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ABSTRACT Cross-modality person re-identification between the visible domain and infrared domain is
important but extremely challenging for night-time surveillance. Besides the cross-modality discrepancies
caused by different camera spectrums, visible infrared person re-identification (VI-REID) still suffers from
much pedestrian misalignment as well as the variations caused by different camera viewpoints and various
pedestrian pose deformations like traditional person re-identification. In this paper, we propose a multi-
path adaptive pedestrian alignment network (MAPAN) to learn discriminative feature representations. The
multi-path network learns features directly from the data in an end-to-end manner and aligns the pedestrians
adaptively without any additional manual annotations. To alleviate the intra-modality discrepancies caused
by image misalignment, we combine the aligned visible image features with the original visible image
features and enhance the attention of the network towards pedestrians, resulting in significant improvements
in distinguishability of the learning features. Tomitigate the cross-modality discrepancies between the visible
domain and the infrared domain, the discriminative features of the two modalities are mapped to the same
feature embedding space, and the identity loss as well as triplet loss is incorporated as the overall loss.
Extensive experiments demonstrate the superior performance of proposed method compared to the state-of-
the-arts.

INDEX TERMS Person re-identification, pedestrian alignment, visible infrared cross-modality, triplet loss.

I. INTRODUCTION
Person Re-identification (known as ReID) is a technique in
the field of computer vision to identify a specific pedestrian
as (numerically) the same particularly as one encountered on
a previous occasion [1]. It is generally considered to be a
sub-problem of image retrieval and has a bright application
prospect in the field of intelligent monitoring. But there
are great challenges for ReID such as low resolution of the
camera and various pedestrian pose deformations. Pedestrian
images captured by different cameras may also cause enor-
mous discrepancies in the appearance of pedestrians due to
occlusion, various viewpoints, illumination variations, etc.

Despite the difficulties, traditional person re-identification
has made great progress in recent years with people’s
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unremitting efforts, including many supervised methods
[2]–[11], as well as unsupervised or weakly supervised meth-
ods [12]–[19]. Most of the existing methods are mainly based
on feature representation learning [2], [5], [7], [20] or met-
ric learning [3], [6], [10], [16]. Recently, the newly pro-
posed methods tend to work on body part-based features
and semantic information [8], [11], [17], [23], or attention
mechanisms [9], [21], [22] to achieve higher recognition
accuracy.

However, all the traditional person re-identification meth-
ods mentioned above only use visible images to match visible
images whereas the visible camera can not capture clear
images under poor illumination environments. Fortunately,
with the development of society, most of the cameras are
equipped with infrared camera function today. Infrared cam-
eras can acquire infrared image information of pedestrians
during day or night, which provides favorable conditions
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FIGURE 1. Some examples of visible images and infrared images in
dataset SYSU-MM01 (the first three rows) and RegDB (the 4-th row) for
VI-REID. Besides visual characteristic discrepancies caused by different
camera spectrums, we can observe that the visible pedestrian images
(particularly in dataset SYSU-MM01) are still more or less with occlusion,
excessive background, scale variations, etc. So the task of cross-modality
person re-identification between the visible domain and infrared domain
(VI-REID) is extremely challenging.

for visible infrared cross-modality person re-identification
(VI-REID). In recent years, a lot of researches [24]–[29]
on cross-modality person re-identification between the vis-
ible domain and infrared domain have been conducted. Cur-
rently, VI-REID is the same as most cross-modality retrieval
matching tasks. Different from the traditional person re-
identification, VI-REID mainly focuses on matching cross-
modality images. It usually uses visible(infrared) pedestrian
images to search for the infrared(visible) pedestrian images
across camera devices [26]. As shown in Fig.1, the chal-
lenges it faces are not only the problems of traditional person
re-identification such as occlusion, illuminations variations
and scale deviations, but also the problem of the discrepan-
cies between the heterogeneous data [25]. The three-channel
information of visible images is different from the single-
channel information of infrared images in information capac-
ity and representation. Different resolutions and lighting
conditions may have different effects on the two types of
images. For example, applying the same lighting condition
to both types of images may increase the contrast of visible
images, whereas for infrared images it may be too bright to
be clear. Somework [27]–[29] attempts to improve pedestrian
matching accuracy by reducing the cross-modality discrepan-
cies of the heterogeneous data. In fact, there are also lots of
intra-modality discrepancies caused by image misalignment,
especially inside the visible images. As shown in Fig.1 and
Fig.2, there are plenty of images with excessive backgrounds,
occluded images, incomplete images in the cross-modality
dataset, particularly in SYSU-MM01 [25]. These image mis-
alignment phenomena are usually caused by unsatisfactory
camera capturing angles and image post-processing errors
during dataset acquisition.

Inspired by the space transformer network [30], we propose
amulti-path adaptive pedestrian alignment network(MAPAN)

FIGURE 2. Image misalignment in dataset SYSU-MM01. We mainly show
the image misalignment in SYSU-MM01 because there are fewer
misalignment pedestrians in the RegDB dataset. (a,b) are incomplete
pedestrian images; (c,d) are pedestrian images with excessive
background; (e,f) are occluded pedestrian images. (g-l) are the
corresponding visible pedestrian images aligned by the proposed MAPAN.
We can notice that the pedestrian alignment is not perfect and obvious,
but it more or less reduces the scale variations and position deviations.

strategy to deal with the intra-modality discrepancies caused
by image misalignment. At the same time, in order to mit-
igate the enormous differences between the heterogeneous
data, the visible image features and infrared image features
extracted by ResNet50 are mapped to the same feature
embedding space, and the identity loss as well as triplet loss
is incorporated as the overall loss. The main contributions are
summarized as follows:

• We propose an end-to-end multi-path adaptive pedes-
trian alignment network(MAPAN) strategy to deal with
the intra-modality discrepancies in misaligned images
caused by the acquisition of the cross-modality dataset
for the first time.

• We map the visible image features and infrared image
features to the same feature embedding space, and com-
bine the identity loss and triplet loss as the overall
loss, alleviating the discrepancies between heteroge-
neous data effectively, and achieve superior experimen-
tal performance compared to the state-of-the-arts.

The rest of this paper is organized as follows: We describe
the related work in the next section. The proposed method
based on multi-path adaptive pedestrian alignment network
is presented in Section III. Section IV includes experiments
and analysis and section V is conclusion.

II. RELATED WORK
A detailed overview about traditional person re-identification
in visible domain can be found in [1], [31], and the overview
of other asymmetric cross-modality person re-identifications
is introduced in [32], [33] in detail. Here we mainly discuss
the visible infrared cross-modality person re-identification.

Recently, [24] proposed a person re-identification method
based on the combination of the pedestrian visible images
and infrared images captured by a visible light camera and
a infrared camera respectively, and disclosed the pedestrian
dataset RegDB containing both visible images and infrared
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FIGURE 3. Illustrations of proposed MAPAN. It comprises two main components: multi-path network for feature extraction and fully connected layers for
feature embedding. Specifically, the multi-path network comprises three branches: infrared branch, visible base branch and visible affine transformation
branch.

images. Because the additional modality information cap-
tured by infrared camera was integrated with standard RGB
visible images, the person re-identification performance was
improved efficiently. It was the first time that infrared images
had been adopted for person re-identification.

Subsequently, [25] raised the visible infrared cross-
modality re-identification(VI-REID) problem for the first
time and contributed a large scale cross-modality pedestrian
dataset SYSU-MM01 for VI-REID, and a deep zero-padding
method was proposed that utilizes a one-stream network to
capture information for a specific domain. For VI-REID,
the lack of authentication information to re-identify the same
person between visible domain and infrared domain, and
the difficulty to learn a robust representation for such a
large-scale cross-modality person retrieval are the two main
challenges. [28] proposed a novel cross-modality generative
adversarial network (termed as cmGAN) to tackle the chal-
lenges and achieved superior performance.

Existing VI-REID methods mainly focus on the cross-
modality discrepancies caused by the heterogeneous data,
whereas VI-REID also suffers from the intra-modality dis-
crepancies caused by the different camera viewpoints, pedes-
trian pose variations and deformations, making the mixed
discrepancies more serious. Therefore, [27] proposed a hier-
archical cross-modality person matching model by opti-
mizing the modality-shared and modality-specific metrics
learning jointly. Reference [26] proposed a dual-path net-
work combining the identity loss and a novel bi-directional
dual-constrained top-ranking loss to learn discriminative

representations of visible domain and infrared domain, and
the proposed dual-path network with a novel loss constrained
the cross-modality and intra-modality discrepancies simul-
taneously and mitigated cross-modality discrepancies effec-
tively. Reference [29] put forward that previous VI-REID
methods usually only considered the feature-level constraints
to optimize the model. However it was difficult to handle the
mixed discrepancies mentioned above without image-level
constraints. In [29], a novel dual level discrepancy reduction
learning scheme was proposed to handle the cross-modality
and intra-modality discrepancies by utilizing image-level and
feature-level constraints separately.

None of the above methods focus on the problem of image
misalignment inside the dataset. As shown in Fig.1 and Fig.2,
there are plenty of visible pedestrian images with exces-
sive background, occluded images and incomplete pedes-
trian images in the large scale dataset SYSU-MM01. In the
RegDB dataset, image misalignment is relatively less serious.
In order to achieve pedestrian alignment and enhance atten-
tion of the network towards pedestrians, we design a multi-
path learning framework with adaptive affine transformation
structure without any human intervention, and an identity
loss and a batch hardest triplet loss are incorporated to the
framework to handle large cross-modality and intra-modality
discrepancies.

III. PROPOSED METHOD
This paper proposes a multi-path end-to-end feature learning
framework MAPAN for VI-REID as shown in Fig.3. The
framework learns the feature representations and distance
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metrics in an end-to-end manner while preserving high dis-
criminability. It comprises two main components: multi-path
network for feature extraction and fully connected layers
for feature embedding. Specifically, the multi-path network
comprises three branches: the visible affine transformation
branch, visible base branch and infrared branch, all of them
do not share weights. The visible base branch is identical
to the infrared branch structure, and both of them use the
residual network ResNet-50 [34], including 5 down-sampled
blocks and an average pooling layer. The visible affine trans-
formation branch consists of a grid network, a bilinear sam-
pler and a residual network ResNet-50. As mentioned above,
there are more misalignment phenomena in the input visible
images, and in order to obtain more robust visible features by
affine transformation correction, we fuse the feature of visible
base branch and the feature of affine transformation branch by
weighted addition.

A. INFRARED BRANCH AND VISIBLE BASE BRANCH
Both the infrared branch and the visible branch inputs are
three-channel infrared images and visible images with a
height and width of 288× 144, respectively. We assume that
X (Z) denote a batch of input visible(infrared) images. In the
infrared branch, the features extracted for the infrared images
are represented by φI (Z), and the features extracted by the
visible base branch and by the visible affine transformation
branch are represented by φV (X ) and φ′V (X

′) respectively,
where X ′ denote transformed images generated by the affine
transformation of X in the visible affine transformation
branch.

B. VISIBLE AFFINE TRANSFORMATION BRANCH
The visible affine transformation branch consists of a bilinear
sampler, a grid network, and a residual network ResNet50
[34] with the same structure as visible base branch. As shown
in Fig.3, the bilinear sampler takes the batch of input visible
images X as inputs. The grid network contains an average
pooling layer and two fully connected layers, and takes the
fifth residual block features extracted from the visible base
branch as inputs.

The high-level feature map contains the low-level feature
map of the original image and reflects the local pattern infor-
mation [35]–[37]. As shown in Fig.5, it is obvious that the
visible base branch’s high responses and attentions are mostly
concentrated on the pedestrian bodies, no matter whether the
images are aligned or not. Therefore, we can feed the feature
map of the fifth residual block into the grid network to regress
a set of 6-dimensional transformation parameterAθ , which is
used to guide the affine transformation to align the pedestri-
ans. Specifically, the learned transformation parameter Aθ is
used to generate an image grid for the bilinear sampler, and
the point-by-point conversion process from the target images
to the source images is formulated as:(

xsk
ysk

)
= Aθ

 x tk
ytk
1

 = [ θ11 θ12 θ13
θ21 θ22 θ23

] x tk
ytk
1

 (1)

where (x tk , y
t
k ) is the k-th target coordinate in the regular grid

of the transformed images, (xsk , y
s
k ) is the source coordinate

of the sampled point in the input images, andAθ is the affine
transformationmatrix, where θ11, θ12, θ21 and θ22mainly con-
trol the size of the transformed images and rotation changes
while θ13 and θ23 control the offset of the transformed images.
Note that the coordinate mapping is mapped from the target
images to the input images. Since the transformation matrix
Aθ contains continuous differentiable decimals and the target
coordinate (x tk , y

t
k ) is discrete, the source coordinate (x

s
k , y

s
k )

will be continuous. So when we find the correspondence
between the target coordinates and the source coordinates by
Equation (1), a certain sampling strategy is required to gener-
ate the transformed images. Here, we use the frequently-used
bilinear sampling, then the correspondence between the input
images X and the output images X ′ is formulated as:

X ′ij=
H∑
n=1

W∑
m=1

Xnm [1−
∣∣xsk−m∣∣ ]+ [1−

∣∣ysk−n∣∣ ]+
i ∈ [1 . . . ,H] , j ∈ [1 . . . ,W] , k ∈ [1 . . . ,WH]

(2)

where X ′ij represents the pixel value of the coordinate (i, j)
position in each channel in the target images, Xnm represents
the pixel value of each channel in the source images at
coordinate (n,m), H and W denote the height and width of
the input images respectively, and [ζ ]+ denotes max (ζ, 0).
The bilinear sampling is continuous and steerable, so the
above equation is steerable and allows loss gradient back
propagation. Its partial derivatives with respect to Xnm and
xsk are:

∂X ′ij
∂Xnm

=

H∑
n=1

W∑
m=1

[
1−

∣∣xsk − m∣∣ ]+ [
1−

∣∣ysk − n∣∣ ]+ (3)

∂X ′ij
∂xsk
=

H∑
n=1

W∑
m=1


0

∣∣xsk − m∣∣ ≥ 1
Xnm [1−

∣∣ysk − n∣∣ ]+, xsk < m
−Xnm [1−

∣∣ysk − n∣∣ ]+, xsk > m
(4)

Obviously,
∂X ′ij
∂ysk

is similar to
∂X ′ij
∂xsk

. After the above
affine transformation generating X ′, the features φ′V (X

′) are
extracted by the residual network of the visible affine trans-
formation branch.

C. THE FEATURE EMBEDDING
Through the above three branches, we can get the afore-
mentioned features φI (Z), φV (X ), φ′V (X

′). Virtually, both
φV (X ) and φ′V (X

′) are features extracted from X , in order
to make full use of these two features, we choose to
fuse φ′V (X

′) and φV (X ) by weighted addition, that is,
λφV (X )+ (1− λ)φ′V (X

′) are the final features extracted
from X , where λ is a predefined trade-off parameter rang-
ing from 0 to 1 to balance the contributions of the two
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features. We will later demonstrate the complementarity
between φV (X ) and φ′V (X

′) through experiments so as to
illustrate the rationality of weighted fusion of these two
features. Thus, we will only consider the distance metric
of the features φI (Z) of the input infrared images and the
fused features λφV (X )+ (1− λ)φ′V (X

′) of the input visible
images. Since our image retrieval task essentially matches the
visible images with the infrared images, it is necessary to map
the features of the visible images and the infrared images to
the same feature space to reduce cross-modality differences
between the infrared images and the visible images. So we
map φI (Z) and λφV (X )+ (1− λ)φ′V (X

′) to the same fea-
ture space with the function fθ (·) parameterized by θ , which is
exactly a linear transformation, to output embedding features
fθ (φI (Z)) and fθ (λφV (X )+ (1− λ)φ′V (X

′)). For clarity, We
simply refer to fθ (φI (Z) and fθ (λφV (X )+ (1− λ)φ′V (X

′))
as fθ (Z) and fθ (X ).

D. THE OVERALL LOSS
We use the conventional cross entropy loss to predict pedes-
trian identities. As described in the experiment section IV, our
sampling strategy is that in each batch, for a dataset contain-
ingN identities, P identities are randomly selected first, and
then for each identity, we randomly acquire K visible pedes-
trian images andK infrared pedestrian images, thus resulting
in a batch of 2 × P × K images. The feature embedding
fully connected layer fθ (·) outputs 512-dimensional feature
tensors fθ (Z) and fθ (X ). The next fully connected layer fβ (·)
parameterized by β generatesN -dimensional feature tensors
fβ (fθ (Z)) and fβ (fθ (X )). For convenience, we use X i

j to rep-
resent the j-th image of i-th person(with an identity of i) in

the batch X , the same is true for Z . Assuming that
∧
p
i,j

x =

softmax(fβ (fθ (X i
j ))) and

∧
p
i,j

z = softmax(fβ (fθ (Z i
j ))), then

∧
p
i,j

x

and
∧
p
i,j

z represent the identity predicted probabilities of input

pedestrians X i
j and Z i

j respectively. For example,
∧
p
i,j

x (k) rep-
resents the predicted probability that the input visible image
X i
j has an identity of k . Given the true label pi,jx and pi,jz for

X i
j and Z i

j with target identity of i, which means pi,jx (i) =

1, pi,jx (k) = 0 ∀k 6= i and pi,jz (i) = 1, pi,jz (k) = 0 ∀k 6= i. Our
batch identity loss is defined as follows:

`identity(θ;X ,Z) = −
1

PKN

P∑
i=1

K∑
j=1

(
N∑
k=1

pi,jx (k)log(
∧
p
i,j

z (k))

+

N∑
k=1

pi,jz (k)log(
∧
p
i,j

z (k))) (5)

The identity loss `identity(θ;X ,Z) only considers the iden-
tity of each input sample, and does not emphasize whether
the input X and Z belong to the same identity or not. To fur-
ther mitigate cross-modality variations between infrared
images and visible images, we consider designing a batch
hardest triplet loss [38] to optimize the metric embedding

function fθ (·). For each infrared anchor sample Z i
a in the

batch, the core idea for computing triplet loss `Itriplet (θ;X ,Z)
is that, we can select the hardest positive visible sample X i

p
with the same identity as Z i

a, whose embedding feature is
furthest from Z i

a in the feature space within the batch, and
the hardest negative visible sample X j

n(j 6= i) with different
identity from Z i

a, whose embedding feature is nearest from
Z i
a in the feature space within the batch. And it is the same

for each visible anchor sample X i
a in the batch to compute

`Vtriplet (θ;X ,Z). `Itriplet (θ;X ,Z) and `Vtriplet (θ;X ,Z) are
formulated as follows respectively:

`Itriplet (θ;X ,Z)

=

P∑
i=1

K∑
a=1

[ max
p=1,2...K

D(fθ (Z i
a),

fθ (X i
p))− min

j=1...P
n=1...K
j6=i

D(fθ (Z i
a), fθ (X j

n))+ ξ ]+ (6)

`Vtriplet (θ;X ,Z)

=

P∑
i=1

K∑
a=1

[ max
p=1,2...K

D(fθ (X i
a),

fθ (Z i
p))− min

j=1...P
n=1...K
j6=i

D(fθ (X i
a), fθ (Z j

n))+ ξ ]+ (7)

where ξ denotes a predefined positive threshold to control
the minimum distance between positive and negative sample
features. D(·) represents the euclidean distance metric. Since
we consider the cross-modality triplet loss `Itriplet (θ;X ,Z) as
well as `Vtriplet (θ;X ,Z) has equal effects on the optimization
of the network, our overall loss `overall(θ;X ,Z) is defined
as:

`overall(θ;X ,Z) = β`identity(θ;X ,Z)

+α(`Itriplet (θ;X ,Z)+`Vtriplet (θ;X ,Z))

(8)

where β and α are predefined trade-off parameters to balance
the contributions of the identity loss and triplet loss.

IV. EXPERIMENTS
A. DATASETS AND SETTINGS
For VI-REID, there are two publicly available datasets till
now: SYSU-MM01 [25] and RegDB [24]. They are all
adopted for evaluation.

SYSU-MM01 [25] is a large-scale near-infrared(not ther-
mal) cross-modality dataset which contains both visible
images and infrared images. It’s collected by four visi-
ble cameras(camera 1, 2, 4, and 5) and two infrared cam-
eras(camera 3 and 6). The dataset is very challenging because
some cameras are located in outdoor environments, and oth-
ers are not. This dataset contains 491 different persons, and
each person was captured by at least one visible camera and
one infrared camera. We adopt the challenging single-shot
all-search mode as evaluation protocol mentioned in [25].
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There are 395 persons with 22258 visible images and
11909 infrared images in training set. For testing, there
are 96 persons with 3803 infrared images for query and
301 pedestrian visible images are randomly selected as
gallery set.

RegDB [24] is a far-infrared (thermal) cross-modality
dataset, which is collaboratively collected by a visible camera
and a infrared camera. It contains 412 persons, and each
person has 10 visible images captured by the visible camera
and 10 infrared images captured by the infrared camera.
We adopt the valuation protocol mentioned in [27], where
the RegDB dataset is randomly divided into two halves for
training and testing respectively. For testing, the gallery set
are the images from one modality while the query set are the
images from the other modality.

In our experiments, the tests on the above two datasets were
both repeated 10 trials to obtain statistically stable results.

B. IMPLEMENTATION DETAILS
1) EVALUATION METRICS
All experiments were evaluated by two commonly used eval-
uation metrics (the standard cumulated matching characteris-
tics (CMC) and mean average precision (mAP)) with a single
query setup.

2) BATCH SAMPLING STRATEGY
Since our overall loss combined with cross entropy loss and
batch hardest triplet loss is slightly different from general
person re-identifications, it’s necessary to introduce the batch
sampling strategy. As mentioned before, Specifically, P per-
son identities are firstly randomly selected from N person
identities for each iteration, where N is the total number of
person identities. Then we randomly select K visible images
andK infrared images of the selected identity to construct the
batch, in which totally 2×P×K images are fed into themulti-
path network for training. To calculate the visible infrared
batch hardest triplet loss, we select P ×K infrared images as
anchors and corresponding hardest positive and hardest neg-
ative visible samples within the batch. Although the hardest
samples are sampled within small subset of dataset at each
iteration, the global optimum can be achieved after enough
training iterations due to the mechanism of random sampling.

3) EXPERIMENTAL SETTINGS
We implement our algorithm with Pytorch framework and
use ResNet-50 [34] as our pre-trained model. The training
period epoch needs to be at least 60. Here we set both P and
K to 6, thus the batch-size of single ResNet-50 [34] branch
is 6 × 6, and so the input batch of the multi-branch network
MAPAN contains 2 × 6 × 6 images: 36 visible images and
36 infrared images. The sizes of the two fully connected
layers for feature embedding are set as 512 and the total
number of person identities N . The sizes of the two fully
connected layers in grid network are set as 64 and 6. The
learning rate is initially set to 0.01 for the fully connected

feature embedding layers and 0.001 for the rest of MAPAN
except for the grid network. Specifically, for the regression of
the transformation parameter Aθ , the network is inclined to
be stuck in a local minimum at the early iterations, so we use a
relatively small learning rate 2×10−5 to stabilize the learning
of parameter Aθ in the grid network. In addition,we initially
set θ11 and θ22 to 0.85, and set θ12, θ13, θ21, θ23 to zero, which
makes MAPAN’s attention tend to concentrate on the center
part of the visible images at early iterations, thus facilitating
the network convergence, reducing time consumption and
enhancing the MAPAN’s attention towards pedestrian body
areas. All of the learning rates are attenuated by 0.1 times
for every 30 epochs except the learning rate for learning
parameter Aθ in grid network.
For the optimization of network parameters during train-

ing, we use the most widely used stochastic gradient
descent(SGD) with a nesterov momentum fixed to 0.9 in
general machine learning to achieve faster back propagation
and smoother convergence. Followed by [38], the predefined
positive threshold ξ for the triplet loss is set as ξ = 1.2. Due
to the large difference in data distribution between the SYSU-
MM01 dataset and the RegDB dataset, the overall loss we use
for training on the two datasets is parameterized by different
parameters. For the SYSU-MM01 dataset, we set the ratio of
identity loss and triplet loss to 1:0.05, which means to set the
trade-off parameters as β = 1, α = 0.05. For the RegDB
dataset, we set the ratio of identity loss and triplet loss to 1:1,
which means to set the trade-off parameters as β = 1, α = 1.

C. EXPERIMENT ANALYSIS
First, the input data is sampled according to the batch sam-
pling strategy mentioned above, and resized to 288 × 144.
Then we pad the input images on all sides with 10-pixel width
zero values, resizing the size to 308×164. And after randomly
cropped to 288×144, the sampled visible images and infrared
images are horizontally flipped randomly with a probabil-
ity of 0.5 and fed to the multi-path network for training,
respectively. The visible pedestrian images are processed by
visible base branch and visible affine transformation branch
to output discriminative features. Then the visible features
and the infrared features are fed to feature embedding layers
and the loss gradients are back propagated. The proposed
method not only effectively alleviates the misalignment prob-
lem of visible images, but also reduces the over-fitting of the
network, and improves the robustness to some extent.

1) FEATURE FUSION STRATEGY
The fifth residual block features extracted by the visible base
branch contain the position information of the pedestrian in
the original images to some extent, as shown in Fig. 5. The
grid network takes the fifth residual block features as input
and outputs the affine transformation parameterAθ . And then
the input visible images X are affinely transformed with Aθ

to generate X ′. Finally the transformed visible images X ′ are
fed to the residual network in the visible affine transformation
branch to output the features φ′V (X

′).
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FIGURE 4. Performance of MAPAN with different λ in method A for
dataset SYSU-MM01 and RegDB.

TABLE 1. Comparison of the fusion methods. Re-identification rates (%)
at rank-r and mAP (%).

Both the φV (X ) extracted by the visible base branch
and the φ′V (X

′) extracted by the visible affine transform
branch are features of X . There are mainly two ways to
fuse φV (X ) and φ′V (X ) to obtain the final features f of the
visible pedestrian images. One is feature weighted addition
fusion: f = λφV (X )+ (1− λ)φ′V (X

′), and the other is the
way of feature concatenating: f = [φV (X ), φ′V (X

′)], where
[·] denotes tensor concatenating. For these two fusion meth-
ods, we have done a lot of experimental explorations. Note
that in order to facilitate the performance of themodel, we use
identity loss combined with triplet loss as our overall loss
here. Table 1 is part of our experimental results, in which
the method A represents feature weighted fusion and set the
trade-off parameters as λ = 0.9, and the method B is the
feature concatenating method, and the method C(D) is to
directly use f = φ(X ) or f = φ′(X ′) as the final extraction
features of visible images. It indicates that the method A,
regardless of rank-1, rank-5 or mAP, outperforms the feature
concatenating method B, and also outperforms the method C
and D. Therefore, we deem that the feature weighted addition
method A is more suitable for our task here. The following
line graph Fig.4 are the results of our further explorations of
the best value of λ. It can be observed that when λ = 0.9,
rank-1 and map gets the maximum value almost simultane-
ously. In theory, we speculate that since φ(X ) and φ′(X ′) are
essentially the same type of features, it is reasonable to obtain
new fusion features in a way of weighted addition, and the
feature concatenating in method B may achieve better results
for essentially different features.

In addition, for the λ in method A, it denotes the pro-
portion of the original visible features. Given a relatively

TABLE 2. Ablation study on network structure. Re-identification rates (%)
at rank-r and mAP (%).

small λ, the feature extractions of the visible original images
will be supported by insufficient supervised information,
resulting in some deviations of the transformation param-
eter Aθ in regression. The extracted features φ′V (X

′) will
also be affected. Therefore, λ should be a relatively large
value ranging from 0 to 1 such that the original features
account for a large proportion, making the extracted trans-
formation parameter Aθ more reliable. As demonstrated
in Table 1, the fused features λφV (X )+ (1− λ)φ′V (X

′) out-
perform either φV (X ) or φ′V (X

′), illustrating the certain com-
plementarity between the two features.

2) ABLATION STUDY ON NETWORK STRUCTURE
As demonstrated in Table 2 that the new fusion features
obtained after affine transformation correction for visible
images(abbreviated as v-AT ) are more discriminative, and
finally rank-1, rank-5, rank-10 and mAP are significantly
better than baseline on the SYSU-MM01 dataset and RegDB
dataset at least 3.2% and 2.4%, respectively.

When the affine transformation correction is only per-
formed on the infrared images(abbreviated as t-AT ), but
the performance is not improved obviously. In addition,
when the affine transformation correction is performed on
the visible images and the infrared images at the same
time(referred to as v-AT + t-AT ), compared with only
performing the affine transformation correction on visible
images(abbreviated as v-AT ), the experimental results are
almost the same.We speculate themain reason is that whether
the SYSU-MM01 dataset or the RegDB dataset, there are
mainly some image misalignment phenomena in the visible
images, whereas the infrared images are basically aligned.
For dataset SYSU-MM01, there are even visible images
with severe deviations likes Fig. 2(c). Therefore, we finally
decide to only perform affine transformation correction on
the visible images to reduce the number of overall network
parameters, and integrate the triplet loss and the identity loss
as the overall loss (abbreviated as v-AT + triplet).

D. COMPARISON WITH THE STATE-OF-THE-ARTS
In this subsection, we select some state-of-the-art visible
infrared cross-modality person re-identification(VI-REID)
methods for comparison to demonstrate the superior
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TABLE 3. Comparison with other cross-modality matching methods on
SYSU-MM01 data set. Re-identification rates (%) at rank-r and mAP (%).

TABLE 4. Comparison with other cross-modality matching methods on
RegDB data set. Re-identification rates (%) at rank-r and mAP (%).

performance of the proposed method, including Zero-
Padding [25], HCML [27],TONE [27], BCTR [26], BDTR
[26], cmGAN [28] and D2RL [29]. In addition, several other
competitive methods are also included for the comparisons.
The additional methods contain four feature learning-based
methods: HOG [39], LOMO [5], one-stream and two-stream
networks [25] and two matching model learning methods:
MLAPG [40], GSM [41]. Most of the comparison results are
originated from [27] on the RegDB dataset and [25] on the
SYSU-MM01 dataset.

The results shown in Table 3 and Table 4 demonstrate
that the proposed end-to-end learning framework(MAPAN)
outperforms most existing state-of-the-art methods on the
two datasets. On the SYSU-MM01 dataset, Compared to
the dual-path network with a novel bi-directional dual-
constrained top-ranking loss(BDTR [26]) and the two-stage
feature learning andmetric learningmethod(TONE+HCML
[27]), we consistently outperform them with almost 15%
for rank-1 matching rate and 10% for mAP. For the latest
approaches the novel cross-modality generative adversarial
network (abbreviated as cmGAN [28]) and the novel Dual-
level Discrepancy Reduction Learning (D2RL [29]) scheme,
we also outperform them with at least 1% for both rank-1
matching rate and mAP. Specifically, we achieve rank-1 =
29.80% and mAP = 30.45% on the SYSU-MM01 dataset.
For the RegDB dataset, its size is smaller than the

SYSU-MM01 dataset, and there is relatively less image mis-
alignment in the RegDB dataset. Since the proposed method

FIGURE 5. The visualization of the visible base branch’s attention
towards the input visible pedestrians. We can observe that the attention
of the branch’s high responses are mostly concentrated on the
pedestrians’ bodies, although the input images are more or less with
occlusion, excessive background, scale variations, etc. So we can use the
high responses Res5 block features to regress the affine transformation
parameter Aθ . We achieve this visualization by Grad-CAM [37].

(MAPAN) mainly focuses on the image misalignment of
large-scale datasets, it has relatively limited performance
on the small-scale dataset RegDB, of which performance is
not as good as those on the dataset SYSU-MM01, but is
still superior to most mainstream algorithms such as TONE,
HCML, etc. Specifically, we achieve rank-1 = 26.60% and
mAP = 26.37% on the RegDB dataset.

E. EXPERIMENTAL RESULT VISUALIZATION
To visualize the aligned visible images, we extract the affine
transformation parameterAθ and then apply the affine trans-
formation to the visible images of SYSU-MM01 dataset.
As shown in Fig.2, Fig.2(a) and Fig.2(b) are incomplete
images and MAPAN tends to zoom out and rotate the images
slightly. Fig.2(c), Fig.2(d) are excessive background images
and Fig.2(e), Fig.2(f) are occluded images. For the two kinds
of misaligned images, MAPAN tends to enlarge and translate
the images, making its attention more focused on the pedes-
trian area. We observe that MAPAN can not perform align-
ment perfectly as human does, but it more or less reduces the
scale variations and position deviations of the visible images
and enhances the network attention towards pedestrian bodies
as shown in Fig.6, so it improves the performance of VI-REID
eventually.

Fig.7 shows some sample retrieval results on the
dataset SYSU-MM01. The testing set contains 96 people,
3803 infrared images for query, and 301 randomly visible
images are selected as the gallery set. We use the most
challenging single-shot all-search mode mentioned in [25].
The first column of each row is the input query infrared
image. Each row represents the retrieval result of a query.
The top1-10 of the retrieval results are sorted from left to right
according to similarity scores. The green and red superscripts
indicate true positives and false positives, respectively. It can
be observed from the figure that the pedestrians with the same
identity as the query images can be correctly retrieved to some
extent.
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FIGURE 6. Attention maps of baseline and MAPAN towards pedestrians.
We can observe that the attentions of the MAPAN are more focused on
the pedestrians’ bodies whereas the baseline is more inclined to be
distracted. The proposed MAPAN not only achieves image alignment, but
also enhances the network attention towards pedestrian body areas, and
so improves recognition accuracy efficiently. We achieve this visualization
by Grad-CAM [37].

FIGURE 7. Some sample retrieval results on dataset SYSU-MM01. The first
column are the input query infrared images, and the retrieved visible
images are sorted according to the similarity score (cosine distance) from
left to right. The green and red superscripts indicate true positives and
false positives, respectively. It shows that the pedestrians with the same
identity as the query images can be correctly retrieved to some extent.

V. CONCLUSION
In this paper, we propose a multi-path adaptive pedestrian
alignment network (MAPAN) to learn discriminative fea-
ture representations. The multi-path network learns fea-
tures directly from the input data and adaptively aligns the

pedestrians without additional manual annotations. We alle-
viate the intra-modality discrepancies caused by image mis-
alignment and enhance attention of the network towards
pedestrians efficiently by combining the features of the adap-
tively aligned visible images with the features of the original
visible images. To alleviate the cross-modality discrepan-
cies between the visible domain and the infrared domain,
the discriminative features of the two modalities are mapped
to the same feature embedding space, and we also design a
triplet loss to reduce the discrepancies, which is combined
with identity loss as the overall loss. Extensive experiments
illustrate that the proposed method outperforms the state-of-
the-arts. In the future, we will continue to investigate the
internal mechanism of adaptive pedestrian alignment network
for VI-REID and consider applying more constraints to the
algorithm to further improve the performance.
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