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a b s t r a c t 

In order to maximize the network performance of heterogeneous sensor networks and effectively control 

the network cost, a clustering routing algorithm based on wolf pack algorithm (CLWPA) for heterogeneous 

wireless sensor networks is proposed. Firstly, the optimal deployment of heterogeneous nodes is trans- 

formed into a mixed integer programming problem. The approximate optimal solution of the problem is 

obtained by through the wolf pack algorithm (WPA) which improved by logistic function and levy flight, 

then a heterogeneous network routing algorithm based on the improved wolf pack algorithm (LWPA) is 

proposed. Secondly, in order to solve the problem of fixed path in LWPA routing algorithm, the concept 

of edge degree is introduced to improve DEEC algorithm. The improved DEEC algorithm (IDEEC) is used 

to dynamically cluster common nodes in heterogeneous networks, and the data transmission mode is 

carried out after the clustering mode set. Finally, through simulation analysis, compared with other three 

heterogeneous network routing algorithms, CLWPA algorithm effectively prolongs the network’s stable 

period and lifetime, and the energy consumption is more balanced. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Wireless Sensor Network (WSN) is a vital link in the Internet of

hings project to undertake intelligent sensing. It monitors desig-

ated areas in real time through sensor nodes and sends the ac-

uired data to sink nodes in a wireless multi-hop manner. It has a

ery wide application prospect in the fields of national defense se-

urity, environmental monitoring, disaster early warning and so on

 1 , 2 ]. Among them, routing algorithm, as one of the core technolo-

ies of WSN, is mainly used to find the optimal path from sensor

ode to sink node and accurately forward monitoring data along

he specified path, so as to reduce network energy consumption

nd prolong the lifetime. Due to the limitation of wireless sensor

etwork resources, it is quite different from the traditional wired

etwork, and many traditional wired routing technologies are not

uitable for it. Therefore, it has higher scientific research value to

tudy reasonable and effective WSN routing algorithm according to

ts own characteristics [ 3 , 4 ]. 

The design goals of routing algorithms in wireless sensor net-

orks mainly include finding energy-efficient data transmission
∗ Corresponding author. 

E-mail address: 616176246@qq.com (Y.U. Hao). 

i  

e  

t  

a

ttps://doi.org/10.1016/j.comnet.2019.106994 

389-1286/© 2019 Elsevier B.V. All rights reserved. 
aths, maximizing the lifetime of the network, improving the ro-

ustness and reliability of routing, supporting data fusion and data

orwarding, etc. In addition, according to different monitoring en-

ironments and application conditions, some other requirements

re needed, such as network security and self-adaptability [ 5 , 6 , 7 ].

SN can be divided into four different heterogeneous types ac-

ording to the difference of nodes’ computing capability, sensing

apability, communication capability and energy factors: comput-

ng energy heterogeneous type, node energy heterogeneous type,

ink heterogeneous type and network protocol heterogeneous type

8] . 

Energy heterogeneous sensor networks with different initial en-

rgies have more direct effect and practical significance in reduc-

ng network energy consumption and improving network lifetime.

ocument [9] proves that using the small-world characteristics of

ensor networks, deploying heterogeneous nodes that can commu-

icate directly with sink nodes in node-intensive areas and form-

ng super links will enable heterogeneous sensor networks to have

maller average path length and higher clustering coefficient at the

ame time, thus changing their communication distance by adjust-

ng the transmission power of heterogeneous nodes, improving the

nergy utilization rate of nodes, reducing the network communica-

ion overhead, making the network energy consumption more bal-

nced and prolonging the network life cycle. 

https://doi.org/10.1016/j.comnet.2019.106994
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106994&domain=pdf
mailto:616176246@qq.com
https://doi.org/10.1016/j.comnet.2019.106994


2 Y.U. Xiu-wu, Y.U. Hao and L. Yong et al. / Computer Networks 167 (2020) 106994 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

n  

p  

b  

g  

i  

S  

e  

i  

h  

s  

m  

o  

p  

m  

c

 

m  

h  

s  

h  

p  

w  

f  

g

 

h  

t  

t  

i  

n  

c  

p  

t  

t  

g  

n  

u  

c  

v  

p  

p  

i  

i  

c  

g  

w  

w  

w  

p

 

p  

p  

o  

l  

P  

n  

w  

a  

O  

t  

s

In actual design, a heterogeneous sensor network can be

formed by setting up power supply for appropriate sensor nodes,

thus prolonging the network lifetime of WSN. This kind of design

has more advantages in areas with harsh environment and is also

the overall trend of wireless sensor network design. Even in homo-

geneous sensor networks, there are characteristics of sensor net-

works with heterogeneous energy. For example, when a sensor

network works for a period of time, new sensor nodes will be

added in order to prolong the service time of the network. At this

time, the new node has more energy than the old node. However,

the cost of heterogeneous nodes is relatively expensive. Consider-

ing the cost of sensor networks, heterogeneous nodes cannot be

deployed in WSN without restriction [ 10 , 11 ]. Therefore, how to op-

timize the deployment of heterogeneous nodes to achieve optimal

network performance of sensor networks is a problem that must

be solved. 

As a novel swarm intelligence optimization algorithm, wolf pack

algorithm (WPA) has been successfully used to optimize many lin-

ear programming models and large-scale nonlinear programming

models. WPA has also achieved good results in solving many dif-

ferent types of optimization problems [12] . However, the WPA still

has some shortcomings, such as: in the process of solving opti-

mization problems, the WPA is easy to fall into local optimization,

resulting in premature algorithm; There are many parameters in

the WPA, and the algorithm is sensitive to the setting of some pa-

rameters, so the setting of parameters will affect the performance

of the algorithm [13] . 

Based on the above analysis, the main contributions of this pa-

per are as follows: 

(1) The global search capability of the WPA is used to find the

optimal solution of the optimal deployment model of het-

erogeneous nodes, and use logistic function and Levy flight

to improve the running step size and besieging step size of

the WPA respectively to enhance the search capability of the

algorithm and prevent the algorithm from entering local op-

timization. 

(2) Dynamic clustering is carried out for sensor networks with

heterogeneous nodes deployed. Edge degree is used to im-

prove the threshold function of cluster head election in

DEEC algorithm, so as to avoid a large number of cluster

heads being distributed on the edge of monitoring area, thus

consuming more energy for data transmission and accelerat-

ing the death of cluster heads. 

(3) Propose a clustering routing algorithm based on WPA for

heterogeneous wireless sensor networks (CLWPA). Simula-

tion results show that CLWPA makes the energy consump-

tion of common nodes in the network more balanced and

effectively im proves the lif e cycle and stability cycle of sen-

sor networks. 

The structure of this paper is as follows: In the Section 2 , we

introduce the literature review related to clustering heterogeneous

network routing algorithms. We introduce the network model and

energy consumption model of the system in the Section 3 . In the

Section 4 , we introduce the optimal deployment of heterogeneous

nodes, the WPA and the improvement of the WPA, and use the

improved WPA to obtain the optimal solution of the optimal de-

ployment problem. A clustering routing algorithm for heteroge-

neous sensor networks based on improved WPA is proposed in the

Section 5 . In the Section 6 , we analyzed the complexity of the data

and simulated the impact of the algorithm on the number of fixed

nodes, specific network energy consumption and network lifetime.

Finally, we made a summary in Section 7 . 
. Related work 

In order to reduce network energy consumption and improve

etwork life cycle, many effective routing algorithms have been

roposed [14-16] . Among them, clustering routing algorithm has

ecome the focus of WSN routing algorithm research due to its

ood scalability and excellent network performance [ 17 , 18 ]. Typ-

cal clustering routing algorithms include LEACH [19] , TEEN [20] ,

EP [21] , DEEC [22] , etc. SEP and DEEC are the basis of many het-

rogeneous WSN clustering routing algorithms, but SEP algorithm

s only suitable for secondary heterogeneous WSN, and the cluster

ead uses a single hop method to send data to the base station,

o the algorithm has great limitations. DEEC is commonly used in

ulti-level heterogeneous networks. The algorithm uses the ratio

f average network energy and node residual energy to control the

robability of nodes becoming cluster heads. Therefore, nodes with

ore initial energy and residual energy are more likely to become

luster heads. 

Literature [23] has made a very detailed study on the perfor-

ance comparison between heterogeneous sensor networks and

omogeneous sensor networks. The research results show that

ensor networks with appropriate addition of heterogeneous nodes

ave greatly improved performance and life cycle. Therefore, this

aper will not compare the performance of heterogeneous net-

orks and homogeneous networks, but mainly compare the per-

ormance with the following several routing algorithms of hetero-

eneous networks. 

The EDDEEC algorithm in document [24] improves the cluster

ead election of the basic DEEC algorithm and takes into account

he location distribution of nodes, making it easier for nodes close

o the base station to become cluster heads, but without protect-

ng nodes with low initial energy, it is easy to cause the nodes

ear the base station to accelerate death due to repeated becoming

luster heads. The K-means clustering routing algorithm (KCA) pro-

osed in document [25] randomly selects K node positions as ini-

ial clustering centers in the network, then calculates the best clus-

ering center through the K-means algorithm and deploys hetero-

eneous nodes as cluster heads at the best clustering center. The

etwork is clustered only once, and the network structure remains

nchanged after clustering. K-means algorithm only calculates a lo-

al approximate solution and is greatly influenced by the initial

alue. The optimization degree of the solution obtained by im-

roper selection of the initial value is not high. Document [26] pro-

oses a heterogeneous network routing algorithm based on mixed

nteger programming (HRMIP). The average path length of nodes

s shorter, and the overall energy consumption of the network is

orrespondingly reduced. However, after the deployment of hetero-

eneous nodes, the data transmission path will remain fixed and

ill not change, so that nodes with higher energy consumption

ill consume more energy, resulting in the rapid death of nodes

ith higher energy consumption and a short network stability

eriod. 

Although WPA is a new type of swarm intelligence algorithm

roposed only in recent years, since it was proposed, many ex-

erts and scholars have conducted in-depth optimization research

n it, and it has been widely used in practical production and

ife problems. For example: Three-Dimensional Underwater Path

lanning [27] ; Traveling salesman problem [28] ; UAV route plan-

ing [29] ; Multidimensional knapsack problem [30] , etc. Compared

ith other swarm intelligence algorithms of the same type, such

s Particle Swarm Optimization, Genetic Algorithm, Ant Colony

ptimization, etc. the WPA has better optimization performance

hrough optimization tests and comparative experiments on the

ame function [31] . 
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. System model 

.1. Network model 

The sensor network with heterogeneous energy needs long-

erm operation and the node position is relatively fixed. In or-

er not to lose generality, assuming that the monitoring area is a

wo-dimensional square area with an area range of R × R . A certain

umber of sensor nodes are unevenly and randomly distributed in

he monitoring area, and the nodes periodically transmit monitor-

ng information to sink nodes. The heterogeneous sensor network

as the following properties: 

First: All nodes are stationary or move only slightly. sink nodes

and heterogeneous nodes can be deployed anywhere; There

is only one sink node in the monitoring area; 

Second: The number of common nodes is N, Node location

coordinates are known as ( x i ,y i ), and 1 ≤ i ≤ N , 0 ≤ x i ≤ R -1,

0 ≤ y i ≤ R -1; 

Third: Heterogeneous nodes directly communicate with sink

nodes through a super link without bandwidth limitation

after receiving monitoring data of surrounding common

nodes; 

Fourth: All nodes have certain data fusion capability and unique

ID. 

.2. Energy consumption model 

In this paper, the energy consumption model of radio frequency

ree space communication is adopted. See Eq. (1) to (4) for the en-

rgy consumption model [ 8 , 9 ]: 

 T x ( k, d ) = 

{ 

k E elec + k ε f s d 
2 , d < d 0 

k E elec + k ε mp d 
4 , d ≥ d 0 

(1) 

 Rx ( k ) = k × E elec (2) 

 c = ( M + 1 ) × k × E DA (3) 

 0 = 

√ 

ε f s / ε mp (4) 

here k is the size of the transmitted data, d is the distance be-

ween sender and receiver, d 0 is threshold of node communication

istance, E Tx ( k,d ) is the energy consumption of the sending end,

 Rx ( k,d ) isthe energy consumption of the receiving end, E c is the

nergy consumption of data fusion, E elec is the energy consump-

ion of 1-bit data during transmission or reception, ε fs and ε mp are

ll constant distributions that indicates amplification factors of cir-

uit signal amplifiers, E DA is the energy consumption in the process

f 1-bit data fusion, M is the number of nodes in the cluster. 

. Optimal deployment of heterogeneous nodes based on WPA 

.1. An optimal deployment of heterogeneous nodes 

The energy consumption in WSN is mainly related to the path

ength during data transmission, so the problem of optimal deploy-

ent of heterogeneous energy nodes can be transformed into the

roblem of solving the minimum value of the sum of distances

rom all common nodes to sink nodes [32] . The objective function

f the optimization problem can be expressed by Eq. (5) : 

f = min 

N ∑ 

i =1 

d i (5) 
here N is the number of ordinary nodes, d i is distance from com-

on node to sink node via multiple hops. 

In a randomly distributed heterogeneous sensor network,

he optimal deployment of heterogeneous nodes represented by

q. (5) is actually a NP-hard problem. In order to establish an op-

imal deployment model for heterogeneous nodes, the following

onditions are given: 

First: The number of heterogeneous nodes added is α and can

only be selected from the positions of ordinary nodes; 

Second: v 0 represents sink node, its position coordinate is

( x 0 , y 0 ); L is the total set of all nodes in the network, its lo-

cation set is ( X,Y ), then: 

L = { v i , 0 ≤ i ≤ N } 
( X, Y ) = { ( x i , y i ) , 0 ≤ i ≤ N } 

Third: The sink node is regarded as a heterogeneous node

which position coordinate is ( x 0 , y 0 ), Write h 0 = ( u 0 , v 0 ); the

set of heterogeneous nodes is H and the set of locations is

( U,W ), then: 

H = { h t , 0 ≤ t ≤ α} 
( U, V ) = { ( u t , v t ) , 0 ≤ t ≤ α} 

Fourth: Where d i , j is the distance from the common node to

the sink node when the common node v i forwards data to

the sink node through the heterogeneous node h = ( u,w ) at

v j , and because h shares location information with v j , u = x j ,

w = y j , then: 

d i j = 

√ (
x i − x j 

)2 + 

(
y i − y j 

)2 
, 1 ≤ i ≤ N, 0 ≤ j ≤ N 

Based on the above conditions, the following mathematical

odel is established to describe the optimal deployment of het-

rogeneous nodes: 

f = min 

N ∑ 

i =1 

N ∑ 

j=0 

d i, j z i, j (6) 

.T. 

Constraint 1 © indicates that the total number of heterogeneous

odes in the network is α + 1; Constraint 2 ©indicates that any

ommon node can only send data to sink node through a hetero-

eneous node; Constraint 3 ©indicates that if heterogeneous nodes

re not deployed at v j , it is impossible for any common node to

irectly send data from v j to sink node; Constraint 4 © indicates

hat p j is a 0–1 variable, and when p j = 1, heterogeneous nodes are

eployed at node v j , otherwise p j is 0; Constraint 5 ©indicates that

 i , j is a variable of 0–1. when z i , j = 1, the data of common node

 i is forwarded to sink node through heterogeneous nodes at v j ;

therwise z i , j is 0; The objective function f represents the mini-

um value of the sum of distances from all common nodes to sink

odes under the above constraints. In this paper, WPA is used to

olve the optimal value of the mixed integer programming prob-

em, and then heterogeneous nodes are deployed in the network. 
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a  
4.2. Wolf pack algorithm 

WPA abstracts three kinds of intelligent behaviors (Running,

Summoning and Besieging) as well as the “Winner takes all” gen-

eration rules and the “Survival of the strong” wolves update mech-

anism by simulating the predation behavior and prey distribution

mode of wolves (including head wolves, fierce wolves and scout

wolves), so as to ensure the reproduction and development of

wolves. WPA’s specific process is as follows: 

(1) Initialization: set the basic parameters of the algorithm. S n is

the total number of wolves, T max is the maximum iteration

number, D is the dimension of the space to be searched, G

is the number of wolf pack search directions, W max is the

maximum number of wolves to be searched, stepa is the

step of searching, stepb is the step of running, stepc is the

step of besieging, the initial position of the i -wolf in the D -

dimensional decision space in the N -dimensional is: 

X i, j = X min + rand ( X max − X min ) (7)

Where 1 ≤ i ≤ S n and 1 ≤ j ≤ D; rand is representing a random num-

ber uniformly distributed in the interval [0,1]; X min and X max are

the upper and lower limits of X i , j respectively. Calculate the objec-

tive function value and fitness value of all wolves’ positions, and

select the wolf with the largest fitness value as the head wolf. The

head wolf only guides the wolves’ wandering, calling and besieg-

ing behaviors and does not directly participate until it is replaced

by other wolves with better objective function value. 

(2) Running behavior: Wolves must hunt in nature for survive.

In order to improve hunting efficiency, the wolf scouts must

run in all directions where they are located. In addition to

the head wolf, q -wolves are selected to perform wander-

ing behavior, the wolves run in g -directions around it, and

the fitness value of the current position of the wolves is

recorded, then the direction with larger fitness value is se-

lected to continue wandering, and the current position of

the wolves is updated, and the position of the i -wolve after

advancing to the e direction (1 ≤ e ≤ g ) is as follows: 

X i, j ( e ) = X i, j + stepa × Rand (8)

Where Rand is a random number evenly distributed on the interval

[ −1,1]; Stepa is the searching step length. Repeat the above behav-

ior until the prey whose fitness value is greater than that of the

head wolf is found or the maximum number of wanderings W max 

is reached, ending the running behavior and turning on the sum-

moning behavior. 

(3) Summoning behavior: After the wolf scouts have found the

prey, the head wolf calls the nearby fierce wolf by howl-

ing. After the fierce wolf hears the call of the head wolf, the

fierce wolf approaches the head wolf quickly with a large

running step stepb and exchanges information. Then, the po-

sition equation of fierce wolf i after the T + 1 iteration: 

X 

T +1 
i, j 

= X 

T 
i, j + Rand 

(
X 

T 
c, j − X 

T 
i, j 

)
st peb (9)

Where the stepb is the running step length, and X T 
i, j 

represents the

position of the wolf after the T th iteration. The equation indicates

that the fierce wolf runs to the position of the head wolf under the

guidance of the head wolf and starts the besieging. 

(4) Besieging behavior: If the fierce wolf finds prey whose fit-

ness is greater than the head wolf in the process of run-

ning, the fierce wolf will turn into the head wolf and direct

the action of the wolf pack; otherwise, when the distance

between the fierce wolf and the head wolf is less than the

judgment distance, the head wolf will inform the fierce wolf
to besiege through howling. Fierce wolves besieged with be-

sieging step stepc , and the besieging behavior equation is as

follows: 

X 

T +1 
i, j 

= X 

T 
c, j + Rand × st pec (10)

The determination distance here can be calculated from

q. (11) : 

 lim it = 

1 

D × ω 

×
D ∑ 

j=1 

∣∣max j − min j 

∣∣ (11)

here the [max j , min j ] is the value range of the j th variable where

he wolf is located; ω is the distance control factor. If the fitness

alue of the target is greater than the current value after the wolf

cout attacks, it will replace the current position. Otherwise, it will

emain unchanged. 

(5) Population update: The wolf pack is updated by distributing

food, the wolf with the worst function value is eliminated,

and the same number of wolves are randomly generated to

replace the wolf pack according to the initialized wolf pack

position Eq. (7) until the iteration number reaches the max-

imum value T max , and the fitness function value and the po-

sition information of the optimal deployment of heteroge-

neous nodes are output, otherwise, (2) running behavior is

executed. 

.3. Algorithm improvement 

WPA has various search strategies and strong global search ca-

ability, but there are still some deficiencies in solving optimiza-

ion problems. For example, in the summoning and besieging be-

aviors, the running step size and besieging step size are fixed val-

es, which reduces the global searching ability of the algorithm,

akes the algorithm fall into local optimization prematurely, and

auses the algorithm to be premature. In view of the above prob-

ems, the running step length and the besiege step length in WPA

re improved. 

.3.1. Improvement of running step 

In the basic WPA algorithm, the summoning behavior uses a

xed running step size, which reduces the algorithm’s local search

apability and diversity of search strategies and makes the al-

orithm easily fall into local optimization prematurely. Therefore,

ogistic Function is introduced in this paper. Logistic function is

ounded, continuous, derivable and strictly monotonic: when x ap-

roaches negative infinity, y approaches zero; When x approaches

ositive infinity, y approaches 1; When x = 0, y = 0.5. The calcula-

ion equation is shown in Eq. (12) : 

 = 

1 

1 + e −x 
(12)

At the beginning of the summoning behavior, the fierce wolf

eeds to stride towards the position of the head wolf and gradu-

lly reduce the running length as the distance decreases, moving

lowly towards the prey. Through Logistic function, the running

tep can be transformed into variable and mapped into interval

0,1), so that the running step decreases in interval (0,1) and the

ptimal solution can be searched more accurately. The improved

unning step equation is shown in Eq. (13) : 

tepb = 

1 

1 + e 2 ln 100 × T 
T max 

−ln 100 
× T max − T + 1 

T max 
(13)

.3.2. Improvement of besieging step 

Various studies have shown that the flight behavior of many

nimals and insects in the process of predation shows Levy flight



Y.U. Xiu-wu, Y.U. Hao and L. Yong et al. / Computer Networks 167 (2020) 106994 5 

w  

s  

i  

L  

a  

l  

m

 

fi  

r  

e  

t  

t  

f  

l  

p

X

 

t  

w  

o

s

W  

(

σ

E  

r  

s  

t  

i  

s  

g

5

n

 

g  

t  

h  

s  

n  

H  

w  

n  

d  

 

w  

r  

L  

i  

a  

m  

T  

t  

t  

t  

h  

t  

o  

o

5

 

c  

o  

n  

c  

a  
ith power law, that is, long-time short-distance back-and-forth

earch trajectory and short-time long-distance search trajectory are

nterspersed with each other, which is the main characteristic of

evy flight. Scholars have also confirmed that many birds in nature

lso follow Levy flight, especially when searching for targets in a

arge space and with limited searchers, Levy flight is one of the

ost effective search strategies. 

In the basic besiege behavior of the wolf pack algorithm, the

xed besieging step size reduces the search capability of the algo-

ithm. Levy flight is applied to the besiege. The large step in the

arly stage of the besiege is used to find the target, which expands

he search scope to avoid the algorithm falling into local optimiza-

ion. The small step size in the later stage of the besiege is used

or precise search, making wolves search for the global optimal so-

ution in a small range. The besiege behavior equation of the im-

roved wolf pack algorithm is shown in Eq. (14) : 

 i ( T + 1 ) = X best ( T ) + rand � s � | X best ( T ) − X 1 ( T ) | (14) 

In the equation, X i ( T ) is the position of the i th besiege wolf in

he t th generation; X best ( T ) is the optimal solution for the current

olf pack. s is the random step size of Levy flight, which can be

btained from Eq. (15) : 

 = 

μ

υ
1 
β

(15) 

here the parameters μ, υ conform to normal distribution: μ~N

0, σ 2 ), υ~ (0, 1), σ can be obtained from Eq. (16) : 

= 

{ 

�( 1 + β) sin 

(
πβ

2 

)
β�

(
1+ β

2 

)
2 

β−1 
2 

} 

1 
β

, ( 0 ≤ β ≤ 2 ) (16) 

q. (13) to (15) show that the length of the besiege behavior is

andom and has no fixed size and direction. In the process of

earching iteration, the new solution near the local optimal solu-

ion makes the WPA easily jump out of the local optimal solution,

mproving the quality of the optimal solution and enhancing the

earching ability of the algorithm. The flowchart of WPA with Lo-

istic function and levy flight (LWPA) is as follows. ( Fig. 1 ). 
Fig. 1. The process of LWPA. 
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. Cluster routing algorithm for heterogeneous sensor 

etworks 

The energy heterogeneous sensor network based on LWPA al-

orithm which is proposed in Section 4 is essentially equivalent

o a static clustering network with heterogeneous nodes as cluster

eads and corresponding cluster division. In LWPA heterogeneous

ensor networks, heterogeneous nodes becoming cluster heads will

ot lead to premature node death due to energy consumption.

owever, for large-scale sensor networks, static clustering net-

orks have problems such as fast death of non-heterogeneous

odes, short network life cycle and stability cycle, large redun-

ancy of transmission data, high network energy consumption, etc.

In order to overcome the shortcomings of static clustering net-

orks, this section proposes an energy heterogeneous network

outing algorithm based on dynamic clustering on the basis of

WPA routing algorithm (CLWPA).The core idea of the algorithm

s: Firstly, the number of heterogeneous nodes with φ is preset,

nd the heterogeneous nodes are deployed according to the opti-

al deployment algorithm of heterogeneous nodes in Section 4 ;

hen common nodes in the network are clustered according to

he improved DEEC algorithm and cluster heads are selected. Af-

er clustering, member nodes in the cluster send data to the clus-

er head of the cluster where they are located; Finally, the cluster

ead node performs corresponding processing on its own data and

he received data, and sends the processed data to the sink node

r the corresponding heterogeneous node through multiple hops

f the cluster head layer node. 

.1. The election of cluster head 

Dynamic clustering of wireless sensor networks can reduce the

ommunication distance between nodes, reduce the redundancy

f transmission data, and reduce the energy consumption of the

etwork. Compared with LEACH and SEP algorithms, the classi-

al DEEC algorithm takes into account the initial energy of nodes

nd the current residual energy of nodes in the process of cluster

ead election, which increases the probability of high initial energy

odes and high residual energy nodes becoming cluster heads, bal-

nces the network load and prolongs the network life cycle. How-

ver, DEEC algorithm does not consider the location of nodes in the

luster head election process. If a large number of cluster heads

re distributed at the edge of the monitoring area and the clus-

er heads are far away from heterogeneous nodes or sink nodes,

xcessive energy will be consumed in the data transmission pro-

ess, resulting in rapid death of cluster heads. To overcome this

hortcoming, this section introduces the concept of edge degree to

mprove the threshold function O ( v i ) of cluster head election. On

his basis, DEEC clustering routing algorithm based on edge degree

IDEEC) is proposed. The calculation is shown in Eq. (17) : 

 ( v i ) = 

{ 

K p i 

1 −p i 

(
r mod 1 

p i 

) , v i ∈ G 

0 , v i / ∈ G 

(17) 

here G indicates all common nodes of the 1/ p i round that do

ot serve as cluster heads; p i is the probability of common node

 i becoming cluster head; r is the current number of rounds; K is

dge degree, The calculation equation is shown in Eq. (18) : 

 = A 

E i ( r ) 

Ē ( r ) 
+ B 

[
1 − exp 

(
−d toBS 

d i, j 

)]
(18)

here A and B are the control factor, The value range is between

ntervals (0,1) and the sum of the two is 1; E i ( r ) is the remaining

nergy of the node v i of the r th wheel; Ē (r) is the average en-

rgy of all common nodes in the r th round; d avg is the average

istance from all cluster heads to sink nodes; d ( i ) is the distance
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from the cluster head to the sink node. Since the energy consump-

tion of heterogeneous nodes does not need to be considered in the

energy heterogeneous sensor network, cluster head nodes are se-

lected from ordinary nodes, and the probability that each ordinary

node becomes a cluster head is as shown in Eq. (19) : 

p i = 

1 

1 + kλ
× E i ( r ) 

Ē ( r ) 
× p opt (19)

Where P opt is the ratio of the set number of cluster heads to the

total number of nodes; λ is the ratio of the number of heteroge-

neous nodes to the total number of nodes; k is the ratio of the total

initial energy of heterogeneous nodes to common nodes. According

to Eq. (17) and (19) , the calculation Eq. (20) of the optimal value
Fig. 2. The process of cluster head election. 
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 CH of the cluster head number of each round can be obtained: 

 CH = 

∑ n 
i =1 p i 
p opt 

(20)

Since the nodes are uniformly distributed in the monitoring

rea, the expectation of the square of the distance between the

odes in the cluster and the cluster head can be calculated by

q. (21) : 

 

[
d 2 toCH 

]
= 

R 

2 

2 πn CH 

(21)

In order to calculate the average distance from the cluster head

o the sink node, assuming that the coordinates ( x 0 , y 0 ) = ( λR , ψ R ),

 ≤λ, ψ ≤ 1, any cluster head coordinates are ( x,y ) and uniformly

istributed in the monitoring area, and the probability density dis-

ribution ρ( x,y ) = 1/R 

2 , the Expectation of the square of the cluster

ead to sink node is: 

 

[
d 2 toBS 

]
= 

1 
R 2 

∫ ∫ 
R ×R 

[
( x − λR ) 

2 + ( y − ψR ) 
2 
d xd y 

]
= 

(
2 
3 

− λ − ψ + λ2 + ψ 

2 
)
R 

2 
(22)

.2. The process of cluster head election 

This section proposes an energy heterogeneous clustering rout-

ng algorithm (CLWPA) based on LWCA and IDEEC. Assuming that

he number of heterogeneous nodes in the sensor network is ϕ,

nd the number of cluster heads of common nodes is calculated

ccording to Fomula (20) , Then the process chart is as follows ( Fig.

 ). 

tep1: According to the heterogeneous node optimal deployment

algorithm in section, ϕ heterogeneous nodes are optimally

deployed; 

tep2: According to IDEEC algorithm, n CH cluster heads are se-

lected from common nodes and clustered.; 

tep3: The member node γ in the cluster transmits the collected

data to the cluster head of the cluster in a given time slot

(TDMA), and the cluster head processes the data; 

tep4: The cluster head calculates the distance from itself to the

heterogeneous node: if the distance from v ch to the nearest

heterogeneous node is within one hop, the data is directly

sent to the heterogeneous node; Otherwise, v ch is sent to

the nearest heterogeneous node through multiple hops of

cluster head layer nodes; 

tep5: When the energy of the cluster head node is exhausted, the

cluster head election and clustering are carried out again

according to IDEEC algorithm, and the transmission modes

of the nodes in the cluster and the cluster head are un-

changed. 

The data transmission mode in CLWPA cluster heterogeneous

etwork is ( Fig. 3 ): 
Fig. 3. Data transmission mode. 
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Table 1 

Transmission parameters value. 

Parameters Value 

Simulation area /m 

2 200 × 200 

The initial node energy /J 0.5 

Number of nodes 200 

E elec /nJ • bit −1 50 

E fs /pJ • bit −1 • m 

−2 10 

E mp /pJ • bit −1 • m 

−4 0.0013 

E DA /nJ • bit −1 • 5 

broadcast packet /bit 200 

Data packet /bit 4000 

d 0 /m 87.7 

p opt 0.1 

6

 

t  

c  

a  

s  

N  

p  

e

 

m  

c  

i  

a  

n  

c  

d  

a

6

 

e  

d  

F  

n  

w  

Fig. 5. Comparison of lifetime. 
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. Simulation and analysis 

In order to verify the validity of CLWPA, Matlab2018-b is used

o simulate and test the algorithm. Assuming that the communi-

ation channel is ideal and the influence of random factors such

s signal collision is ignored, the network model and energy con-

umption model of the monitoring area are shown in sections 2.

odes are randomly distributed in the simulation area by man-

ower, and sink nodes are located outside the monitoring area. The

xperimental parameters in the simulation are shown in Table 1 . 

Assuming that there are 4 energy heterogeneous nodes in the

onitoring network, EDDEEC and KCA respectively deploy the lo-

ations of the heterogeneous nodes according to their algorithm

deas. In the CLWPA algorithm, heterogeneous nodes are deployed

ccording to LWPA optimization algorithm, and then the optimal

umber of cluster heads is calculated according to Eq. (15) and

ommon nodes are clustered. Since the sensor nodes are randomly

istributed in the monitoring area, 50 experiments are conducted

nd the average value is taken as the experimental result. 

.1. Networks stable period analysis and lifetime 

In the simulation experiment, the number of rounds experi-

nced by the sensor network from the start of operation to the

eath of the first node is called the stable period of the network.

ig. 4 shows the stable periodic variation curves of four heteroge-

eous network routing algorithms in scenarios with different net-

ork area sizes. The experimental results show that the stable pe-
Fig. 4. Comparison of stable period. 
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o  

t  
iod of CLWPA algorithm is the longest, followed by HRMIP and

CA algorithms, and EDDEEC algorithm is the shortest. The stable

eriod of CLWPA is increased by about 33% on average compared

ith HRMIP, while the stability period of HRMIP is increased by

bout 22% compared with KCA. The EDDEEC directly arranges het-

rogeneous nodes in the cluster head, increasing the number of

odes forwarding data, thus resulting in too fast energy consump-

ion and short stability period. 

Fig. 5 shows the lifetime variation curves of four heterogeneous

etwork routing algorithms under different network area sizes. In

he simulation, when 10% of the nodes in the sensor network died,

he sensor network was deemed to be invalid. The simulation re-

ults show that the lifetime of sensor network is similar to the

table period. CLWPA adopts dynamic clustering method for data

ransmission on the basis of optimal deployment of heterogeneous

odes, so the energy consumption of common nodes is less and

ore balanced, so the lifetime of sensor networks is significantly

ncreased. Compared with the HRMIP, the lifetime is increased by

5.3% on average, while the HRMIP algorithm optimizes the de-

loyment of heterogeneous nodes, so the lifetime of the HRMIP is

ncreased by 16% on average compared with the KCA, while ED-

EEC does not optimize the deployment of heterogeneous nodes,

o the lifetime is the shortest. 

.2. Number of surviving nodes 

Fig. 6 shows the relationship between the number of surviv-

ng nodes and the number of rounds under the same network area

ize. In the simulation, a node is considered dead when it con-

umes 99% of the initial energy. The simulation results show that

he first node death of CLWPA occurs in 1167 rounds, the first node

eath of HRMIP occurs in 882 rounds and KCA and EDDEEC occur

n 701 rounds and 398 rounds respectively. As can be seen from

ig. 6 , CLWPA ensures the survival of all nodes in a longer time. As

he energy consumption of the network is relatively balanced and

he residual energy of the nodes is very small, the death rate of the

odes will suddenly accelerate in the later stage of the simulation.

.3. Energy consumption 

Fig. 7 shows the relationship between the standard deviation

f the node’s remaining energy and the number of rounds when

he algorithm is running under the same simulation environment.
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Fig 6. Comparison of surviving nodes. 

Fig. 7. Comparison of residual energy standard deviation. 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of energy consumption. 

Fig. 9. Comparison of data transmission delay. 
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It can be seen from the figure that in any environment, the energy

consumption difference of each node in EDDEEC is the largest, be-

cause heterogeneous nodes are not optimized and nodes near sink

nodes repeatedly become cluster heads, resulting in unbalanced

residual energy of nodes. For KCA and HRMIP, the optimal deploy-

ment of heterogeneous nodes reduces the average path length of

nodes, but the fixed data transmission structure of the network

leads to unbalanced energy consumption among nodes. In CLWPA

algorithm, distant nodes forward data through the cluster head,
nd the cluster head node is in a state of dynamic update, so the

nergy consumption is more uniform. 

Fig. 8 shows the energy consumption of the four algorithms

nder different node numbers. As the simulation area becomes

enser, more data transmission occurs in the network, which

akes the average energy consumption of EDDEEC algorithm and

CA algorithm larger than that of the other two algorithms. Be-

ause the CLWPA needs to complete dynamic clustering to balance

he energy consumption of nodes, and may not choose the short-

st path for data transmission, the average energy consumption of

he CLWPA is slightly higher than that of the HRMIP. Simulation re-

ults show that the average energy consumption of HRMIP is 8.3%

ower than that of CLWPA, and the average energy consumption of

LWPA algorithm is about 31.9% lower than that of KCA. 

.4. Data transmission delay 

Data transmission delay is one of the important standards to

easure the performance of routing algorithms. The smaller the

verage delay, the better the stability of data transmission. Fig. 9

hows the relationship between the average transmission delay of

he four algorithms and the number of rounds. As can be seen
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rom the figure, when HRMIP and CLWPA transmit data through

he shortest path, the data transmission delay is smaller than KCA

nd EDDEC algorithms. However, the latency of CLWPA is slightly

arger than that of HRMIP because CLWPA needs to elect the clus-

er head and uses dynamic clustering to transmit data. The simu-

ation results show that the average delay of HRMIP is 18% lower

han that of CLWPA, and the average delay of CLWPA is 35.1% lower

han that of KCA. 

. Conclusions 

In order to effectively prolong the stable period and lifetime

f the network, a clustering heterogeneous network routing algo-

ithm CLWPA is proposed. Firstly, the improved WPA is used to

ptimize the deployment of heterogeneous nodes. Secondly, DEEC

nd heterogeneous network routing algorithm are combined to

orm CLWPA. Finally, the performance of the algorithm is com-

ared with three typical routing algorithms through simulation

xperiments. The simulation results show that the CLWPA makes

he energy consumption of nodes more uniform, ensures that all

odes remain alive for a longer period of time, effectively avoids

he phenomenon of premature death of cluster heads, and makes

he death time of nodes more concentrated. therefore, the CLWPA

ffectively prolongs the stability cycle and life cycle of the net-

ork, and increases the proportion of the stability cycle in the

ife cycle. CLWPA, with its excellent performance, can be widely

sed in a series of complex and harsh monitoring environments

uch as radioactive monitoring of uranium tailings ponds, ground

ressure disaster monitoring of underground mines, environment

onitoring of smart grid and equipment monitoring. In the future

ork, the optimal deployment of multi-dimensional wireless sen-

or nodes and the optimal deployment of mobile sink nodes are

orth studying. 
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