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ARTIFICIAL INTELLIGENCE IN MEDICINE

INTRODUCTION

rtificial intelligence (Al) is poised to transform medi-

cal practice. Al has been studied in several areas of

healthcare and medical practice, including precision
medicine, population health, and natural language processing
(1). The application of Al to visual tasks, known as computer
vision, has generated significant interest within the medical
community. As such, Al is believed to be relevant to visually-
orientated specialties such as radiology, pathology, ophthal-
mology, and dermatology. The fuel behind AI’s development
is the availability of large digital datasets; deep learning algo-
rithms use these datasets to train themselves to perform a spe-
cific task, such as identifying a lesion in an image. In this
article, we review key medical Al studies in the visually-
orientated fields with the aim of illuminating the future land-
scape of Al-enhanced healthcare.

APPLICATIONS IN MEDICAL IMAGING
Plain Film Radiography

The chest radiograph is the most common imaging examina-
tion worldwide, with 2 billion performed per year (2). The
popularity of chest radiography is explained by its widespread
availability around the world and its utility in the diagnosis of
a range of conditions. Furthermore, the availability of labeled
images, the currency of Al research, is greatest with chest
radiographs. For these reasons, chest radiography has garnered
the greatest interest amongst Al researchers and continues to
be an active research area.

It is fitting to begin the discussion with the data that under-
pins Al. Among the largest medical Al datasets to date is known
as ChestX-ray14. The dataset was released by Wang et al (3) of
the National Institutes of Health and consists of 112,120 radio-
graphs from 30,805 unique patients. The images were labeled
with 14 conditions, such as emphysema, pulmonary nodules
and pneumonia, by four radiologists (three generalists and one
thoracic subspecialist). The ground truth was established by a
majority vote of the four radiologists. The dataset, originally
known as ChestX-ray8, was publicly released in 2017 with the
goal of addressing the dearth of labeled data in medical Al
research. The dataset is available to use for free, and is still
amongst the largest publicly available datasets in the world.

However, ChestX-ray14 has its weaknesses as a dataset,
which have been well described in online resources (4,5). For
example, diagnostic uncertainty permeates the dataset; practic-
ing radiologists will recognize that there is a level of uncertainty
with many radiological diagnoses, and this is evident from the
ChestX-ray14 dataset. Wang et al. (3) obtained the ground
truth by text-mining through radiology reports. Frequently,
these reports contained multiple possible diagnoses, likely
because the true diagnosis was radiologically uncertain. Addi-
tionally, many of the labels overlap with each other radiologi-
cally; for instance, pneumonia can have a similar appearance to
atelectasis. Furthermore, there is no definitive evidence affirm-
ing whether the radiological diagnosis was correct.

There are further weaknesses with ChestX-ray14, particu-
larly relating to the establishment of the ground truth. Whilst
a more detailed discussion of these weaknesses is outside of
the scope of this article, we refer the reader to the following
resources for further information on this topic (4,5).

ChestX-ray14 was used in a study by Rajpurkar et al. (6) to
train an Al detection model called CheXNet. The model was
tested on 420 new radiographs, achieving an area under the
receiver-operator curve (AUC) of 0.7632 in the first version of
the article for the diagnosis of pneumonia, progressing to 0.7680
in the third and most recent version of the model. Furthermore,
when considering the full range of 14 diagnoses available in the
dataset, CheXNet outperformed previous algorithms that had
been derived from the same dataset. Intriguingly, CheXNet’s
performance mirrored human weaknesses in many respects; the
algorithm had much greater accuracy in detecting hiatal hernias,
a radiographically distinctive diagnosis, compared to pulmonary
infiltration, which is frequently ill-defined.

The latest innovation to ChestX-ray14 and CheXNet is the
release of Chester in 2019: a web-delivered disease prediction
system (7). The goal of Chester is to deliver the Al model CheX-
Net, which was trained on ChestX-ray14, to a global userbase.
With Chester, the CheXNet code is delivered via a web address
to any device connected to the internet, and data processing
occurs locally. The idea behind Chester is that a web-delivered
system allows for wider distribution of the algorithm, but local
processing ensures that patient confidentiality is preserved.
Democratizing Al in this fashion may aid in increasing its avail-
ability in resource-poor nations.

Moving to Al studies on other datasets, Lakhani and Sun-
daram investigated the efficacy of a deep learning neural net-
work in detecting features of tuberculosis on chest radiographs
(8). After testing multiple deep neural networks, the best-
performing classifier had an AUC of 0.99. Additionally, for 13
of the 150 images in the test set where the findings were discor-
dant between the neural networks, the images were referred to
a cardiothoracic radiologist, who correctly identified 100% of
cases. Therefore, using a collaborative approach between
humans and machines delivered a sensitivity of 97.3% and spec-
ificity of 100%. The authors suggested that such technology
could be used in developing nations with strained resources.

Since 2017, the Radiological Society of North America
(RSNA) has led the organization of the Machine Learning
Challenge, where research teams from across the world are
encouraged to compete to develop the best Al systems for
clinical tasks. For the first iteration of the competition, the
RSNA challenged researchers to develop deep learning algo-
rithms for pediatric bone age quantification using hand radio-
graphs  (9),
radiologists. The clinical task was inspired by a paper authored

a common task undertaken by pediatric
by Larson et al. (10), who developed a deep learning neural
network capable of assessing bone age with equivalent accu-
racy to practicing radiologists. The mean difference in age
estimation between the Al network and the human observers
was 0 years, with a mean absolute difference of 0.50 years.
Ultimately, this algorithm was beaten by all entrants in the
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competition, with entries bearing a mean absolute difference
range of 4.265 to 4.907 months on the same dataset of
12,611 hand radiographs; the top three performers were sepa-
rated by 3.5 days (11).

In response to the growing interest in Al applications in
radiology, the RSNA established Radiology: Attificial Intelli-
gence. In the journal’s first issue, Thian et al. (12) made the
front cover for their work on fracture detection. The authors
used ResNet, a pretrained deep learning model, to devise an
Al system for ulnar and radial wrist fracture detection. The
authors used 7,356 wrist radiograph studies, of which 90%
were used for training and 10% used for validation, to
develop the model. The images were annotated by radiolog-
ists placing bounding boxes around suspected fractures.
When the model was trialed on 524 consecutive emergency
department wrist radiographs (with two radiologists as a refer-
ence standard), the model correctly localized 91.2% of radial
fractures and 96.3% of ulnar fractures. Per radiographic study,
the sensitivity, specificity and AUC were 98.1%, 72.9%, and
0.895, respectively. Since wrist fractures are amongst the
most common fractures encountered in the emergency
department (13), the wrist fracture model may lend itself well
to automatic detection and triaging in the future.

Advanced Imaging

Al also has several applications in advanced imaging. For
instance, magnetic resonance imaging (MRI) may be virtually
enhanced using Al models. Gong et al. (14) trained a deep learn-
ing algorithm on brain MR images on 10 pre- and postcontrast
brain MR images, allowing it to learn how the image changes
after the administration of gadolinium. The algorithm was then
applied to a series of low-dose contrast-enhanced images, where
it virtually enhanced the contrast of the gadolinium present in
the image. The use of the algorithm provided significant
improvements in peak-signal-to-noise ratios of more than 5
decibels, allowing greater interpretability of the images. Further-
more, a noninferiority analysis revealed that image quality, arti-
fact suppression, and contrast enhancement was not significantly
different between full-dose and low-dose contrast images. In the
wider medical community, controversy exists over the adminis-
tration of gadolinium due to concerns of its effects on the renal
system and the brain; (15) applying deep learning to this prob-
lem could reduce the required dose of gadolinium tenfold (14).
Al has also been used under experimental conditions as an
end-to-end reader of screening examinations. Ardila et al.
(16), a team composed of investigators from Google Al
(Mountain View, CA) and multiple US hospitals, used a data-
set of 42,290 publicly available lung cancer screening com-
puted tomography (CT) scans from the National Lung
Cancer Screening Trial to train, tune and test a deep learning
architecture. On testing with 6,716 scans, the algorithm
achieved an AUC of 0.944, outperforming 6 board-certified
radiologists when no prior imaging was available, and equal-
ing their performance with prior imaging. This technology
could be utilized in a public health setting; currently,
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although lung cancer is the most common cause of cancer
death in the US (17), screening has a relatively poor uptake.
Al could reduce the cost of screening, thereby encouraging
participation in early detection programs.

As previously noted, a common limitation of Al research is a
lack of appropriately labeled data; however, Al itself may be the
solution to this issue. Using deep learning in brain MRI, Dalca
et al. (18) demonstrated an algorithm that combined deep
learning with a traditional probabilistic atlas to drive a brain seg-
mentation algorithm. Using a training dataset of 7,332 brain
MR scans, the newly developed deep learning algorithm out-
performed the baseline Gaussian likelihood functions overall
(Dice score 83.5% vs 79.0%, where a high Dice score indicates
higher similarity between the segmentation method and the
ground truth), and was particularly successful at segmenting
deep brain structures such as the hippocampus (Dice score
81.1% vs 73.1%). The value of such a technique is that it could
remove the time-consuming, resource-intensive process of
labeling images, thereby increasing the numerical size of datasets
that can be used for Al research.

Noninterpretive Tasks

Perhaps Al’s greatest utility will be outside of image interpreta-
tion entirely. A radiology fellow spends only 53.8% of their
working time on image interpretation (19). The remainder of
the time is spent on nonimage-interpretative tasks, such as pro-
tocoling studies, consulting with technologists, and consulting
with clinicians regarding critical findings (19). Al could assist in
improving workflow by aiding radiologists in these tasks.

One of the first steps in the imaging pathway involves proto-
coling the study. Important considerations to be made are;
whether the study is clinically indicated, determining whether
the appropriate acquisition parameters (for example, the pulse
sequence) are correct and whether contrast administration is
required. Radiologists spend 6.2% of their time protocoling stud-
ies (19). A deep learning algorithm has been developed to
improve this process; Lee (20) used a dataset of 5,258 musculo-
skeletal MR requests to train a deep learning network to appreci-
ate factors such as the word combination of the request, the use
of contrast media and the demographic characteristics of the
patient. The study reported that the algorithm had an AUC of
0.977 in determining the correct protocol for imaging. Imple-
menting such an algorithm in a busy radiology department could
improve productivity through workflow efficiency savings.

Furthermore, Al could also improve the acquisition of scans.
One of the major weaknesses of MRI as a modality is its
lengthy acquisition time. The prolonged acquisition time is
uncomfortable for patients and makes motion artifacts more
likely to occur. Furthermore, longer acquisition times reduce
the throughput of the scanner. Hyun et al. (21) developed an
algorithm capable of reconstructing undersampled MRI data to
form a full quality image. The algorithm used a training set of
1,400 sets of undersampled and fully sampled images. The
authors showed both qualitatively and quantitatively that only
29% of k-space data was required to reconstruct a full quality
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MR image. Since much of the reduction in k-space acquisition
was made by undersampling during acquisition in the phase
encoding direction, an MR scan could be completed much
more rapidly using this technique.

Following acquisition, AI has also been used to assist in
worklist prioritization. Arbabshirani et al. (22) used a dataset of
37,074 head CT scans to train an algorithm to detect the pres-
ence of intracranial hemorrhage (ICH). If an ICH was detected,
the model would prospectively update the priority of the scan
to “stat.” The algorithm achieved an AUC of 0.846 for the
detection of ICH. Once the algorithm was prospectively imple-
mented into real-world clinical workflow, 27% of routine of
inpatient and outpatient (but excluding emergency department)
head CT requests were reprioritized to “stat.” Of these repriori-
tized scans, 85% were diagnosed with ICH by a radiologist,
equating to a reduction in the time to diagnosis from 512
minutes to 19 minutes between routine and stat studies. Sur-
vival from ICH is dependent on rapid identification of the con-
dition, therefore, using an algorithm to prioritize an emergency
worklist may have beneficial outcomes for patients.

Years after the examination, Al may still have utility to
harness information from the report. An Al algorithm has
been developed to classify free-text radiology reports. The
model, developed by Chen et al. (23), classifies the presence,
location and chronicity of pulmonary emboli on thoracic CT
scans based solely on the text of the report. After training on
2,500 reports, the model achieved an AUC of 0.97. The ret-
rospective classification of reports could pave the way for
more analytic research in radiology and in medicine overall,
which is currently restricted by presently used electronic
health records systems. Furthermore, the study reveals an
alternative by which further labeled data could be obtained
for future Al studies.

APPLICATIONS IN PATHOLOGY

Unlike the progression of radiology from illuminated X-ray
films to digital imaging, pathology has progressed at a slower
pace to the digital medium, which the adoption of Al hinges
on. Whole-slide imaging (WSI) now enables pathologists to
view histopathology slides in their entirety in high resolution
with depth manipulation. Despite the availability of WSI and
its benefits, digital conversion of glass slides is not routinely
carried out (24). Rapid advances in technology have enabled
fast transfers and ample storage for vast amounts of data. This
is particularly enabling in the field of WSI where the amount
of data is large and requires real time processing. A typical size
for a whole-slide scan can be around 1.6 billion pixels taking
up around 4600 MB (megabytes) of storage space (25). On the
other hand, radiology images shared in DICOM (Digital Imag-
ing and Communications in Medicine) format range from
approximately 4000 pixels for some nuclear medicine scans to
23 million pixels in mammography images (26). The storage
size of these images depends on the number of images per study
but MRIs can typically take around 30—50 MB of storage space
as demonstrated on the online DICOM library (27). File size

and resolution difference between radiology and pathology
studies could be an important differentiating factor in the adop-
tion of Al in the future.

The question to be answered is how proficient artificial
intelligence is in providing vital analytical ability in digital
pathology. Although available literature is limited, there are a
handful of studies comparing the performance of Al algo-
rithms with pathologists in detection and classification of dif-
ferent types of cancer.

In a retrospective study of breast cancer metastases, Ehte-
shami Bejnordi et al. (28) investigated the performance of
32 submitted deep learning algorithms in detecting lymph
node metastases in WSI of tissue sections from women with
breast cancer compared to a panel of expert pathologists. An
annotated training data set was provided to develop the chal-
lenge participants’ algorithms which included 110 images
with nodal metastases and 160 without. The performance test
included 129 images of which 49 were verified with metasta-
ses and 80 without. The assessment was split into two tasks:
The first task to identify individual metastases and the second
to classify metastases. The same images were presented to a
panel of 11 pathologists under a time constraint as well a sin-
gle pathologist without time constraints. The pathologists
with time constraints were given a flexible time limit of
2 hours to review the 129 slides while the pathologist without
time constraints used 30 hours.

The top scoring algorithm performed significantly better in
the image classification task with an AUC of 0.994 compared
to the pathologists with time constraints, mean AUC of
0.810. However, it was comparable to the single pathologist
without time constraints with an AUC of 0.966. These results
show that, while a pathologist utilizing 30 hours to assess 129
slides is clinically impractical, this level of performance can be
achieved with a deep learning algorithm. However, it must
be noted that pathologists with time constraints in this study
had less than 1 minute per slide (although flexible) which
may be a poor reflection of true clinical practice. In addition,
the same pathologists used glass slides rather than digital WSI
which may yield more information albeit in an unfamiliar
format. Nevertheless, this study highlights the potential for
Al to provide fast and reliable analysis of tissue samples to
detect breast cancer metastases at a performance level of a sea-
soned pathologist with an unlimited amount of time.

Furthermore, Coudray et al. (29) investigated the perfor-
mance of deep learning algorithms in classification and muta-
tion prediction in non-small cell lung cancer histopathology
images. In this study, deep learning algorithms and patholo-
gists were asked to classify and distinguish between adenocar-
cinoma (AD) and squamous cell carcinoma (SCC) in tissue
sample slides. The team trained a deep learning algorithm
using WSIs obtained from the cancer genome atlas to reliably
differentiate between AD, SCC and normal tissue. The data-
set used in this study consisted of 459 normal tissue slides, 567
classified as AD and 608 as SCC. These annotations were
provided by the cancer genome atlas. These slides were split
between training, validation and testing sets. In comparison
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to the study by Ehteshami Bejnordi et al (28), the WSIs used
here were deemed to be too large to be inputted directly into
the deep learning algorithm and they used 512 x 512 pixel
tiles instead.

The results of this study indicated comparable performance
between Al and pathologists. Although the AUC of the deep
learning model was higher in identification and classification
of lung cancer samples (0.99 and 0.97 AUC respectively)
compared to the performance of three pathologists, the com-
parison did not reach the threshold of statistical significance
to conclude a superior diagnostic performance. However,
this study did highlight the ability of this deep learning algo-
rithm to predict gene mutational status from WSIs, particu-
larly STK11 mutations which were predicted with the
highest accuracy (AUC 0.85) that would not otherwise be
detected by pathologists — showing that Al can be a powerful
tool in supplementing pathologists’ diagnoses.

Classification of brain tumors is a difficult task, with studies
reporting significant inter-observer variability in histopatho-
logical diagnosis of various CNS tumors (30). This is largely a
result of the diverse nature of these tumors. The current
World Health Organization classification of CNS tumors
includes a vast number of different tumors which arise from
the developmental complexity of the brain (31). Capper et al.
(32) used tumor DNA methylation as a distinguishing mea-
sure to classify different CNS tumors. DNA methylation pro-
files generate vast amounts of information which are not
routinely used in clinical practice but this study highlighted
the processing power of machine learning in classiftying CNS
tumors using DNA methylation profiles. From a prospective
analysis of 1155 samples, 838 (76%) were successfully classi-
fied by the machine learning program using DNA methyla-
tion profiles with 129 (12%) samples being classified as
establishing a new diagnosis with a large clinical impact.
Although not a direct comparison of performance with cur-
rent pathologists, this study points to the potential for Al to
provide powerful, precise and wide-reaching diagnostic abil-
ity in the future.

Steiner et al. (33) investigated the impact of Al assistance in
histopathological review of lymph node biopsies for metastatic
breast cancer. In comparison to the study by Ehteshami Bej-
nordi et al (28), they compared pathologist performance
assisted versus non-assisted by Al to determine the potential
benefit from supplementation. They developed the deep
learning algorithm, Lymph Node Assistant (LYNA) from the
same dataset used in the study by Ehteshami Bejnordi et al.
(28) and described in Liu et al. (34) Pathologists were randomly
assigned into a cohort with crossover between each cohort in
receiving LYNA assistance or unassisted. A total of 70 digitized
images were formally reviewed as part of the study. The study
showed Al assistance increased both accuracy, sensitivity, and
time efficiency when compared to the unassisted cohort.
Operating points for the sensitivity and specificity were higher
for all algorithm-assisted pathologists than the receiver-
operator curve generated for LYNA alone; however, some
unassisted pathologists were less sensitive than LYNA alone.
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Overall, algorithm-assisted pathologists performed particularly
well in the detection of micrometastases compared to unas-
sisted (AUC 91% versus 83%) and were more time efficient in
detecting these findings (61 vs 116 seconds).

Steiner et al. highlight the importance in considering Al as a
synergistic tool in clinical practice in improving patient out-
comes. They show that algorithm-assistance has the potential
to not only provide more accurate and sensitive histopatholog-
ical diagnoses but also save time and increase clinician confi-
dence, all of which contribute to improved patient outcomes.

APPLICATIONS IN OPHTHALMOLOGY

Diabetic eye disease is amongst the most common conditions
seen in routine ophthalmology practice, and constitutes a sig-
nificant and growing public health issue. Diabetic retinopathy
(DR) is the commonest cause of vision loss in working age
adults, with 2.6 million people affected globally in 2015,
expected to rise to 3.2 million in 2020 (35). The incidence of
sight threatening diabetic retinopathy in upper income coun-
tries 1s falling, by a combination of both better diabetic control
and ophthalmological interventions, however this is offset
worldwide by increased diabetes incidence and increasing inci-
dences of DR in lower resources countries (36). With out-
comes improving dramatically with early detection and with
the widening provision of digital imaging (high-resolution
color retinal photography and optical coherence tomography),
coupled with the potential for irreversible morbidity, DR is an
ideal candidate for to be screened for. However, with strict
guidelines and a limited workforce to effect screening has led
to a demand for streamlining pathways to a specialist ophthal-
mologist review.

It is that demand that Al diagnostics company IDx (Coral-
ville, IA) aims to fulfill, gaining Food and Drug Administra-
tion (FDA) approval its IDx-DR cloud-based Al system in
April 2018. It is the first medical device to be authorized to
provide a screening decision without the oversight of a clini-
clan, stratifying patients into those that have “more than
mild” DR who require ophthalmology review, and those
that do not, who require 12 monthly screening.

Critical to this decision was the first prospective trial of the
system in 10 primary care settings by Abramoff et al. of 892
patients yielding 819 analyzable images, of which IDx-DR
achieved 87.2% sensitivity, and 90.7% specificity in its classifi-
cation task (37). These clinical successes build upon the sys-
tem achieving an AUC of 0.94 in discriminating referable
diabetic retinopathy in a 1415 patient retrospective dataset,
the Hoorn Diabetes Care System Cohort, of which 898 were
analyzable (38). Other retrospective studies show sensitivities
of over 91% (39,40), important metrics in this screening
investigation where false negatives have potential for harm
but false positive findings merely lead to inappropriate review
by an ophthalmologist.

However, the prospective Abramoft trial is not without fault,
as a low incidence of more than mild DR in study populations
required pre-enrichment strategies to recruit higher glycated
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hemoglobin (A1C) and fasting blood sugar patients. This may be
inevitable when designing prospective studies on Al systems in
screening programs, which by their nature must trawl through
large asymptomatic populations to capture a relatively small
population in the detectable presymptomatic phase.

Lack of human expert consensus reflects the difficulties in
DR diagnosis, and mechanisms must exist to ameliorate these
disagreements in order to produce an accurate reference stan-
dard upon which these algorithms are trained. Ground truth
is established predominantly by majority decision of multiple
independent experts, or discrepancies arbitrated by a further
expert whose decision acts as the reference DR grade. Krause
et al. challenged this paradigm in order to improve upon a
deep learning algorithm presented by Google to detect refer-
able vs. nonreferable DR, which, in this binary task, had
already achieved AUC of 0.991 in its larger data set (Eye-
PACS-1) and AUC of 0.990 in the smaller dataset (Messidor-
2) (41). Krause et al. uses a face-to-face adjudication system
where graders discuss the discrepancy in grade until a consen-
sus grading is achieved. The authors moved the algorithm
from the binary referability task to the widely used 5-point
International Clinical Diabetic Retinopathy scale, from no
DR to proliferative DR.. To adjudicate the more than 1.6 mil-
lion training images would have been unfeasible, and so a
3737 image adjudicated tuning set was used to adjust the
algorithms hyper-parameters as well as shape modeling
choices. Their algorithm had high agreement to the reference
standard, with similar kappa values to the human experts (ret-
inal specialists 0.82 to 0.91, general ophthalmologists 0.80 to
0.84, and the algorithm 0.84) (42). However, other algorith-
mic improvements may contribute to this, such as using
higher resolution input images and changing to a more con-
temporary model architecture.

The utility of this algorithm to supplement clinician grad-
ing is explored in a study measuring the time, accuracy and
confidence of DR grading by 10 ophthalmologists in 3 levels
of algorithm assistance; no assistance, when provided with the
algorithm-derived DR grade, and when provided with this
grade and a heat map of areas that contributed to the algo-
rithms grading. Interestingly, accuracy increased across the
board with the grades alone (P < 0.001), yet no increase in
accuracy was seen when grades and the heat-map were pro-
vided. Human grading time increased predominantly early in
the study suggesting that with experience grading time
decrease. This raises questions as to how additional algo-
rithm-derived information is perceived by human graders,
and the authors theorise that the heat maps may cause sec-
ond-guessing of normal imaging, as there was a significant
decrease in accuracy when heat maps were provided in
images without DR (P = 0.007), leading to overcalling of
DR. Grading of no DR is usually accurate, ranging from
92.5—94.7% accuracy across all readers and algorithm assis-
tance levels. In addition, there was a marked increase in
reporting feeling extremely confident in their grading when
the algorithm grade was provided, whereas with the heat
map the increased confidence was spread between very and

extremely confident (43). This paper exemplifies how algo-
rithm derived information can both improve the accuracy of
human diagnosis, but may inadvertently confound otherwise
accurate decision making processes.

AT algorithms have also been developed for optical coher-
ence tomography (OCT), another diagnostic technique in
ophthalmology. One such framework (44) uses a two-step
process to identify pathology. First, via a deep segmentation
network, image acquisition related variations are identified;
then, a deep classification network is applied to the resultant
segmentation map to identify pathology. Of 53 key diagnoses
found in total, the most urgent diagnosis identified was used
to form a referral recommendation based on the Moorfields
Eye Hospital (London, United Kingdom) referral criteria-
urgent, semi-urgent, routine or observation only. When
compared to 8 clinical experts (4 retinal subspecialist ophthal-
mologists and 4 optometrists with additional medical retina
training), it achieved an AUC of 0.9921 in identifying urgent
referral cases, matching the performance of 2 ophthalmolo-
gists, and outperforming all other experts. When the experts
were given access to supplementary information (fundus
images and clinical notes) this number rose to 5 experts that
the system demonstrates noninferiority to. Total referral mis-
classification rates were low at 5.5%, matching 2 experts and
surpassing the others.

The authors attribute this accuracy to the use of multiple
neural networks, 5 each for segmentation and classification,
analogous to a panel of experts. As expected, the authors
found multiple neural networks found to be superior to using
a single network. Extraordinarily, areas of ambiguity where
the networks disagree, and propose multiple hypotheses, can
be illustrated as a video. This can then be used to guide clini-
cal decision-making by the ophthalmologist, and reflects the
lack of consensus in human experts (all 8 experts agreed on
only 65% of images).

In addition to screening and diagnostic tasks, Al has been
used in ophthalmology to infer additional clinically significant
information. Optical Coherence Tomography Angiography
(OCT-A) is emerging as a non-invasive alternative to fluores-
cein angiography (FA) in mapping the retinal vasculature by
acting as a motion-contrast detector between dynamic blood
and static neurosensory tissue (45). However, its widespread
usage is limited by cost and requirement for patient collabora-
tion in this extremely motion sensitive modality, as well as
limited fields of view (46). After training a deep learning
model on 400,000 OCT images and their corresponding
OCT-A, the model was able to detect microvasculature, large
and medium vessels from OCT at a similar level of detail to
the corresponding OCT-A. Using OCT-A as ground truth,
when the model was compared to three clinicians segmenting
vasculature from OCT, the Al significantly outperformed the
experts (47). As clinicians would refer for OCT-A or FA for
the definitive diagnosis of micro-vascular complications based
on their assessment of the OCT, this comparison is not strictly
a fair one if putting forward the Al as an alternative to
OCT-A or FA. However, the model may be useful in
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referring to these definitive diagnostic tests, and if put forward
as an alternative to the definitive tests, it could ameliorate
drawbacks of not just contrast dye injection but technical lim-
itations of OCT-A. This study exemplifies the potential of Al
to accurately infer useful functional data from structural data.

Fundamentally, it has yet to be ascertained whether these
new technologies will improve provision and uptake of dia-
betic retinal screening, diagnosis and appropriate referral of
other sight threatening disorders, or replace current investiga-
tions. Yet these technologies may go on to form the basis of
paradigm shifts in future ophthalmological practice.

APPLICATIONS IN DERMATOLOGY

The recognition of visual patterns is a fundamental diagnostic
skill in dermatology and Al may provide much potential in aug-
menting image analysis and improving diagnostic accuracy
within this field (2,48). Recently developed computational neu-
ral networks have been used to diagnose skin conditions
through visual image recognition and have demonstrated com-
parable and occasionally greater sensitivity and specificity in clas-
sifying images than even clinically experienced dermatologists.

For instance, Esteva et al. used the GoogLeNet Inception
algorithm, which was pretrained on 1.28 million images and
then retrained on a university dataset of 129,450 high quality
dermatological images (49). The patterns of submitted digital
images were then analyzed at a pixel level and given a diag-
nosis. Twenty-one US board-certified dermatologists were
matched or exceeded by the deep learning algorithm, which
had an AUC of 0.96 for carcinoma and 0.94 specifically for
melanoma. Haenssle et al. compared the diagnostic accuracy
of a convolutional neuronal network with an international
group of 58 dermatologists, which included 30 experts, and
found that most of the dermatologists were outperformed.
The convolutional neuronal network group had a higher
area under the ROC curve of 0.86 compared with 0.79 in
the dermatologists group (50). In another study, Brinkler
et al. had shown that convolutional neuronal networks were
able to outperform 136 of 157 dermatologists in classifying
12,378 head-to-head dermatoscopic images of suspicious skin
lesions including melanoma (51).

Convolutional neuronal networks have also been used to
classify clinical images of skin diseases beyond skin cancers.
Han et al. conducted an algorithmic assessment of 12 skin dis-
eases which included actinic keratoses, seborrheic keratoses,
melanocytic nevi, pyogenic granulomas, hemangiomas, and
warts in addition to common skin cancers (52). The convolu-
tional neuronal network, Microsoft ResNet-152 model
(Microsoft Research Asia, Beijing, China) was trained with
19,838 images from the training segment of the Asan dataset,
MED-NODE dataset and atlas site images. This trained
model was then validated with the testing segment in 3 data-
sets including the Asan and Edinburgh datasets. For images in
the Asan set, the AUC curve was 0.82—0.95, the sensitivity
was 77.7—93.9% and the specificity was 74.3—92.6%. For
images in the Edinburgh set, the area under the curve was
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0.83—0.97, sensitivity was 77.3—98.6% and specificity was
70.5—89.6%. The study showed that the algorithm’s perfor-
mance using 480 Asan and Edinburgh images were similar to
the performance of 16 compared dermatologists.

AI may also play a future role in the earlier detection and
treatment of skins cancers. Chuchu et al. examined evidence
for the potential use of smartphone technology in providing
lay users an early risk assessment tool for melanoma, which
accounts for most skin-cancer related deaths despite only
forming a small proportion of all skin cancers (53). Across the
4 Al-based applications that they examined, sensitivities
ranged from 7-—73% and specificities and specificities
37—94%. The number of skin lesions classed as unevaluable
ranged from 2% to 18% of all lesions analyzed and in 3 of the
4 applications at least one melanoma was classified as unevalu-
able. Thus, to date, Al has not demonstrated sufficient diag-
nostic accuracy in smartphone technology and given the high
likelihood of missing melanomas, may not be yet suitable as
means of self-screening in a lay population. However, since
there are a lack of studies and there is a rapid rate of develop-
ment within this field, further studies in the future may yield
more promising results in combining smartphone technology
with Al to detect melanomas (54).

The use of Al in dermatology also poses significant chal-
lenges. Whilst AI may also have the potential to improve
workflow efficiency, difficulties have also been identified in
integrating Al into conventional clinical workflow systems
which, at least in the foreseeable future, is likely to impede its
clinical use for improving diagnostics in dermatology (55).

Within imaging analysis, dermatology remains a particu-
larly challenging field for the application of Al. Unlike radio-
logical imaging, there is a lack of standardization in skin
imaging with regards to color, lighting, techniques and hard-
ware (55). Skin tone can also have a considerable eftect on
the image appearance.

Furthermore, vast sets of annotated, high-resolution imag-
ing data, encompassing the breadth of diagnostic variety, are
required to establish a ground truth for the automated devel-
opment of algorithms in deep neural networks (55). Compil-
ing these data sets can be both time intensive and expensive.
Nevertheless, as in other applied contexts, Al itself may be
the answer to saving time and expense in establishing the
ground truth. Zhang et al. demonstrated in their study that
their machine learning model, known as multi-instance mul-
tilabel, was able to annotate skin biopsy images using an algo-
rithm and was shown to be effective on a clinical data set
consisting of 12,700 biopsy images (56). Accurate and rapid
annotation of skin imaging could thus be used to establish a
ground truth for computational neuronal networks in classi-
fying new clinical images.

Concerns have also been raised by dermatologists regarding
the use of Al within the specialty. Lim and Flaherty acknowl-
edge that while AI may improve the diagnostic accuracy and
efficiency, it warns of any blind adoption of the technology
where other holistic diagnostic aids such as history and clinical
context are ignored (57).
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CHALLENGES

There will be several challenges to the implementation of Al
in healthcare. For illustrative purposes, we will focus on three
that relate to the studies discussed previously in this paper:
The black box problem, overfitting, and regulatory approval.

The black box problem is the inability of deep learning
algorithms to demonstrate how they arrive at their conclu-
sions. When an algorithm infers a radiological finding, tradi-
tionally it has been impossible to determine which imaging
features were used in the process, how these were analyzed
and why the algorithm arrived at one outcome over another.
Most of the Al systems discussed in this paper exhibit the
same problem. In select cases, attempts have been made to
overcome this issue. For instance, Lakhani and Sundaram (8),
in their paper on deep learning in tuberculosis, used a heat
map to show regions of increased activation of the deep
learning network, which we may infer are regions of high
importance in determining the diagnosis. Such methods go
some way toward opening the black box of Al

Opverfitting is when Al algorithms, trained on one dataset,
have limited applicability to other datasets. This is because
the algorithm has learned the statistical variation of the train-
ing data, as opposed to the broad concepts needed to solve a
problem. The key determinant of overfitting is the overtrain-
ing of an algorithm on a specific dataset. Several factors influ-
ence the likelihood of overfitting, including the size of the
dataset, the extent of heterogeneity within the dataset and
the distribution of the data within the dataset. For instance, a
model may be overfitted if the prevalence and incidence of
disease differs significantly between the training and testing
sets, or if the training and testing sets were acquired with sub-
stantially different parameters or equipment, which may be
further compounded by small sample size. Following training,
algorithms may be examined for overfitting by testing them
on multiple different datasets; in an algorithm suftering from
overfitting, one would expect its accuracy, measured by the
AUC, to be significantly worse on datasets that do not bear
the same origin as the training data (58).

Finally, regulatory approval will pose a challenge for new
Al algorithms. Medical Al, like drugs and medical devices,
will be regulated by the FDA. Both the black box problem
and overfitting combine to create barriers for regulatory
approval, since evaluators face difficulties in determining how
the algorithms work and whether their performance is gener-
alizable to other datasets. The FDA classifies new Al tools on
the basis of three criteria: risk to patient safety, the existence
of a predicate algorithm and the degree of human input (59).
Algorithms that are deemed to be high risk, such as diagnostic
tools where the consequences of a misdiagnosis are severe
and where there is minimal human input, undergo evaluation
by the premarket approval pathway, which requires substan-
tial evidence from non-clinical and clinical studies that the
new tool is safe and efficacious. Some lower risk technologies
may be evaluated by the De Novo pathway, which is
designed for the approval of revolutionary devices. For a

more extensive discussion of FDA regulation and approval of
new Al tools in medical imaging, we refer the reader to the
following review by Kohli et al. (59).

CONCLUSION

AT has several potential applications in medicine; it remains to
be seen which of these will take hold. Certainty, however, lies
in the inevitability of change. Therefore, it is important for all
physicians to be aware of the recent advances of Al as it is
likely to influence the delivery of healthcare in the future.
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