

A Scheduling Scheme in the Cloud Computing Environment Using Deep Q-learning

Journal Pre-proof

A Scheduling Scheme in the Cloud Computing Environment Using
Deep Q-learning

Zhao Tong, Hongjian Chen, Xiaomei Deng, Kenli Li, Keqin Li

PII: S0020-0255(19)30997-1
DOI: https://doi.org/10.1016/j.ins.2019.10.035
Reference: INS 14951

To appear in: Information Sciences

Received date: 7 June 2018
Revised date: 29 July 2019
Accepted date: 17 October 2019

Please cite this article as: Zhao Tong, Hongjian Chen, Xiaomei Deng, Kenli Li, Keqin Li, A Scheduling
Scheme in the Cloud Computing Environment Using Deep Q-learning, Information Sciences (2019),
doi: https://doi.org/10.1016/j.ins.2019.10.035

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.ins.2019.10.035
https://doi.org/10.1016/j.ins.2019.10.035

A Scheduling Scheme in the Cloud Computing

Environment Using Deep Q-learning

Zhao Tonga, Hongjian Chena, Xiaomei Denga, Kenli Lib, Keqin Lib,c

aCollege of Information Science and Engineering, Hunan Normal University, Changsha,
410012, China.

bCollege of Information Science and Engineering, Hunan University, and National
Supercomputing Center in Changsha, Changsha, 410082, China.

c Department of Computer Science, State University of New York, New Paltz, New York,
12561, USA.

Abstract

Task scheduling, which plays a vital role in cloud computing, is a critical fac-
tor that determines the performance of cloud computing. From the booming
economy of information processing to the increasing need of quality of service
(QoS) in the business of networking, the dynamic task-scheduling problem
has attracted worldwide attention. Due to its complexity, task scheduling has
been defined and classified as an NP-hard problem. Additionally, most dy-
namic online task scheduling often manages tasks in a complex environment,
which makes it even more challenging to balance and satisfy the benefits of
each aspect of cloud computing. In this paper, we propose a novel artificial
intelligence algorithm, called deep Q-learning task scheduling (DQTS), that
combines the advantages of the Q-learning algorithm and a deep neural net-
work. This new approach is aimed at solving the problem of handling directed
acyclic graph (DAG) tasks in a cloud computing environment. The essential
idea of our approach uses the popular deep Q-learning (DQL) method in
task scheduling, where fundamental model learning is primarily inspired by
DQL. Based on developments in WorkflowSim, experiments are conducted
that comparatively consider the variance of makespan and load balance in
task scheduling. Both simulation and real-life experiments are conducted
to verify the efficiency of optimization and learning abilities in DQTS. The
result shows that when compared with several standard algorithms precoded
in WorkflowSim, DQTS has advantages regarding learning ability, contain-
ment, and scalability. In this paper, we have successfully developed a new
method for task scheduling in cloud computing.

Preprint submitted to Information Sciences October 24, 2019

Keywords: Cloud computing, Deep Q-learning algorithm, Directed acyclic
graph, Task scheduling, WorkflowSim.

1. Introduction

Currently, scientific computing and e-commerce applications are coherent
models with interrelated tasks that can be described as models of workflow,
and these dependent tasks can be decomposed into tens of thousands of
small tasks, depending on the application complexity. The workflow model
is extensively applied to represent these applications via DAG, in which its
nodes represent tasks, and its directed edges represent dependencies as in
precedence task relations [1]. These large-scale workflow applications are
deployed in the cloud computing environment rather than the traditional
distribution system for a shorter task execution time. None of the current
approaches or methods can singly fulfill task scheduling due to its unique
characteristics. Specifically, guided random search-based scheduling is a new
computing paradigm with robust capability for solving task-scheduling prob-
lems. However, such stochastic algorithms have drawbacks, such as creating
considerable time complexity and contending with the dynamic cloud envi-
ronment and its miscellaneous complications that have made it even more
unadaptable.

With the development of artificial intelligence, researchers now use stochas-
tic algorithms such as the genetic algorithm (GA) [2] to optimize the weight
and threshold of back-propagation (BP) neural networks. This approach is
used to solve the problem of performing a task under multiplex conditions
with unknown properties, where an agent is particularly needed. Neverthe-
less, it is difficult to train a BP neural network without an obtainable training
set from a complex environment with indeterminable factors. Obviously, an
agent is a correct action performed by an intelligent object trying to complete
a task. The action of an object in any given environment can be described as
the process of the model’s decision making, called Markov decision processes
(MDPs) [3].

The indeterminate nature of the cloud computing environment poses chal-
lenges to finding a proper algorithm for the solution because of the typical
phenomenon of randomness that accompanies task execution time. Although
objective function is explicit to an equation or a value, the computing re-
source is dynamic, and feedback regarding the action of an object in the

2

scheduler is uncertain. In other words, a stochastic algorithm can hardly
solve this random state process due to the unclear objective function. Rein-
forcement learning methods, such as Q-learning [4], are more reliable because
a discounted future reward is obtained when transiting from one state to an-
other. Based on the foundation of MDP theory, Q-learning is a useful and
meaningful method for solving problems of agent actions under different com-
plicated conditions. However, in Q-learning, as the number of object states
increases, the table matrix of the state action set in Q-learning becomes too
large to store and perform the search. With widely used BP neural networks,
this problem is solved with a more concise and accurate table matrix, and
this approach is applied by more researchers.

Recently, the environment in dynamic decision-making is becoming more
and more complex for a large number of alternatives, high time constraints
and uncertainty decision. However, the simple task that consisted of de-
cision process is simple that with less properties and constraints. Simple
tasks can also have dynamic complexity in the continuous time strategy. RL
algorithms advance modeling in a continuous dynamic and complexity en-
vironment, using RL algorithms for dynamic decision making has become a
new research direction [5]. RL is highly effective in dynamic dispatch opti-
mization problems [6]. Recent works present deep reinforcement learning as
a framework to model the complex interactions and cooperation in dynamic
decision-making environments. Yang et al. [7][8] have done multi researches
on DRL in decision-making with the subject of Deep Multi-agent Reinforce-
ment Learning (RDMRL). Fu et al. [9] applied deep reinforcement learning
in cooperative multi-agent settings with discrete-continuous hybrid action
spaces. Tang et al. [10] proposed several architectures, i.e., Ind-hDQN,
hCom and hQmix, for both synchronous and asynchronous hierarchical deep
MARL. Google’s DeepMind applied a deep Q-network (DQN) [11] to train
agents in a convolutional neural network (CNN) that acquired only image
pixels of games and successfully surpassed human-level skill. This method has
also provided new approaches to autonomous driving, artificial intelligence,
big data analysis, and so on. Motivated by this method, we implement the
deep Q-learning method to complete jobs in task scheduling accurately and
to verify the adaptability in a more complex environment, such as in the
elastic cloud environment and online task scheduling.

In this paper, we propose a novel artificial intelligent workflow-scheduling
algorithm, called deep Q-learning task scheduling (DQTS). This new ap-
proach combines a back-propagation network and Q-learning algorithm for

3

their respective advantages in obtaining less makespan of workflow in the
cloud computing environment and achieving the best load balance in each
computing node. The main contribution of this paper is as follows:

• We propose a training algorithm along with a training set defined in
a dynamic online task-scheduling problem and illustrate the structure
of the DQTS algorithm in the cloud computing environment, defining
the cloud model, task model, and scheduling architecture.

• We design the program framework, forward the model using cross-
platform implementation, optimize hyperparameters within programs
and implement the DQTS algorithm for dependent workflow task schedul-
ing.

• We implement the entropy weight method to the principle design of a
bi-objective optimization problem (including makespan and load bal-
ance) and apply the novel DQTS algorithm to produce a high-quality
solution in dynamic cloud computing.

• We assess the algorithm performance using WorkflowSim and compare
it with different workflow benchmarks (including CyberShake 2000, In-
spiral 2000, Montage 2000 and Sipht 2000). The results show that our
algorithm improves the performance both in makespan and load bal-
ance.

The rest of this paper is organized as follows. Section 2 presents the
related work on scheduling algorithms in the cloud computing environment.
Section 3 describes the cloud computing environment, task model, and schedul-
ing structure. Section 4 explains the main content of DQTS, with the theory
and design principle. Section 5 compares the performance of the proposed
algorithm with existing classic algorithms and analyzes the experimental re-
sults. Section 6 concludes the paper and introduces directions for future
work.

2. Related Work

Task scheduling is a well-known NP-hard problem since an efficient polynomial-
time algorithm does not exist; consequently, a considerable number of ar-
tificial intelligence algorithms have been proposed to obtain a suboptimal
solution. Furthermore, these algorithms commonly focus on minimizing the

4

execution time, called makespan. There are three typical scheduling algo-
rithms that have been proposed: the list-scheduling algorithm, clustering-
scheduling algorithm, and duplication-scheduling algorithm. Among them,
the list-scheduling algorithm is the most widely used heuristic algorithm,
and the classic list-based heuristics-scheduling algorithm implements fea-
tures that include heterogeneous earliest finish time (HEFT) [12], stochastic
dynamic-level scheduling (SDLS) [13], predicted earliest finish time (PEFT)
[14], and improved predicted earliest finish time (IPEFT) [15]. Commonly,
these algorithms accomplish scheduling in two steps: first, constructing a
sequence of tasks by assigned task priorities, and second, sequentially allo-
cating each task from the sequence to computing nodes that allow for the
earliest start time. Clustering heuristics algorithms map all tasks with an
indefinite quantity to different clusters [16]. In contrast to list-scheduling
heuristics, clustering heuristics algorithms require a second phase to sched-
ule task clusters to the processors. Under these conditions, only a sufficient
number of processors can result in an advantage, which is impractical in prac-
tice. Typical clustering heuristics algorithms include techniques of dominant
sequence clustering (DSC) [17], task duplication-based scheduling (TDS) [18],
and heterogeneous selection value (HSV) [19]. The duplication-scheduling al-
gorithm can efficiently reduce the makespan of scheduling DAG tasks when
the communication cost is significant, that is, the duplication method can
effectively reduce or avoid interprocessor communication. Many algorithms
have been proposed to incorporate this technique into scheduling [20], [21].
Bozdag et al. [22] addressed the problem of scheduling that requires a pro-
hibitively large number of processors, proposing a combination of the SDS
and SC algorithms to obtain a two-stage scheduling algorithm that produces
schedules with high quality and low processor requirements. However, for
computation-intensive tasks, the performance of these algorithms is not sig-
nificant. In recent years, most researchers are studying grids, clusters and
other typical heterogeneously distributed computing environments, and task
scheduling is performed for only a fixed number of resources. In contrast to
the cloud computing environment, cloud service providers often offer a better
and scalable resource, and the tasks accepted are also arranged differently
according to their variance and type.

In the cloud computing environment, some related work on workflow
scheduling strategies research is presented. For instance, Teylo et al. [23]
proposed a new workflow representation, in which nodes of the workflow
graph represent either tasks or data files, the edges of the workflow graph

5

represent their relationship, and this workflow defines the task-scheduling
and data assignment problem as a new model. It is worth noting that they
also formulated this problem as an integer-programming problem. Wang et
al. [24] presented a solution, the objective of which is to minimize the data
transfer of workflows allocated in multiple data centers. In this way, the
purpose of reducing communication between nodes can be achieved. To this
end, his work defined the initial data locality by using the k-means cluster-
ing algorithm. Arabnejad and Barbosa [25] proposed the multi-QoS profit-
aware scheduling algorithm and achieved good adaptability by studying the
scalability of the algorithm with different types of workflows and infrastruc-
tures. The experimental results proved that their strategies improved cloud
provider revenue significantly and obtained comparably successful rates of
completed jobs. Zhao and Sakellariou [26] proposed the merging of mul-
tiple workflow applications into a single DAG workflow, and by using this
method, the job can be finished through any traditional DAG scheduling al-
gorithms to minimize the total makespan and achieve overall fairness. This
approach is formulated and resolved based on issues of competition in re-
sources with multiple other DAGs. Kanemitsu et al. [27] proposed a prior
node-selection algorithm (LBCNS) to select a subset of given nodes to mini-
mize the schedule length while fairly scheduling each job. The experimental
results show that their algorithms have the best fairness for scheduling mul-
tiple workflow jobs, while the priority-based approach achieves the minimum
schedule length with the highest efficiency for single- or multiple-workflow
jobs. Chen et al. [28] proposed a scheduling algorithm incorporating both
event-driven and periodic rolling strategies for dynamic workflow scheduling.
The experimental results show that their proposed algorithm performs better
than classic algorithms. Zhang et al. [29] proposed a novel reliability maxi-
mization with energy constraint (RMEC) algorithm that incorporates three
important phases, including task priority establishment, frequency selection,
and processor assignment, and the RMEC algorithm can effectively balance
the tradeoff between high reliability and energy consumption. Based on both
randomly generated task graphs and the graphs of some real-world applica-
tions, the result shows that RMEC surpasses the existing algorithms. Wei
et al. [30] proposed an intelligent QoS-aware job-scheduling framework for
application providers, which learns to make appropriate online job-to-VM
decisions for continuous job requests directly from its experiences without
any prior knowledge. The experiment uses the real-world NASA workload
traces, and the results show that the algorithm reduced the average job re-

6

sponse time to 40.4 compared with the best baseline for NASA traces. Zhang
et al. [31] proposed an energy efficient scheduling scheme based on deep
Q-learning model for periodic tasks in real-time systems (DQL-EES). The
especial feature is the paper combining a stacked auto-encoder in the deep
q-learning model to replace the Q-function for learning the Q-value of each
DVFS technology for any system state.

Jiang et al. [32] proposed a corresponding algorithm that cooperates with
a dynamic-voltage and frequency-scaling (DVFS) technique to address the
above concern and evaluated the algorithm in terms of randomly generated
DAGs, real-application DAGs and their hybrids under DVFS-enabled HCS.
However, these scenarios, in general, are designed for a single application
that is not suitable for a dynamic cloud environment, where a large number
of workflows will be submitted from time to time. In addition, these complex
environments have made task scheduling a difficult problem.

To the best of the authors’ knowledge, the approach proposed in this
article is the first to use a deep Q-learning algorithm to solve the workflow
problem. In this way, we can consider both problems together by proposing
a model as well as an algorithm to minimize the makespan and find the best
load balance of workflows in cloud environments. Our approach takes into
account different process capacities of the computing node, task execution
time and data transfer time in these cloud computing environments. The
following section formulates the problems that are considered in this article.

3. System Architecture and Problem Description

In this section, we first define the task model and model of cloud com-
puting corresponding to the task-scheduling scheme. Second, we propose the
deep Q-learning scheduling architecture for the cloud environment and ex-
plain approaches to obtain the training set for this model, the architecture of
DQTS in WorkflowSim, and the neural network structure used in this paper.
Accordingly, we formulate the task-scheduling problem.

3.1. Cloud Computing Model

In cloud computing, tasks submitted by a user are allocated to cloud
nodes based on the scheduling strategy. Therefore, a proper selection of the
scheduling strategy is vital for an optimal task completion time. Fig. 1
illustrates the model of online dynamic task scheduling for a typical cloud
computing scenario, in which users can submit their tasks at any time. In this

7

case, a task dynamically arrives at the task queue after user submission. The
data center broker, depending on different requirements such as makespan,
load balance, economic principle, etc., selects the best scheduling strategy to
allocate the task to the computing nodes. In this paper, tasks are dynamically
submitted to the scheduler by users, and the number of tasks and types is
unknown before they arrive at the task queue. We aim for the optimal
distribution strategy to the cloud nodes. Meanwhile, it is assumed that the
tasks submitted to the scheduler are nonpreemptive. The computing nodes
are heterogeneous and scalable, but the bandwidth is the same.

1

2

3

 n

1

2

3

m

Figure 1: Model of task scheduling in cloud computing

3.2. Task Model

The task model can be divided into the dependent task and independent
task. Moreover, an independent task model has the relationship of tasks such
that they are independent and do not require any communication. Therefore,
to achieve a faster scheduling target, tasks can be preempted. Additionally,
this kind of task scheduling is easy to implement. Generally, dependent
task scheduling models are composed of a set of dependent tasks and an
interconnected processor. The dependency of data and order of execution
can be represented by a DAG. Therefore, the DAG scheduling model can be
defined as a quaternion:

G = (T,E,C,W) (1)

8

where T = {ti|i = 1, 2, ..., n}, denotes the collection of n task nodes. |T | = n
corresponds to the vertices in the DAG. Each node in the DAG represents a
task of a parallel program. It is usually a code or instruction in the program
and is the smallest unit of task scheduling; it cannot be preempted. The
directional edges in the DAG {Eij = e(i, j)} ∈ E denote the relationship
between task ti and tj. When task ti is implemented, the results of ti must
be passed to tj. Therefore, we also call task ti the predecessor of task tj
(parent node), and task tj is the successor of task ti (child node). The
weight of the directed edge is defined as c(i, j) ∈ C, which represents the
communication cost between task ti and task tj. However, a communication
cost is only required when two tasks are assigned to different computing
nodes. Therefore, the communication cost can be ignored when tasks are
assigned to the same node. The weight on a task ti is denoted as wi ∈ W ,
which represents the computation cost of the task. Commonly used terms in
DAG scheduling are shown in the Table 1.

9

Table 1: Commonly used terms in DAG scheduling

Notation Definition

ti task node
wi entropy weight

n
total number of virtual ma-
chines

mi

current task-processing
time of each virtual ma-
chine

li

accumulated processing
time of each virtual ma-
chine

Pred(ti)
the predecessor set of node
ti

Succ(ti) the successor set of node ti
IL(ti) the level of node ti
P k no. k processor

ST (ti : pk)
the start time of task ti on
processor pk

FT (ti : pk)
the completion time of task
ti on processor pk

EFT (ti)
the earliest completion time
of the task

Some of the definitions in DAG scheduling are as follows:

Definition 1. The set of all parent nodes of node ti is called the parent node
set of ti and is denoted by pred(ti). The set of all child nodes of node ti is
called the child node set of ti and is denoted by succ(ti).

Additionally, if a node does not have any parent nodes, it is called an
entry node, denoted by tentry. If a node does not have any child nodes, it
is called an exit node, denoted by texit. If there are multiple entry nodes in
a DAG, it is necessary to add a virtual entry node to the DAG. This node
has zero cost on each processor, and all real entry nodes are connected to
the virtual entry node by a directed edge with zero communication weight.

10

Similarly, if there are multiple exit nodes in a DAG, it is necessary to add a
virtual exit node to the DAG. This node has zero cost on each processor, and
all real exit nodes are connected to the virtual exit node by a directed edge
with zero weight. This approach ensures that the DAG contains only one
entry node and one exit node and guarantees the equivalency of the DAG.

Definition 2. When processor pk has just started a task or completed a
task and becomes idle, the time is called the processor idle time, denoted by
AT (pk).

Definition 3. The start time of task ti on processor pk is denoted as ST (ti :
pk):

ST (ti : pk) = max(maxtj∈pred(ti)(FT (tj : pl)

+ C(Eji)/W (pl, pk)), AT (pk))
(2)

where FT (tj : pl) is the completion time of task tj on processor pl, tj ∈
pred(ti). W (pl, pk) represents the communication rate between processor pl

and processor pk. If l = k, then task ti and its parent task tj are assigned to
the same processor, and the communication cost between them is zero.

Definition 4. The completion time of task ti on processor pk is denoted as
FT (tj : pk):

FT (ti : pk) = ST (ti : pk) +W (ti : pk) (3)

Definition 5. The earliest execution time of task ti on processor pk repre-
sents the earliest start time, denoted as EST (ti):

EST (ti, p
j) = max{availj,
max(AFT (tk) + c(tk, p

j))}, tk ∈ pred(ti)
(4)

where availj represents the earliest time to prepare for task execution of
processor pj. AFT (tk) denotes the actual completion time. EST is calculated
from tentry. Thus, the earliest start time of task tentry is ESTentry,pj = 0.

3.3. Problem Description

In general, the task-scheduling problem is considered the assignment and
execution of tasks under QoS requirements. In the QoS requirements, we
considered two aspects of task scheduling, including reaching the minimum

11

makespan of task scheduling in cloud computing and a simple load-balance
policy of total time per processor processed. To merge the two objectives into
a reward value to accommodate Q-learning, we used weights for the expres-
sion. In this paper, we use the entropy weight method (EWM) to compute
task feedback. Entropy is a measure of the disorder of a system. If the infor-
mation entropy of the variable is smaller, the more information the variate
provides, the larger the role it plays in the comprehensive evaluation, and
the higher the weight should be. Therefore, the tool of information entropy
can be used to calculate the weight of each variable to provide a basis for the
comprehensive evaluation of multiple variables [33]. The task execution size
and the processing time are two different types of data, and their quantita-
tive properties vary widely [34]; therefore, to settle this problem, they must
first be normalized to the feedback. The current task-processing time of each
virtual machine is mi (i = 1, 2, ...,n), and the number of virtual machines is
n. In addition, we use li (i = 1, 2, ...,n) to express the current accumulated
processed time of each virtual machine. Then, we define the normalized ma-
trix Ni,j = {ni,j; i = 1, 2, ...,n; j = 1, 2}. The step of the entropy method is
as follows:

1. The normalization matrix is normalized for each criterion Ni,j(j = 1, 2).
The normalized values ni,j are calculated using Equations (5)-(6):

ni,1 = 1− li −min l

max l −min l
(5)

ni,2 = 1− mi −minm

maxm−minm
(6)

2. The proportion of each column of each criterion ni,j(i = 1, 2, ..., n) is
calculated using Equation (7):

Hi,j =
ni,j∑n
i=1 ni,j

(7)

3. The entropy Ej of each criterion Nj can be found in Equation (8):

Ej = - (ln (n))-1
n∑

i=1

Hi,j ln (Hi,j) (8)

4. The entropy weight wj of each objective value can be found in Equation

12

(9):

wj =
1− Ej

2− E1 − E2

(9)

5. Finally, we can obtain the input vector and the state of NN can be
found in Equation (10):

input [i] = w1 × ni,1 + w2 × ni,2 (10)

In the end, we can obtain the total processing time for each virtual machine
and makespan when all of the tasks are completed. To evaluate the load-
balance degree, we calculate the standard total processing time of each virtual
machine.

4. Description and Design of Scheduling

In this section, we first describe the Markov decision processes and one
of the reinforcement learning technologies, Q-learning. Second, we introduce
the deep Q-learning and the design principle for using the deep Q-learning
algorithm to solve the task-scheduling problem in the cloud computing envi-
ronment.

4.1. Markov Decision Processes and Q-learning

Markov decision processes (MDPs) are widely used to provide a mathe-
matical framework for modeling decision making to solve stochastic sequen-
tial decision problems, in situations where an outcome is partly random and
partly under the control of the decision maker. The MDPs’ goal is to find
an optimal policy that will maximize the expected return from a sequence of
actions that leads to a sequence of states. The expected return can be defined
as a policy function that calculates the sum of the discounted rewards. The
goal of finitely satisfying the Markov property in reinforcement learning is to
form a state transition matrix that consists of each possibility of transition-
ing to the next state from a given state. In Q-learning, the state transition
process is an important step to train the model of the neural network for
optimal classification in action selection, and this process can be denoted as
an agent to the environment finding the best policy. During this process, a
reward signal is produced as a measurement of the agent’s current behavior,
and the reward value is backfed to the agent, adjusting the policy to find the
optimal selection. The agent aims to find the maximum return on the sum

13

of discounted rewards with respect to different iteration time steps. In each
time step, the reward to the current state is calculated from expected dis-
counted sum rewards of future steps, where all future rewards are weighted
by a discounted factor. Specifically, a reward in the time step close to the cur-
rent one is weighted more, as it is worth more, and conversely, a farther time
step reward is weighted less. In this way, the possibility of a state to an ac-
tion can be defined under a discounted reward calculation, and consequently,
discrete state-action pairs formulate the state transition matrix. To measure
the evaluation of the agent’s behavior, a value function is needed, which is
another important MDP to determine the long-term reward, starting from
the given state and calculated by the discounted return value of successor
states and immediate rewards. The value function can be regarded as one
of the main factors to influence the state-transition probabilities. Lastly, the
optimal state-value function calculates the maximum value function overall
policies to find the best performance policy. In conclusion, MDPs have been
a useful approach for studying a wide range of optimization problems solved
via dynamic programming and reinforcement learning. A Markov decision
process is a 5-tuple (S, A,P .(·, ·), R.(·, ·), and γ), where

• S is a finite set of states;

• A is a finite set of actions (alternatively, As is the finite set of actions
available from states s;

• Pa(s, s′)=Pr(st+1=s′|st=s, at=a) is the probability that action a in
state s at time t will lead to state s′ at time t+ 1;

• Ra(s, s
′) is the immediate reward (or expected immediate reward) re-

ceived after transitioning from state s to state s′, due to action a; and

• γ ∈ [0, 1] is the discount factor, which represents the difference in
importance between future rewards and present rewards.

Q-learning is a model-less reinforcement learning technique, and its im-
plementation is similar to the MDP strategy. Specifically, Q-learning can
be used to find the best behavior choice for any given (finite) MDP. The
working principle of Q-learning is to learn an action value function and give
the final expected result. The algorithm performs in a specified operation
with a given state and follows the optimal strategy. A policy is a rule that
the agent follows when selecting an action by taking into account the state

14

it is in. When such an operation value function is learned, the optimal strat-
egy can be constructed by selecting the maximum number of operations in
each state. One of the advantages of Q-learning is that it can compare with
the expected result to know available operations without any environmen-
tal model. Additionally, Q-learning can address problems such as random
conversion and rewards without any modification and proves that by any of
the algorithms in finite MDPs, Q-learning can ultimately find an optimal
strategy. In this way, all consecutive steps with a total return of expected
values starting from the current state can achieve the maximum return [35].
The model consists of an agent, a state S, and a set of actions for each state
A. The model stores all the information in a Q-table, which represents the
Q-value between different states. Using the policy declared in MDPs and
performing an action a ∈ A, the agent can move from one state to another.
Performing an action in a given state provides a reward for the agent. The
goal of this agent is to maximize the total reward on Q-value. Moreover,
as a result, the algorithm learns which action is optimal for each state. In
addition, for every state, the best behavior is the behavior with the highest
long-term reward. In Q-learning, we can obtain the reward using the same
process as in MDPs, which is the weighted sum of the expected return value
from the current state and all the steps in the future, where step ∆t cal-
culates the weight of the future step γ∆t. In this case, the value of γ is a
number between 0 and 1, which is called the discount factor, and the impor-
tance of early and late rewards is a tradeoff. γ can also be interpreted as the
probability of success at each step ∆t. Q-learning is considered one of the
machine learning algorithms that can obtain the best strategy π∗ when the
task class and size are unknown. A state-action function, i.e., Q-function, is
defined as Equation (11):

Qπ(x, a) = R(x, a) + ε
∑

x′∈X
Pxx′(a)V π(x′) (11)

such that when a is executed in state x, it represents a cumulative discounting
reward. Starting at this point, a continues to execute the optimal policy. The
maximum Q-value will be

Qπ∗(x, a) = R(x, a) + ε
∑

x′∈X
Pxx′(a)V π∗(x′) (12)

15

and the discounted cumulative state function can be written as Equation
(13):

V π∗(x) = max
a∈A

[Qπ∗(x, a)] (13)

Therefore, from finding the best strategy to finding the right Q-function, the
target is usually interchangeable. Generally, the Q-function is obtained by
recursion using available information (x, a, x′, and a′). Specifically, state x,
immediate reward r and action a at the current time t are used to calculate
state x′ and action a′ at time t+1. Therefore, the Q-function can be updated
to

Qt+1(x, a) = Qt(x, a)′ + a
(
r + ε[max

a′
Qt(x

′, a′)]−Qt(x, a)
)

(14)

where a is the learning rate, and the discount factor ε is one of the most
important parameters in the learning process. The learning rate determines
to what extent newly acquired information can override old information. A
factor of 0 makes the agent learn nothing, while a factor of 1 makes the agent
consider only the most recent information. By utilizing a proper learning
rate, it is certain that Qt(x, a) will converge to Q∗(x, a) [36]. Therefore,
the algorithm has a function that calculates the quality of a state-action
combination as follows:

Q : S × A→ R (15)

The standard steps in the Q-learning algorithm [4] are shown in Algorithm
1.

Algorithm 1: Q-learning Algorithm

Input: Random state process
Output: Q-table
Initialize Q(s, a) arbitrarily;
repeat

Initialize state s;
Choose action a from s using the policy derived from
Q(e.g., ε− greedy, ε ∈ (0, 1));

Take action a, and observe r,s
′
;

Update Q(s, a) with Equation (14);

s ← s
′
;

until end(s = terminal);

16

4.2. Schedulers with Deep Q-learning

In fact, the Q-function is usually estimated by a function approxima-
tor. Several kinds of approximators can be used to approximate [37][38][39].
The approximators sometimes is nonlinear, such as a neural network (NN)
Q(x, a; θ) ≈ Q∗(x, a). This neural network is named the Q-network. The
parameter θ is the weight of the neural network, which reduces the mean
square error by adjusting θ in each iteration.However, there are some unsta-
ble situations in the actual application of the Q-network, which are explained
in [11]. In deep Q-learning, the deep neural network is used to approximate
the Q-function, which has recently been proposed and proven to be more
beneficial than Q-learning. In this case, we modify the regular Q-learning
for deep Q-learning with the following two techniques:

1. Experience replay. At each instant time t, the agent stores its inter-
action experience tuple e(t) = (x(t), a(t), r(t), x(t + 1)) into a replay
memory D(t) = {e(1), ..., e(t)}. Then, the parameters of the deep
neural network are trained by random sampling in the pool of expe-
rience rather than directly using continuous samples to participate in
the training, as in the study of Q-learning. In this way, the learning
speed is accelerated.

2. Periodical update. Deep Q-learning adjusts the target value to update
after every N time steps, instead of updating each time step. The
target value is expressed as y = r + εmaxa′Q(x′, a′, θ−i). In Q-learning,
the weight θ−i is updated as θ−i = θi−1, whereas in deep Q-learning,
θ−i = θi−N , i.e., the weights update every N time steps. Using such
modifications can make the learning process more stable.

The Q-value of the current state can be calculated by Equation (16),

Q(x, a, θ) = NNoutput × ahotindex (16)

where NN output means the value of neural network output, and a hotindex
is the action of the current state in the form of replaying the memory as in
the hot index (all values in a vector are 0 except for the real action value
of 1). The deep Q-learning training function minimizes the value of the loss
function in each iteration, and the loss function can be written as

Loss(θ) = E[(y −Q(x, a, θ))2] (17)

17

The DRL technique in cloud computing is a recently proposed technology
that has been applied in task scheduling [11][40]. The system construction
process is broadly similar to the process of Q-learning. To use the deep Q-
learning algorithm in task scheduling, the specific training set is required in
neural network training. Every state with dynamic resource changing is saved
as a reward into the training set. Specifically, the task queue retrieves the
least recent task generates state s, which represents the current network state
condition. The action a defines a selection of choice that is taken from the
random scheduling of tasks, which generates state s′, and in an optimal policy,
accumulates in a progressive and iterative manner. The rewards principle is
a key factor to convergence with the neural network. It will effectively reach
the preset objective function if a good reward principle for every state’s
change is designed. After taking action a in state s, an immediate reward r
is generated to the neural network. Moreover, the action a, which is taken
from random scheduling and noted as interaction experience, is sent to replay
for training. The model to obtain the training set is illustrated in Fig. 2.

s
a

r
s'

Figure 2: Random scheduling to obtain the training set

4.3. Scheduling Architecture of DQTS

In this paper, we design a deep Q-learning algorithm architecture for the
cloud computing environment, as shown in Fig. 3. The workflow, as indi-
cated, is considerably referenced by a typical scientific computing scenario,
where task submission is commonly associated with dynamic schedules. Most
significantly, this workflow assigns tasks that are dynamically allocated to en-
sure maximum efficiency. A resource dynamic adjustment controller is used
in this design to constantly refresh the available cloud computing resource,
which ensures the effectiveness of the scheduling. All types of workflow tasks
consist of a task pool that is waiting to be processed. Workflow will be
addressed as follows. First, tasks of the dependent type dynamically arrive

18

in the allocation controller (also called the datacenter). Second, the deep
Q-learning algorithm is applied to handle tasks. Lastly, tasks are allocated
to the resource in the cloud nodes’ pool according to the scheduling plan by
the deep Q-learning algorithm.

Task Dynamic

Allocation

Controller

Deep Q-learning

algorithm for

Wrokflows

Resource Dynamic

Adjustment

Controller

Queue tasks

Executing tasks

Cloud nodes pool

Tasks pool

Scheduler

...

New workflows

Task Dynamic

Allocation

Controller

Deep Q-learning

algorithm for

Wrokflows

Resource Dynamic

Adjustment

Controller

Queue tasks

Executing tasks

Cloud nodes pool

Tasks pool

Scheduler

...

New workflows

Figure 3: Architecture of Deep Q-learning Algorithm in Cloud Computing

The architecture of DQTS in the simulation platform WorkflowSim is
shown in Fig. 4. There are three layers in this system: the task-submission
layer, deep Q-learning algorithm layer, and workflow management system
layer. In the cloud computing systems, users will dynamically submit their
tasks to the cloud platform. In the deep Q-learning algorithm layer, there
are two modules that are included: reward function and DQTS. In the re-
ward function, when the task is allocated to the computing node, it will
generate a reward to the DQTS model. The DQTS model will select the
best reward, meaning the scheduling to the best computing node. In the
workflow management system, there are seven modules, such as workflow
engine, scheduling fragments, task queue, action set, action a′, scheduler,
and workflow data center. The function of this system is to manage dy-
namically generated tasks. The scheduling algorithm will map tasks to the
computing nodes according to the type of task submitted by the users and
certain objectives. The workflow management system layer consists of large-
scale computing nodes with many types (including CPU, GPU, MAC, etc.),
and all computing nodes can be scaled up or down elastically.

19

s
Q

Figure 4: Architecture of DQTS in WorkflowSim

In this paper, we design a BP neural network for this architecture, as
illustrated in Fig. 5. Since task scheduling in cloud computing is dynamic
and random in most environments, the state and action pair obtained fromQ-
learning is difficult to classify using a traditional neural network. Specifically,
Q-learning generates multiple discrete state sets in a continuously changing
cloud computing parameter condition, and the action set corresponding to a
specific environment state is difficult to classify.

Since the arrival of the task is real-time and the length of the task is
uncertain, the dimensions of the state and action space are large. The RL
method is suitable for solving the discretization problem. When solving
continuity problems, the dimension explosion problem is easy to occur due to
the excessive state and action space. Therefore, the DRL method combined
with RL and deep neural network is used to solve the dimensional explosion
problem that is easy to occur in the RL method. The state is used as the
input of the deep neural network, and the Q-value representing the action
selection is obtained by fitting. So, it is necessary to use deep neural networks
to approximate.

Therefore, we combine Q-learning with the BP neural network to reduce
the complexity introduced by traditional Q-learning. The model uses a BP
neural network composed of an input layer, multiple hidden layers and an
output layer with fully connected neurons. The BP neural network is a
multilayer feedforward neural network that features mainly an error back-

20

propagation adjustment to the network parameters. It has a reversal learning
process in supervised learning to minimize an error between the expected
output and actual output. The back-propagation process calculates the error
between the expected and actual output as a loss function if they do not
match and adjusts neurons backward, starting from the last of the hidden
layers. Consequently, the learning process corrects every neuron in a fully
connected network in reverse, employing an iterative gradient technique until
an error is minimized. We design the neural network as fully connected to
contend with the randomness of the scheduling scheme and achieve a high
level of reasoning, meaning that each of the neurons in a layer is related to all
the neurons in its neighbor layers, and a classification process will likely run
through most of the training model. We defined an activation function in
each neuron by using the ReLU activation function to increase the likelihood
of classifying an action.

Q-values

f

Max(0, z)

f

Max(0, z)

Input Layer
Hidden Layers

Output Layer

Fully Connected Network

Figure 5: Neural Network

First, the neuron and layer configurations are initialized for the feedfor-
ward neural network. The number of nodes and layers in the hidden layer
is certain at this point. Then, the input layer receives a set of state vectors
with multiple environment variables and passes the variables to each node
of the first layer in the hidden layers. Second, each neuron’s weight in the
hidden layers is configured randomly so that by updating the value in the

21

learning process, the state vector will be forwarded and converge to the cor-
responding action as an output. The state vector is operated through each
layer by calculating each weight of the neuron through the activation func-
tion; the variables are computed into the neuron of the next layer. Lastly, the
output layer imports the Q-values of each action from Q-learning and calcu-
lates the error between the state vector output and Q-values. The training
process then distributes corrections based on a calculation of the neuron’s
weight gradient from the error and back-propagates into the hidden layers,
updating each node. The process operates repeatedly and iteratively until
convergence to a maximum of Q-values. We use the deep Q-learning algo-
rithm to optimize the performance of task scheduling in the cloud computing
environment, and the formulation process is described in Algorithm 2.

Algorithm 2: DQTS Algorithm

Input: Training sets consist of replay memory
Output: Trained model
Initialize replay memory;
Initialize NN with parameter settings;
repeat

Sample uniformly a batch of continuous state experiences to
minibatch;
Use current state in minibatch to calculate output Q-value by
Equation (16);
Use Equation (14) to calculate the fitting Q-value; Calculate the
error of fitting, and update NN using Equation (17);
Empty minibatch;

until Maximum generation;
Save NN model.

4.4. Design Principle

4.4.1. Training Principle

In the process of training, the training set is needed to train the neural
network, and the effect of different training methods on the training set is
also different. In general, the current training methods can be divided into
offline policies and online policies. The so-called offline strategy refers to the
large-scale training of the neural network by using the training set that has

22

been generated, and then, the neural network model that has been trained is
obtained. The trained model is used for the corresponding recognition and
prediction, for example, the trained model of image recognition is provided
in Google’s ImageNet project. The advantage of the model is that after a
long training time, its prediction accuracy and the integrity of the prediction
are very high, and a good training model can be used in different platforms,
given this strong adaptability. The disadvantage is that the model training
takes a long time and is not easy to change. When the model is not effective,
it needs to be retrained. The so-called online mode refers to the real-time
generation of training sets according to the environment, and the training
is carried out at the same time as the decision making. The advantage
of this method is that it can adjust the strategy in real time according to
the changes in the environment. It does not need to wait until the model
has been trained before using it. It can make decisions and learn in real
time. The disadvantage is that the application effect of the model is worse
than that of the offline mode, and the application scope is narrower, which is
applicable to the scenario where the environment often needs to change, such
as the AI game scene. The policy for our neural network training is an offline
policy that applies random scheduling to generate the training set. Instead
of the online policy, we design the learning method from the offline policy’s
feature to maintain the algorithm’s precision and stability. In DQTS, the
object explores the environment and is simultaneously trained in the neural
network. In this way, it is appropriate for an object to have relatively simple
actions. Once the action reaches a certain precision, the system of learning
must have a sufficient number of states to start training by the NN while
making the convergence rate of the model slow. Furthermore, the reason
that we do not select online training such as DQTS is that the simulation
platform is coded with Java, which lacks an integrated library to support deep
learning such as TensorFlow. Additionally, the most important factor under
our consideration is that the deep learning framework, such as in TensorFlow
and Python in Java, cannot be adapted to the learning approach in DQTS
and is thus unsuitable.

4.4.2. Reward Principle

The reward in the Q-learning method is usually set oppositely, to plus or
minus, such as -1 and 1. Before designing the reward principle, it should be
known that a virtual machine only has two states: busy or idle. We can also
be certain that if a virtual machine is idle, then the state is positive instead

23

of busy. Evidently, a well-trained neural network should have the ability to
evaluate positive situations. If we consider only one virtual machine, the
positive reward situation should be an idle state. However, if we increase the
number of virtual machines to 8, the situation can become complicated. In
addition, if we add two objective functions to the allocation, such as when
tasks arrive with different execution lengths, it can be understood that the
feedback of each virtual machine is related to the task length and its speed,
where the feedback of each virtual machine almost impossible to calculate. In
a large state space, DQTS fits a neural network that decreases the learning
cost. In this paper, we define the state of all virtual machines to consist
of the reward separately. According to the updating strategy in DQL [41],
Equation (14) can be simplified to the following form:

R (NNt+1) = R (r) +R (NNt) ; (R (r) ∈ [-1, 1]) (18)

where R(NN) represents the range of the neural network and r indicates
the reward. The finite interval of NN is necessary for DQL to converge
if we design the range of r to [-1,1], and we can obtain the range of NN
accordingly. Regarding the condition of multiprocessors in WorkflowSim, if
we set the maximum positive feedback to 1 and minimum negative feedback
to -1, then we can obtain the range of Q-value, called the output of NN, as
follows:

R (NN) ∈ [-1 + minR (NN) , 1 + maxR (NN)] (19)

Consider that many activation functions are in the range of [0, 1]; thus, we
can design the range of NN to [-1,1]. By the left side of Equation 18 and
the statement, we can conclude that NN should be set to [-2,2], but NN only
represents the range of [-1,1]; therefore, the equation changes to the following:

R (NNt+1) = 1/2× (R (r) +R (NNt)) ;

(R (r) ∈ [-1, 1] , R (NN) ∈ [-1, 1])
(20)

4.4.3. Neural Network Design

The design of replay memory in the procedure of the DQL algorithm is
a key step to convergence. In DQL, the training set stands for the replay
memory that is also called experience. In our approach to learning, we set the
replay memory to the main training set that consists of random scheduling.
The DQTS program framework of TensorFlow in Python is a reference to a
good project on [42].

24

4.4.4. Train Model

WorkflowSim is coded with Java, and our NN was trained in Python with
TensorFlow, thus creating a problem for a model that is used across plat-
forms. In addition, TensorFlow in Java only supports the Android version to
read the .pb model. Therefore, we revised the Android interface of Tensor-
Flow to the Java platform to support our model. The .pb model is a binary
file that can store structure information and graph definitions of NN, and it
can be used in many fields such as Google image identification.

5. Experiments and Analysis

In this section, we will test DQTS’s fitting ability as well as the accuracy
and extensibility by a series of simulation experiments. The experiments
are conducted in environments ranging from simple to complex. First, we
test and prove the DQTS algorithm’s fitting ability. Second, different fac-
tor settings are applied to verify the convergence of the algorithm, including
the learning rate and activation function. Lastly, we use single-class and
hybrid-class training sets for the model training in TensorFlow and verify the
performance of the model with different test sets. All the comparison algo-
rithms and test sets are internally included and installed. It should be noted
that the large test set cannot be used in WorkflowSim, such as CyberShake
with 2000, 4000 and 8000 data points being generated by WorkflowGenerator
[43] [44] [45], which is based on models of real applications that have been
parameterized with file size and task runtime data from execution logs and
publications that describe the workflow.

5.1. WorkflowSim

CloudSim, the simulation platform of cloud infrastructure and manage-
ment service, was developed by Rajkumar Buyya and can be programmed
in Java[46]. Assigning operations to a cloud simulation platform instead of
actual experimentation can save resources and repeated debugging. In this
paper, the objective function of the simulation experiment is to reach the
minimum makespan of task scheduling in cloud computing. Furthermore,
WorkflowSim [47] extends the CloudSim simulation toolkit and supports a
multilayered model of failure and delay occurring in the various levels of the
workflow management system.

Fig. 6 shows the different components of WorkflowSim involved in prepar-
ing and executing a workflow. All the processing procedures form a workflow

25

management system (WMS), which is similar to that of the Pegasus WMS
[48]. As shown in Fig. 6, the components consist of the Workflow Mapper,
Clustering Engine, Workflow Engine, and Workflow Scheduler.

Figure 6: Structure of WorkflowSim

5.2. FCFS Fitting

The first experiment is designed to test and verify the simple fitting abil-
ity. In this experiment, the setting of the simulation platform WorkflowSim
has no overhead and no clustering. All the simulations are tested in the
same software environment with the same objective function and parameter
settings. The bandwidth environment is set to be homogeneous to simplify
the experiment settings, i.e., the bandwidth is the same for all processors. In
addition, each virtual machine has different million instructions per second
(MIPS), ranging from 100 to 3200. With sets of WorkflowSim, the trans-
fer cost between a parent and child is calculated as the size of the input
file/bandwidth, and the computation cost of a task on a virtual machine is
computed as the runtime of the task MIPS of the virtual machine.

In addition, in the first experiment, we use the training set CyberShake 1000
with the count of 1000 tasks to run random scheduling 5 times and train the
training set 50, 000 times. The experiment’s parameter settings are described
in Table 2.

In TensorFlow, we use Python to train the neural network iteratively
50, 000 times to obtain a .pb model. Then, we use this model in WorkflowSim

26

that is coded with Java. Since the support for TensorFlow in Java is not
complete and lacks detail, the only way demonstrated to read the .pb model
in Android is from the image recognition of GitHub. Therefore, we revised
some codes for Android and used Python and Java hybrid programming to
adapt WorkflowSim, which makes the interface work well.

The principle of the first come, first serve (FCFS) algorithm allocates
tasks to the first virtual machine idle state along with the order ID num-
ber of the virtual machine. Because of this feature, we decrease the re-
ward of each virtual machine in turn, according to their ID order number
when the state is idle. Otherwise, if the state is busy, the reward will go to
rewardbusy=rewardidle - 1. This method is used to update the state value of
the virtual node. For example, in the initial state, the node reward is 1.0,
0.9, 0.8, and 0.7. When the state becomes busy, the reward will change to
0.0, -0.1, -0.2, and -0.3. The principle of fitting the FCFS approach to the
DQTS is to generate a model that can identify the first idle virtual machine
along with its ID number. We used a relatively small number of training
sets and training steps to finish the training process and obtained the same
result as with the FCFS approach. The loss value with the fitting curve can
be found in Fig. 7. Additionally, the loss figure shows that the training is
almost convergent at approximately 5000 iterations; hence, we can conclude
that the DQTS algorithm has a strong learning ability.

0 10000 20000 30000 40000 50000

0.000

0.001

0.002

0.003

0.004

L
o
ss

Generation

Fitting curve

Figure 7: Fitting curve of FCFS

27

Table 2: Parameter settings

Parameter Value

Number of vms 8
Number of actions 8
ε 0.5
Batch size 100
Max generation 50000
Layers of NN(contain in
and out layer)

4

Number of neurons in
each layer(except in and
out layer)

20 ∗ 8

Learning rate 1E-3
Activation function ReLU
Optimizer AdamOptimizer
Loss function Meansquareerror

5.3. Hyperparameter Optimization

In the second experiment, we tested what may be two of the most sig-
nificant hyperparameters that influence the convergence rate: the first is the
learning rate, which dominates the step length of updating the weight to each
layer, and the second is the choice of the activation function. We tested two
of the most popular activation functions: rectified linear unit (ReLU) and
hyperbolic tangent (TANH).

5.3.1. Convergence Performance with Different Learning Rates

Different learning rates have a determinative influence on convergence.
The main purpose of studying the learning rate is to control the step size
of gradient descent, while monitoring training cost is the best way to detect
whether the step size is too large. In this experiment, all the parameter
settings are the same as the first experiment except for the maximum gen-
eration and training set. We use a larger training set that was produced by
CyberShake 2000, with the count of 2000 tasks, to run random scheduling
50 times, and the iteration number proportionally increases to 100,000. The
reason for using a training set this large is to help the following experiments

28

that need a much larger count of states.
We set different learning rates to test their effects on the convergence.

These parameters are 1E-1, 1E-2, 1E-3, 1E-4 and 1E-5. The results in Fig.
8 show that when we select the convergence rate with 1E-1, 1E-2, and 1E-5,
perturbation occurs frequently. The convergence rates of 1E-3 and 1E-4 are
better in terms of instability and convergence speed.

0 20000 40000 60000 80000 100000

0.00

0.01

0.02

0.03

0.04

0.05

L
o
s
s

Generation

1E-1

1E-2

1E-3

1E-4

1E-5

Figure 8: Convergence performance with different learning rates

5.4. Experiments with Benchmark of CyberShake

After selecting the best learning rate and activation function from the
experiments, we obtain relatively good parameter settings for our NN. The
configuration for the learning rate is 1E-3, and we select ReLU as the activa-
tion function. The other settings are the same as the last activation function
experiment. In this section, we use random scheduling to explore the state
space of the virtual machine, and we try to develop an even better solution
with the state space. Before the training starts for processing, it should be
noted that we need a sufficient number of training sets about these states;
thus, we run the random scheduling algorithm 50 times to obtain 100, 050
Markov decision process rows. After 100, 000 times of training, we obtain a
.pb model and use it in WorkflowSim to schedule every upcoming task.

There are 5 models in total, and each model is generated after 100, 000
times of training. Then, we average the five results containing the load

29

standard deviation and makespan. Finally, the averaged results are used to
compare the models with other algorithms in WorkflowSim. More details
about the comparison algorithms can be found in WorkflowSim.

As Fig. 9 shows, (a) displays the single index of the load standard devia-
tion with 8 virtual machines. The result illustrates that DQTS has a smaller
fluctuation with the load. Additionally, the load standard deviation of the
other algorithms increases with some tasks, except MINMIN, which shows
instability.

Fig. 9 (b) shows that DQTS underperforms in the 1000 task but out-
performs in other situations, and other algorithms achieve almost the same
result. The reason why DQTS obtains a relatively poor result is that the
objective function is bio-objective, including the load and makespan, and it
will have to make some sacrifices from one object to another.

1000 2000 4000 8000
0

20

40

60

80

100

120

L
o
a
d
s
ta
n
d
ra
d
d
e
v
ia
ti
o
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(a)

1000 2000 4000 8000
0

5000

10000

15000

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(b)

Figure 9: (a) Load standard deviation with 8 virtual machines. (b) Makespan with 8
virtual machines

Pareto-optimal solutions [49] are an effective measurement approach to
evaluate the solutions when considering the bi-objective problem. The com-
petitive relation between multi-objectives could be reflected in the graph
using the Pareto method. In this paper, there are two objectives consid-
ered, and we could use a scatter graph to describe the relative relation. In
addition, by considering the two objectives together, and as the Pareto scat-
ter that consists of points defined by two indexes in Fig. 10 shows, DQTS

30

obtains three relatively strong-dominated solutions in four different experi-
ment sizes when compared with other algorithms. Moreover, in the test set
of 1000, DQTS obtains a relatively nondominated solution, which may be
because the objective of the load balance has a relatively large influence on
makespan when handling fewer counts of the number of tasks. The above
experiments show that DQTS still achieves better results than those of other
algorithms and prove that using random scheduling to explore the state space
is a useful method.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

1540

1560

1580

1600

1620

MAXMIN

MINMIN

1000

M
ak
es
p
an

4000

2000
8000

DQTS

MINMIN

RR

DataAware
FCFS

MCT
MAXMIN

4 8 12 16 20 24 28 32 36 40
3050

3100

3150

3200
RR

DQTS

DataAware
FCFS

MCT

5 10 15 20 25 30 35 40 45
6000

6050

6100

6150

MAXMIN
DataAware

FCFS

MCT
RR

MINMIN

DQTS

M
ak
es
p
an

Load Std

0 20 40 60 80 100

12100

12200

12300

12400

12500

MAXMIN

MINMIN

RR

DQTS

Load Std

DataAware
FCFS

MCT

DataAware
FCFS

MCT

Figure 10: Pareto scatter with 8 virtual machines

Next, to verify whether DQTS is useful in a more complicated state space,
we increase the number of virtual machines to 16. Obviously, the state space
enlarges more than twofold that in 8 virtual machines, and the distance of
the states is smaller. Therefore, we run the random scheduling 100 times
and keep the training set as CyberShake 2000. In addition, in consideration
of the state density, we adjust the learning rate to 1E-4 to adapt a smaller
change in exploration. It should be noted that the process of this experiment
is the same as the experiment with 8 virtual machines. From Fig. 11, we
can observe that DQTS shows similar performance compared with 8 virtual
machines. The main reason of similar performance is that the test set has the
same structure, and DQTS has sufficient ability to learn. Additionally, by
considering with the two objectives at the same time, as the Pareto scatter
in Fig. 12 shows, DQTS obtains the same performance compared with the
situation of 8 virtual machines. However, it should be noted that the change

31

in hyperparameters can cause a large swing, and the process to select the
hyperparameters needs more caution, such as when setting the learning rate
to 1E-4 or another rate, and the performance will be greatly affected.

Next, to verify whether DQTS is useful in a more complicated state space,
we increase the number of virtual machines to 16. The state space enlarges
more than twofold that in 8 virtual machines, and the distance of the states
is smaller. Therefore, we run the random scheduling 100 times and keep the
training set as CyberShake 2000. Additionally, in consideration of the state
density, we adjust the learning rate to 1E-4 to adapt a smaller change in
exploration. It should be noted that the process of this experiment is the
same as the experiment with 8 virtual machines. From Fig. 11, we can
observe that DQTS shows similar performance compared with 8 virtual ma-
chines. The main reason for this similar performance is that the test set has
the same structure, and DQTS has sufficient ability to learn. Additionally,
by considering the two objectives at the same time, as the Pareto scatter
in Fig. 12 shows, DQTS obtains the same performance compared with the
situation of 8 virtual machines. However, it should be noted that the change
in hyperparameters can cause a large swing, and the process to select the
hyperparameters needs more caution, such as when setting learning rate to
1E-4 or another rate, and the performance will be greatly affected.

1000 2000 4000 8000
0

20

40

60

80

100

L
o
a
d
s
ta
n
d
a
rd
d
e
v
ia
ti
o
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(a)

1000 2000 4000 8000
0

2000

4000

6000

8000

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(b)

Figure 11: (a) Load standard deviation with 16 virtual machines. (b) Makespan with 16
virtual machines

32

6 12 18 24 30

880

900

920

940

960

Load StdLoad Std

RR

MINMIN

FCFS

MAXMINDataAware

MCT

DQTSM
ak
es
p
an

1000

0 20 40 60 80

1700

1800

1900

2000

2100

MAXMIN

MINMINMINMIN

MINMIN

FCFS
DataAware
MCT

MAXMIN RR

DQTS

2000

0 10 20 30 40

3300

3350

3400

FCFSDataAware

MAXMIN

MCT

RR

DQTSM
ak
es
p
an

0 20 40 60

6600

6700

6800

MCT FCFS
DataAware

RR

DQTS

Figure 12: Pareto scatter with 16 virtual machines

To observe the real-time variance in the load balance, we design an ex-
periment that calculates the load standard deviation after each of a certain
number of handled tasks. The variation curve with the increasing number
of processed tasks can be found in Fig. 13. The figure shows that compared
with other classic algorithms, the DQTS decreases in load std after 600 tasks
because the upcoming tasks are relatively stable along with its length.

Additionally, we also know that DQTS reduces the instability and ac-
quires a balanced final state. Therefore, we believe that the DQTS algorithm
is more suitable for dynamic online task scheduling in the cloud computing
environment when considering the load balance.

0 200 400 600 800 1000

0

5

10

15

20

25

30

35

40

L
o
ad
st
an
d
ar
d
d
ev
ia
ti
o
n

Number of handled tasks

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Figure 13: Load standard deviation with different amounts of handled numbers

33

5.5. Performance on Other Benchmarks with the Single-Set Model

In this section, we show the performance of a trained model that is gen-
erated in the above experiments with other benchmarks on CyberShake. By
training the NN 100, 000 times, the model has already learned enough Markov
decision processes. To evaluate the performance of this model, it is neces-
sary to test it with other benchmarks. We select Inspiral 2000, Montage 2000
and Sipht 2000 as the test sets. Table 5 shows that DQTS obtains relatively
strong-dominated solutions with Sipht 2000, and Table 3-4 shows relatively
nondominated solutions with Inspiral 2000 and Montage 2000. We conclude
from Table 3 to 5 that the DQTS algorithm, when compared with other clas-
sic algorithms for various test sets, is better and much more robust. Different
benchmarks show its unique structure via the results recorded in the tables.
In addition, DQTS achieves relatively good solutions because of its adaptive
capacity, containment and expandability when implemented in a complex
environment.

Table 3: Performance on benchmark of Inspiral 2000

Load Std Makespan

DQTS 190.0878655 30312.85
DataAware 157.7639315 30379.46
FCFS 157.9354705 30378.55
MAXMIN 238.6068311 30487.17
MCT 160.2887975 30366.20
MINMIN 185.9714359 30363.13
RR 216.4874891 30418.05

34

Table 4: Performance on benchmark of Montage 2000

Load Std Makespan

DQTS 32.17318958 1743.22
DataAware 70.93124509 1683.90
FCFS 70.93124509 1683.90
MAXMIN 71.04491097 1671.84
MCT 70.54326354 1681.13
MINMIN 70.15721547 1679.70
RR 71.08510002 1680.00

Table 5: Performance on benchmark of Sipht 2000

Load Std Makespan

DQTS 309.6397016 23928.19
DataAware 470.6224257 24838.23
FCFS 470.6224257 24838.23
MAXMIN 336.1103080 24546.45
MCT 564.8682626 25206.45
MINMIN 400.5922386 24867.65
RR 705.8387776 25176.95

5.6. Performance on Benchmarks with the Hybrid-Set Model

We can see from the above experiments that each DAG benchmark still
has differences. In addition, DQTS should have the ability of containment
and expandability. Thus, a hybrid training experiment should be conducted
for this matter. We run the random scheduling with CyberShake 2000, Inspi-
ral 2000 and Montag 2000 5 times separately. Then, we train the set 100, 000
times. As Fig. 14-16 shows, DQTS outperforms in the load std and makespan
with different test sets. The results show that DQTS maintains good con-
tainment and learning ability when the states become complex. Moreover, it
should be noted that using multiple types of training sets and a smaller train
set has no impact on the results when compared to the above CyberShake
benchmark experiments. We can demonstrate that DQTS can adapt to even

35

more complex environments such as the multi-objective problem without the
need for a more complex model to achieve its goal.

1000 2000 4000 8000
0

20

40

60

80

100

120

L
o
a
d
s
ta
n
d
a
rd
d
e
v
ia
ti
o
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(a)

1000 2000 4000 8000
0

5000

10000

15000

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(b)

Figure 14: (a) Load standard deviation with test set of CyberShake. (b) Makespan with
test set of CyberShake

1000 2000 4000
0

100

200

300

400

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(a)

1000 2000 4000
0

20000

40000

60000

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(b)

Figure 15: (a) Load standard deviation with test set of Inspiral. (b) Makespan with test
set of Inspiral

36

1000 2000 4000 8000
0

100

200

300

L
o
a
d
s
ta
n
d
a
rd
d
e
v
ia
ti
o
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(a)

1000 2000 4000 8000

0

2000

4000

6000

8000

M
a
k
e
s
p
a
n

DQTS

DataAware

FCFS

MAXMIN

MCT

MINMIN

RR

Number of tasks

(b)

Figure 16: (a) Load standard deviation with test set of Montage. (b) Makespan with test
set of Montage

6. Conclusion and Future Work

In this paper, we have proposed a novel artificial intelligence algorithm,
DQTS, to solve the problem of scheduling DAG tasks in a cloud comput-
ing environment. According to experimental results, DQTS outperforms
other algorithms and has the advantages of excellent performance and a
strong capability for learning, which proves that DQTS can be applied to
task scheduling in cloud computing environments, especially in complex en-
vironments. Additionally, we tested these algorithms on WorkflowSim and
processed them with scientific workflow benchmarks. The algorithm com-
pares classic algorithms to state-of-the-art algorithms under both makespan
and load balance. The results show that DQTS obtains the lowest makespan
and best load-balance measurement.

In future works, we intend to propose a new model of energy consumption,
which is an effective way to reduce costs when the deadline is loose.

Acknowledgments

The authors are grateful to the three anonymous reviewers for their con-
structive comments. The research was partially funded by the Program of
the National Natural Science Foundation of China (Grant No. 61502165) and

37

the National Outstanding Youth Science Program of the National Natural
Science Foundation of China (Grant No. 61625202).

Reference

References

[1] Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, J. Wen, Deadline-constrained cost
optimization approaches for workflow scheduling in clouds, IEEE Trans-
actions on Parallel and Distributed Systems 28 (12) (2017) 3401–3412.

[2] J. H. Holland, Adaptation in natural and artificial systems, MIT Press,
1992.

[3] L. Baxter, Markov decision processes: Discrete stochastic dynamic pro-
gramming, Technometrics 37 (3) (2009) 353–353.

[4] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992)
279–292.

[5] Z. Tong, X. Deng, H. Chen, J. Mei, H. Liu, Ql-heft: a novel machine
learning scheduling scheme base on cloud computing environment, Neu-
ral Computing and Applications (2019) 1–18.

[6] R. Lu, S. H. Hong, X. Zhang, A dynamic pricing demand response
algorithm for smart grid: Reinforcement learning approach, Applied
Energy 220 (2018) 220–230.

[7] Y. Yang, J. Hao, M. Sun, Z. Wang, C. Fan, G. Strbac, Recurrent deep
multiagent q-learning for autonomous brokers in smart grid., in: Inter-
national Joint Conference on Artificial Intelligence, Vol. 18, 2018, pp.
569–575.

[8] Y. Yang, J. Hao, Z. Wang, M. Sun, G. Strbac, Recurrent deep multiagent
q-learning for autonomous agents in future smart grid, in: Proceedings
of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2018, pp. 2136–2138.

[9] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, C. Fan, Deep multi-agent
reinforcement learning with discrete-continuous hybrid action spaces,
CoRR abs/1903.04959. arXiv:1903.04959.

38

[10] H. Tang, J. Hao, T. Lv, Y. Chen, Z. Zhang, H. Jia, C. Ren, Y. Zheng,
C. Fan, L. Wang, Hierarchical deep multiagent reinforcement learning,
CoRR abs/1809.09332. arXiv:1809.09332.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529–533.

[12] H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Trans-
actions on Parallel & Distributed Systems 13 (3) (2002) 260–274.

[13] K. Li, X. Tang, B. Veeravalli, K. Li, Scheduling precedence constrained
stochastic tasks on heterogeneous cluster systems, IEEE Transactions
on Computers 64 (1) (2014) 191–204.

[14] H. Arabnejad, J. G. Barbosa, List scheduling algorithm for heteroge-
neous systems by an optimistic cost table, IEEE Transactions on Parallel
& Distributed Systems 25 (3) (2014) 682–694.

[15] N. Zhou, D. Qi, X. Wang, Z. Zheng, W. Lin, A list scheduling algorithm
for heterogeneous systems based on a critical node cost table and pes-
simistic cost table, Concurrency & Computation Practice & Experience
29 (5) (2017) 1–11.

[16] J. J. Durillo, R. Prodan, Multi-objective workflow scheduling in amazon
ec2, Cluster computing 17 (2) (2014) 169–189.

[17] A. Gerasoulis, T. Yang, A comparison of clustering heuristics for
scheduling directed acyclic graphs on multiprocessors, Journal of Paral-
lel and Distributed Computing 16 (4) (1992) 276–291.

[18] R. Bajaj, D. P. Agrawal, Improving scheduling of tasks in a hetero-
geneous environment, IEEE Transactions on Parallel and Distributed
Systems 15 (2) (2004) 107–118.

[19] G. Xie, R. Li, K. Li, Heterogeneity-driven end-to-end synchronized
scheduling for precedence constrained tasks and messages on networked
embedded systems, Journal of Parallel and Distributed Computing 83
(2015) 1–12.

39

[20] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A novel task scheduling scheme
in a cloud computing environment using hybrid biogeography-based op-
timization, Soft Computing 23 (21) (2019) 11035–11054.

[21] A. Liang, Y. Pang, A novel, energy-aware task duplication-based
scheduling algorithm of parallel tasks on clusters, Mathematical and
Computational Applications 22 (1) (2017) 1–12.

[22] D. Bozdag, F. Ozguner, U. V. Catalyurek, Compaction of schedules
and a two-stage approach for duplication-based dag scheduling, IEEE
Transactions on Parallel & Distributed Systems 20 (6) (2009) 857–871.

[23] L. Teylo, U. de Paula, Y. Frota, D. de Oliveira, L. M. Drummond, A
hybrid evolutionary algorithm for task scheduling and data assignment
of data-intensive scientific workflows on clouds, Future Generation Com-
puter Systems 76 (2017) 1–17.

[24] M. Wang, J. Zhang, F. Dong, J. Luo, Data placement and task schedul-
ing optimization for data intensive scientific workflow in multiple data
centers environment, in: Advanced Cloud and Big Data (CBD), 2014
Second International Conference on, IEEE, 2014, pp. 77–84.

[25] H. Arabnejad, J. G. Barbosa, Multi-qos constrained and profit-aware
scheduling approach for concurrent workflows on heterogeneous systems,
Future Generation Computer Systems 68 (2017) 211–221.

[26] H. Zhao, R. Sakellariou, Scheduling multiple dags onto heterogeneous
systems, in: Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, IEEE, 2006, pp. 14–20.

[27] H. Kanemitsu, M. Hanada, H. Nakazato, Prior node selection for
scheduling workflows in a heterogeneous system, Journal of Parallel and
Distributed Computing 109 (2017) 155–177.

[28] H. Chen, J. Zhu, Z. Zhang, M. Ma, X. Shen, Real-time workflows ori-
ented online scheduling in uncertain cloud environment, The Journal of
Supercomputing 73 (11) (2017) 4906–4922.

[29] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing reliability
with energy conservation for parallel task scheduling in a heterogeneous
cluster, Information Sciences 319 (2015) 113–131.

40

[30] Y. Wei, L. Pan, S. Liu, L. Wu, X. Meng, Drl-scheduling: An intelligent
qos-aware job scheduling framework for applications in clouds, IEEE
Access 6 (2018) 55112–55125.

[31] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, P. Li, Energy-efficient scheduling
for real-time systems based on deep q-learning model, IEEE Transac-
tions on Sustainable Computing 4 (1) (2017) 132–141.

[32] J. Jiang, Y. Lin, G. Xie, L. Fu, J. Yang, Time and energy optimization
algorithms for the static scheduling of multiple workflows in hetero-
geneous computing system, Journal of Grid Computing 15 (4) (2017)
435–456.

[33] Z. Wang, Z. Wei, Dynamic engineering multi-criteria decision making
model optimized by entropy weight for evaluating bid, Systems Engi-
neering Procedia 5 (2012) 49–54.

[34] X. Tang, X. Li, Z. Fu, Budget-constraint stochastic task scheduling on
heterogeneous cloud systems, Concurrency and Computation: Practice
and Experience 29 (19) (2017) e4210.

[35] F. S. Melo, Convergence of q-learning: A simple proof, Institute Of
Systems and Robotics, Tech. Rep (2001) 1–4.

[36] J. Nie, S. Haykin, A q-learning-based dynamic channel assignment tech-
nique for mobile communication systems, IEEE Transactions on Vehic-
ular Technology 48 (5) (1999) 1676–1687.

[37] G. Taylor, R. Parr, Kernelized value function approximation for rein-
forcement learning, in: International Conference on Machine Learning,
2009, pp. 1017–1024.

[38] X. Xu, Z. Huang, D. Graves, W. Pedrycz, A clustering-based graph
laplacian framework for value function approximation in reinforcement
learning, IEEE Transactions on Cybernetics 44 (12) (2014) 2613–2625.

[39] S. Mahadevan, M. Maggioni, Proto-value functions: A laplacian frame-
work for learning representation and control in markov decision pro-
cesses, Journal of Machine Learning Research 8 (Oct) (2007) 2169–2231.

41

[40] M. Cheng, J. Li, S. Nazarian, Drl-cloud: Deep reinforcement learning-
based resource provisioning and task scheduling for cloud service
providers, in: Proceedings of the 23rd Asia and South Pacific Design
Automation Conference, 2018, pp. 129–134.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, M. Riedmiller, Playing atari with deep reinforcement learning,
arXiv preprint arXiv:1312.5602.

[42] yenchenlin, https://github.com/yenchenlin/DeepLearningFlappyBird.

[43] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H. Su, K. Vahi,
Characterization of scientific workflows, in: Workflows in Support of
Large-Scale Science, 2008. WORKS 2008. Third Workshop on, 2008,
pp. 1–10.

[44] R. F. D. Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community
resources for enabling research in distributed scientific workflows, in:
IEEE International Conference on E-Science, 2014, pp. 177–184.

[45] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi,
Characterizing and profiling scientific workflows, Future Generation
Computer Systems 29 (3) (2013) 682–692.

[46] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, R. Buyya,
Cloudsim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms, software:
Practice and experience, Software Practice & Experience 41 (1) (2010)
23C50.

[47] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating scientific
workflows in distributed environments, in: IEEE International Confer-
ence on E-Science, 2013, pp. 1–8.

[48] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maech-
ling, R. Mayani, W. Chen, R. F. Da Silva, M. Livny, et al., Pegasus, a
workflow management system for science automation, Future Genera-
tion Computer Systems 46 (2015) 17–35.

42

[49] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

43

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

*Declaration of Interest Statement

