strategy as [4] to gradually
change the value of λd by computing λd = 2

1+exp(−δp) − 1,
where δ = 10. We set λc = K × λd to focus more on the
interpolation consistency as the training proceeds, and K is
selected as 30 for all datasets. The Beta distribution parameter
α is fixed as 1 following [13] and the decay coefficient of the
teacher model is fixed as 0.99 following [10]. We set T = 0.5
throughout all experiments. We follow standard evaluation
protocols for UDA as [3], [5].

D. RESULTS
We present our experimental results and compare with var-
ious UDA approaches on both Digits and Office-Home
datasets. For a fair comparison, the results of other
approaches are taken from their original papers. The results
obtained on the digits datasets are provided in Table 1.
All adaptation methods yield impressive improvement over
the source-only network which is trained by only using the

TABLE 1. Accuracy (%) on the Digit datasets for UDA. † indicates our
implementation of DANN [4].
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TABLE 2. Accuracy (%) on the Office-Home dataset [41] for UDA. All methods are based on the ResNet-50 model.

source data. Our method shows competitive performance in
all three transfer tasks. Specifically, our method significantly
outperforms DANN by 4.3%, 3.1% and 11.7% on M→U,
U→M and S→M, respectively. On average, we achieve an
improvement of 0.8% over the state-of-the-art methods SE
and SWD.

We also conduct experiments on the challenging
Office-Home dataset. Table 2 shows that our method out-
performs all comparison methods. Specifically, our method
substantially outperforms DANN and SE by 6.5% and 2.6%
respectively. Our method also boosts the accuracy of state-of-
the-art method CDAN by 1.3%. The success of our method
could indicate that taking both domain alignment and deci-
sion boundaries into consideration is beneficial for UDA
models.

From Table 1 and 2, we can get several observations. (1)
ALIC achieves better performance than domain alignment
approaches (e.g. DAN, DANN, and JAN). This confirms
that taking boundaries between classes into consideration
is beneficial for the UDA model. (2) ALIC achieves better
accuracy than SE (+2.6%) in the challenging Office-Home
dataset. It proves that domain alignment can alleviate the
dependency of consistency-enforcing methods on additional
intensity augmentation.

E. ANALYSIS
1) ABLATION STUDY
To investigate how adversarial domain adaptation and inter-
polation consistency benefit the adaptation performance,
we remove the domain adversarial loss and the interpolation
consistency loss from the overall objective (9) respectively,
and these two experimental settings are denoted as ALIC (w/o
Ld ) and ALIC (w/o Lic). Table 3 shows that both losses are
important for our method and when one of them is removed,
the mean accuracy drops 17.2% and 6.3% respectively. We
further investigate the effect of the prediction average and
label sharpening. ALIC (w/o PA) uses a single target sample
prediction rather than the average prediction of two aug-
mented target samples and ALIC (w/o LS) removes the label
sharpening from our model (i.e. T = 1 in (5)). As shown
in Table 3, both prediction average and label sharpening are
useful for our method and when one of them is removed,
the mean accuracy drops 2.9% and 3.1% respectively. Lastly,
to verify the superiority of the interpolation consistency com-
pared to the random perturbations based-method [10], [11],

TABLE 3. Ablation experiments on the Digit datasets under different
settings.

we replace the interpolation consistency loss with the mean
square loss over the two augmented target batches differing
only with respect to the adopted augmentation directly and
this setting is denoted as ALIC (random). Table 3 depicts
that ALIC outperforms ALIC (random) by 3.5% on average,
validating the efficacy of the interpolation consistency for
moving the decision boundary to low-density regions.

2) FEATURE VISUALIZATION
We visualize the network activations from feature extractors
of DANN and ALIC on the adaptation task S → M by
t-SNE [46] in Fig.4. For features of DANN, two domains
are aligned together, however, there are still many ambiguous
features lying between different category clusters. In contrast,
for features of ALIC, the shared categories across domains
are well aligned while different categories are well distin-
guished, which leads to better adaptation accuracy. The supe-
rior results suggest that our ALIC is able to learn features that
are both domain invariant and target discriminative.

3) DISTRIBUTION DISCREPANCY
A-distance can be used to measure distribution discrepancy
[47]. The empirical A-distance is defined as dA = 2(1 −
2ε), where ε denotes the test error of a classifier trained to
discriminate the features of different domains. We exploit a
kernel SVM as the classifier. A smaller dA means a smaller
distribution discrepancy. Table. 4 demonstrates dA on task S
→ M with features of Source Only, DANN and our ALIC.
From this table, we can see that our ALIC significantly
reduces the A-distance compared with Source Only model,
implying that our method is helpful for the domain alignment.
However, when compared to DANN, ALIC shows smaller
improvement forA-distance, but boosts the performance by a
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FIGURE 4. Feature visualization for embedding of digit datasets for
adapting SVHN to MNIST using t-SNE algorithm. Source and target
samples are denoted as blue and red points in the first column. Each
class is encoded by a color in the second column. (a), (b) learned features
for DANN. (c), (d) learned features for our method ALIC.

TABLE 4. Distribution discrepancy of different approaches.

FIGURE 5. Test accuracy with the number of training epochs.

largemargin, which demonstrates that only taking the domain
alignment into consideration for UDA is far from enough.

4) CONVERGENCE PERFORMANCE
We demonstrate the convergence performances of ALIC
and DANN in Fig. 5. The target accuracy curves of the
two approaches on task M → U are plotted. ALIC
shows similar convergence rate with DANN but better
performance.

5) PARAMETER SENSITIVITY
We utilize the parameter K to determine λc which con-
trols the importance of enforcing interpolation consistency.

FIGURE 6. The relationship between accuracy and parameter K .

We conduct case studies to investigate the sensitivity of K by
choosing it in the range of {1, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50} on tasks M → U and U → M in Fig. 6. As the
value of K gets larger, the accuracy steadily increases
before decreasing. The accuracy is stable when K ∈

{5, 10, 15, 20, 25, 30, 35, 40}, indicating that our approach is
robust with a wide range of K.

V. CONCLUSION
We propose a novel method called ALIC for UDA which
considers both domain alignment and decision boundaries
between classes. The method unifies adversarial learning
based-method and consistency-enforcing method together to
learn feature representations that are both domain-invariant
and target discriminative. Specifically, we propose prediction
average and label sharpening to produce robust and informa-
tive pseudo labels for unlabeled target samples and introduce
interpolation consistency into the UDA task to refine decision
boundaries more efficiently. Experiments on several stan-
dard benchmark datasets verify the efficacy of our method.
Further, the analysis is provided in terms of ablation study,
feature visualization, distribution discrepancy, convergence
performance and parameter sensitivity for better insight about
the proposed method.
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