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A B S T R A C T

Under strong seismic excitation, the resonance frequencies of civil engineering structures rapidly decrease,
followed by slow recovery back to their initial values if there is no damage. In this study, we show that as for
laboratory trials with rock samples, the properties of the slow recovery characterise the level of heterogeneities,
and in this case, the damage rate. First, we validate this concept with laboratory tests applied to continuous
beam-like structures in damaged and undamaged states. One recent model is used to fit the observed recoveries,
and we show that its parameters (i.e., frequency variation, recovery slope, characteristic times) change with the
health of the equivalent structure. In a second step, this concept is applied to two civil engineering structures
that experience earthquakes: the first (Factor Building, USA) without observed damage; and the second
(Geophysics Institute building, Ecuador) that experienced a fore/ main/ after-shock sequence with apparent
damage that was characterised by a permanent drop in resonance frequency. The efficiency of the proposed
model is confirmed for monitoring and for the fit of the frequency recovery. We conclude that the recovery
process is a clear proxy of the structural state, and that this could be helpful for seismic monitoring of structural
health during earthquake sequences.

1. Introduction

Elastic waves cause local and reversible disturbances of the medium
through which they propagate. This propagation and the time dynamics
depend on the elastic properties of the medium. For low-amplitude
waves in a homogeneous medium, the behaviour of the material during
wave propagation is linear and depends on neither the wave intensity
nor the wave shape. On the other hand, non-linear behaviour is clas-
sically observed for elastic waves in more complex materials (e.g.,
granular, heterogeneous), such as rock samples, where the material
properties depend on the wave amplitudes. Two types of non-linearity
have been described in the literature. ‘Classical’ non-linearity is gen-
erally explained by the consideration of the higher order terms in
Hooke’s law. However, this theory does not explain some of the ob-
served non-linear phenomena, which are generally known as ‘non-
classical’ non-linearities. In this case, observations refer to both
memory effects and hysteresis effects demonstrated by experiments on
rock samples [13,16,14]. These characterise the dependency of the
material response with respect to the stress to which it is subjected, and
to its loading history.

After strong dynamic stress, the elastic properties of systems

initially deteriorate rapidly, which is followed by a period of slow re-
covery back to the initial values. Johnson and Sutin [17] use the terms
‘anomalous non-linear fast dynamics’ (ANFD) and ‘slow dynamics’ for
these two phases, respectively. There have been many slow dynamics
observations on samples: (1) at the laboratory scale [36,17], with the
testing of different materials, such as an acoustic probe wave device; (2)
at the scale of the Earth crust when subjected to earthquakes [28,6,38],
by measurements of the regional variations of the wave velocity in the
crust next to the faults; and (3) on civil engineering structures
([18,9,12,2]), by tracking the resonance frequency of buildings during
earthquake sequences. In the acoustic and ultrasonic domains (kHz to
MHz), slow dynamics in concrete have been investigated in several
studies (e.g., [19,32,31]). All of these studies reflect the multi-scale
invariance of this phenomenon. Both TenCate et al. [36] and Johnson
and Sutin [17] reported on the non-linear behaviour due to the micro-
structure of the materials. They represented this micro-structure as an
assembly of grains bound together by contacts and joints. When the
material is conditioned by dynamic stress, these contacts and joints can
be broken by frictional sliding (i.e., during ANFD), and then they gra-
dually form again at the end of the loading (i.e., during the slow dy-
namics). These two behavioural phases can be observed and analysed to
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provide information on the extent of material heterogeneities, and
notably the number and size of any cracks present, which is essential
information for (although not exclusive to) the definition of the state of
health of the material.

In civil engineering, the structure behaviour is characterised by the
dynamic response, defined at first order by its modal frequency and
damping. During earthquakes, deformation can be significant and can
temporarily modify the structural dynamic response [9,12,2,39]. The
non-linear response of a structure under dynamic stress is reflected in a
rapid variation of its elastic properties, which can be characterised by
the variation of its resonance frequencies; this can result in the dynamic
opening of cracks in the material. If no damage is observed, these
variations are temporary. After a sudden disturbance of its modal
parameters, the elastic properties of a structure characterised by its
model frequencies slowly recover over time, which includes the closure
of opened cracks. The two phases identified by Johnson and Sutin [17]
are thus observed (i.e., ANFD, slow dynamics), as in the laboratory
experiments, and they can provide information on the type of hetero-
geneities present in a structure, and therefore on its structural health
during earthquakes sequence.

The innovative purpose of this study is to examine the ANFD and
slow dynamics behaviours of civil engineering type structures at the
laboratory scale, and of actual structures under earthquake loading. For
the first time, a detailed analysis of the fast and slow dynamics for
different state conditions is done, in relation with the structural health.
After describing slow dynamics theory in Section 2, an initial analysis is
carried out in the laboratory on a continuous beam. This is first un-
damaged and then damaged following dynamic stress similar to that
caused by an earthquake. This beam is associated with a structure that
shows characteristics and behaviour equivalent to those of a tall civil
engineering structure. The same approaches are then applied to two
civil engineering structures with permanent instrumentation that suf-
fered major earthquakes: the Factor Building of the University of Ca-
lifornia–Los Angeles (FB-UCLA; USA) and the Chino Hills earthquake of
29 July 2008; and the Institute of Geophysics building of the National
Polytechnic University in Quito (IG-EPN; Ecuador) and the Pedernales
earthquake on 16 April 2016. In both cases, the ANFD and slow dy-
namics are analysed and their sensitivity to damage are examined.

2. Theory of resonance frequency recovery

We consider a material characterised by an initial Young’s modulus
E0. It is subject to dynamic conditioning that ends at time t0, which we
choose as the origin time t0= 0. Recovery of the elastic modulus E
(t > t0) after the loading is a function of time t starting after the end of
the stress period. The evolution of the modulus over time during the
slow dynamics phase is given by:

= +E t E δE t( ) ( )0 (1)

The part of the elastic modulus not yet recovered, δE t( ), is pro-
portional to the number of contacts that are still broken at time t. The
characteristic time τ of the contact formation follows a kinetic law, the
Arrhenius equation, which reflects the creation process of barriers of
potential energy U at the origin of the grain contacts [4,34,32]; i.e.:

=τ U τ e( ) U k T
0

/ B (2)

The speed of recovery r of the energy barriers is given by:

= −r U ω e( ) U k T
0

/ B (3)

where τ0 is a characteristic time that depends on the material and the
type of grains, ω0 is the corresponding pulsation, kB is the Boltzmann
constant, and T is the temperature. If the initial density of the grain
surface without contact is ρ U( )0 , immediately after the material con-
ditioning the density at time t can be expressed in the form of an ex-
ponential decrease [36]; i.e.:

= −ρ U ρ U e( ) ( )t
r U t

0
( ) (4)

The quantity δE t( ) of Eq. (1), which is proportional to the number of
contacts that remain broken, is then equal to:

∫= −δE t A ρ U dU( ) ( )
U

U
t

1

2

(5)

where A is a scale constant and U1 and U2 are the lower and upper
limits of the potential energy distribution of the barriers in the material.
The difference in the elastic modulus at two times t1 and t2 can there-
fore be written as:

∫− = −− −E t E t A ρ U e e dU( ) ( ) ( )( )
U

U r U t r U t
2 1 0

( ) ( )
1

2
1 2

(6)

As long as the contactless grain surface distribution ρ U( )0 evolves
slowly and the times t1 and t2 are smaller than the characteristic time τ
(Eq. (2)), the difference in elastic modulus between t1 and t2 can be
approximated by [36]:

∫ ⎜ ⎟− ≈ − ≈ ⎛
⎝

⎞
⎠

∞ − −E t E t Aρ U k T e e dτ
τ

Aρ U k Tln t
t

( ) ( ) ( ) ( ) ( )c B
t τ t τ

B2 1 0 0 0
2

1
1 2

(7)

This development is based on the established laws of physics [34],
and it offers a good explanation for the time dynamics of the loga-
rithmic recovery of the elastic properties of a material after a dis-
turbance (Fig. 1). However, these kinematics are only valid for a limited
time period, which excludes the exploration of infinitely short or long
times.

Snieder et al. [34] used the basic elements of the aforementioned
development by TenCate et al. [36] to establish a different kinematics
law that respects both the logarithmic variation of the recovery for
intermediary times and also the flattening at short and long times. Let
the time evolution of E(t) of a disturbed system at time t= 0 be:

= +E t E SR t( ) ( )0 (8)

where S is a scale constant and R(t) is the function that describes the
recovery process, or the slow dynamics. As before, if we assume a su-
perimposition of the processes related to the creation of potential en-
ergy barriers U (Eq. (6)) and the corresponding characteristic times τ
(Eq. (2)), function R(t) can then be written as:

∫= −R t P τ e dτ( ) ( )
τ

τ t τ/
min

max

(9)

where P τ( ) is the density of the state of the relaxation times, and with
limits τmin and τmax calculated according to the Arrhenius equation (Eq.
(2)):

= =τ τ e τ τ eandmin
U k T

max
U k T

0
/

0
/min B max B

where Umin and Umax are the lower and upper limits of the distribution
of contact activation energies in the material. If N(U) is the density of
the state of the barriers at the origin of the grain contacts, the number
of activation mechanisms where the energy is between U and U+dU is
N(U)dU. The density of the state P τ( ) can therefore be written as:

=P τ N U dU
dτ

( ) ( )
(11)

According to the Arrhenius equation (Eq. (2)), we have:

= =dτ U
dU

τ
k T

e τ
k T

( )
B

U k T

B

0 / B
(12)

The substitution of Eq. (12) into Eq. (11) then gives:

=P τ k T
τ

N U( ) ( )B
(13)

If N(U) remains the same between Umin and Umax, N(U) is constant.
If the temperature T is also constant, the density of the state P τ( ) will be
proportional to

τ
1 . Integrating Equation (13) into Eq. (8) gives the model

that describes the recovery function by Snieder et al. [34]; i.e.:
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∫= −R t
τ

e dτ( ) 1
τ

τ t τ/
min

max

(14)

This equation cannot be solved analytically. However, unlike the

function proposed by Tencate et al. [36] as a time logarithm, this
function converges, regardless of the value of ≥t 0, and in particular at
short times ( = ∞ =( )R R(0) ln ; ( ) 0τ

τ
max
min

). In the present study, we re-

place the integration variable τ with =x t τ/ , and the time derivative of
function R(t) is expressed by:

= −− −dR t
dt

e e
t

( ) x xmin max

(15)

where =x t τ/min min and =x t τ/max max . For ≪ ≪τ t τmin max , which leads
to ≈−e 0xmin and ≈−e 1xmax . dR t

dt
( ) is therefore close to 1/t, which means

that R(t) is close to ln(t) up to an integration constant. The relaxation is
thus expressed as a logarithmic time dependence.

The recovery processes observed in experimental situations can
therefore be characterised by different parameters according to Snieder
et al. [34]. Snieder et al. [34] considered the characteristic times τmin
and τmax, which characterise the energy involved in the recovery pro-
cess of contacts of different sizes. τmin and τmax provide more precise
information on the type of heterogeneities in the material, and notably
on the crack size. They can be calculated from experimental data by
measuring the variation of the elasticity modulus or a proxy of this
value, such as the resonance frequency of a building in the present
study. Here, this corresponds to a non-linear regression adjustment
using Eq. (14) when the resonance frequency is recovered after the
stress. This adjustment and its interpretation according to Snieder et al.
[34] is limited at short times, unless the frequency variations can be
measured precisely during and immediately after the stress, and at long
times, if the duration of recording is not long enough to observe the full
recovery.

3. Data, experiments and data processing

The link between slow dynamics and damage was first verified here
at the laboratory scale. In this study, laboratory experiments were
carried out on continuous beams. These were not designed to evaluate
the invariant scale (i.e., laboratory beam to real-case buildings) of the
non-linear behaviour and slow dynamics, but to valid the methods
before operational application, as previously done by Brossault et al.
[7]. Boutin et al. [5], Perrault et al., [29] and Michel and Guéguen [24]
confirmed the analogy to the first order between the response of a tall
civil engineering structure and that of a continuous beam. The lime-
stone, beam and experimental set-up used herein (Fig. 2) were

Fig. 1. (a) Arrhenius kinetics law for the
recovery rate of the energy barriers for the
contact of the grains (Eq. (3)). (b) Density of
the contact surfaces not yet restored (colour
scale) as a function of time and activation
energy. The initial density is defined as
uniform (Eq. (4)). (c) Normalised recovery
of the Young’s modulus calculated through
integration of the surface density (Eq. (5))
defined discretely in the time–energy space.
The dashed line represents the log(t) fit
function of the recovery slope.

Fig. 2. Experimental laboratory device for the granite beam. (a) Device for
measuring the ambient vibrations generated by the air jet and the automatic
hammer. (b) Representation of the heating device for damaging the beam, given
schematically on the right.
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described in detail in Brossault et al. [7]. The beam is inserted into the
solid limestone base (30× 30×24 cm3), clamped with epoxy glue,
and left free at the top. Its properties are as follows: cross-sectional area,
2× 5 cm2; height, 100 cm; density, 2.955 g/cm3. To measure the hor-
izontal vibrations, two accelerometric sensors are installed (type 4518-
003; Brüel and Kjaer), one at the base of the beam, the other at the top.
The sensor at the base of the beam is only used to provide an indication
of the beam deformation, through calculation of the relative displace-
ment between the top and bottom of the beam during the tests. The data
are recorded by a conditioning amplifier (type 2694; Brüel and Kjaer)
with an acquisition card (USB-6259; National Instruments).

In this study, the beam is subject to continuous stress by an air jet
that is applied to the top of the beam. The air jet applies continuous and
stationary loading at low amplitude for short times, similar to ambient
vibrations recorded in actual structures. Its frequency content is
broadband and excites the full range of frequencies considered
(1–2500 Hz). This system was validated by Roux et al. [30], Guéguen
et al. [11] and Brossault et al. [7] for continuous measurements of the
beam modal parameters. In the laboratory, experimental conditions
(i.e., air temperature, humidity, etc.) are constant. Fig. 3a illustrates the
modal response of the beam obtained herein by Fourier transform of the
recording at the top, and is closely comparable to the theoretical fre-
quencies of an analytic model that associates the beam with a free-
clamped, Euler-Bernoulli type, bending beam [7].

The resonance frequency variation for the system is monitored over
time by the random decrement technique (RDT) [10], which Cole used
to construct the impulse response of a system from measured ambient
vibrations. Cole [10] justified this transformation by considering the
response of a structure to random loading at time t + t0 as the super-
imposition of the free response at time t0 and the forced response to the
random loading between t0 and t. By summing a large number of signal
windows with the same initial conditions, the magnitude of the ex-
pected random part decreases compared to the magnitude of the im-
pulse response. The result of the summation process is the random
decrement signature (RDS) expressed thus as:

∑= +
=

RDS t
N

s ti τ T( ) 1 ( )|
i

N

1
0

(16)

where s(t) is the signal, N is the number of windows summed, τ is the
duration of the windows, and T0 is the initial trigger condition [25].
When filtered around a mode of the structure, RDS(t) is equivalent to
the impulse response of the beam, which then enables extraction of the
modal frequency and damping by adjusting an exponential function.
Many studies have provided information on the quality of such an

estimate, the processing parameters (e.g., length of windows to be
summed, initial conditions) and the restrictions due to the summation
process, which has confirmed its effectiveness on actual civil en-
gineering structures ([1,22,30,25]). An operational description of the
method was provided in Brossault et al. [7]. Although RDT was initially
proposed for estimation of damping, the quality, effectiveness and
precision of the modal parameter estimation means that we can use it as
a time monitoring tool for the frequencies of the granite beam. In the
present study, after filtering around the central frequency of the mode
(i.e., within ± 10% of the modal frequency), we consider the recording
lengths of 1000T (T, mode period) and the windows to be summed as
10T (i.e., N=100 windows), as these processes are considered to offer
stable accuracy [7]. Fig. 3b, c give examples of the frequency time
monitoring (mode 3) over 20 h of acquisition and its variability over
time, respectively.

The experimental data recorded for the beam subjected to the
loading by the air jet are dominated by low-amplitude acceleration
(≈ − −10 ms1 2). To load the beam and trigger the slow dynamics, as
classically observed in an earthquake sequence, dynamic load is applied
to the system in a controlled manner using a programmable automatic
hammer that strikes the supporting granite block (Fig. 2a). This enables
stable repetition (i.e., of amplitude, duration) of the system con-
ditioning. The effect of the conditioning (or strain level) on the slow
dynamic is not analysed in our study. The acceleration generated at the
top is ≈ −10 ms2 2 and lasts for approximately 5 s. The associated de-
formation calculated between the top and the bottom of the beam is
around 5×10−5; i.e., the system remains within the elastic domain.
Fig. 4 shows mode 3 of the granite beam, calculated as the average of
15 successive impacts. This shows the stable frequency before the im-
pact; then there is a remarkable drop during the impact, as highlighted
in red, with fitting of the data with a single logarithmic function of
time, as follows:

= +F t A( ) log (t) B10 (17)

where F(t) is the resonance frequency.
It is interesting to note here that the standard deviation of the fre-

quency is constant over time, which indicates the measurement stability
for the repetitive hammer strikes at the laboratory scale. The drop in
frequency (ΔF/F0) is around 3.58×10−3 for a standard deviation of
10−3.

To evaluate the transitional variations of the resonance frequency
and for estimation of the short relaxation times (τmin Eq. (9)), the RDT
method was modified to improve the time accuracy, by partially re-
moving the windowing effect for instantaneous frequency variation

Fig. 3. Modal responses of the granite beam. (a)
Fourier transform from a vibration recording at
the top, and comparison (dotted line) with the
estimated theoretical modes for the Euler-
Bernoulli type continuous beam. Measured va-
lues: L×W×H, 2×5×100 cm; density,
2.69 kg/m3. Estimated values: Young’s modulus,
50 GPa. (b) Frequency variation of mode 3
computed over 21 h by the normalised random
decrement technique. (c) Distribution of the
frequencies for mode 3.
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assessment. The signal stationarity condition justifies the summation of
the time windows with the same initial conditions T0, which means that
the estimation would be biased if this condition was not respected. To
apply RDT to signal windows that include high amplitudes, use of a
normalised RDT (NRDT) is proposed. This consists of normalising each
segment before the calculation of the segment average. This normal-
isation can be considered as a stationarity condition that is imposed
artificially on the data, without modifying the amplitude variations
within each segment, as an essential condition for signature calculation,
and particularly its exponential decrease. Two normalisations were
tested: using the maximal amplitude (NRDT1) and the maximal energy
(NRDT2) of the time segment.

Fig. 5 shows the fundamental frequency variations during an impact
from Fig. 4 using these three methods, considering a 100T overlap
between successive windows. Considering windows of 1000T, the fre-
quency fluctuations are smoothed, whereas for 400T, there is a sig-
nificant improvement in the resolution of fluctuations that has a phy-
sical meaning, as discussed in Brossault et al. [7]. Monitoring of the
transitional variation of frequency at the time of impact is improved,
thereby improving the identification of the moment when the recovery
begins (i.e., τmin) even if the shift is observed due to the windowing

process used for NRDT. The estimation quality is around 4×10−2%,
which is well below the frequency variation measured during impact.
The two normalisation methods are very similar, and only NRDT1 will
be used in the rest of the present study.

Finally, to define the relevance of the slow dynamics signature to
identify damage, the impacts are applied to the beam subjected to the
air jet loading before and after application of the damage. Roux et al.
[30] and Guéguen et al. [11] used moderate local heating of a Plexiglas
beam to apply a temporary, localised disturbance. The disturbance
proposed herein is also limited in space, but is definitive: a heating
plate applied locally (Fig. 2b). This process creates thermal cracks in the
granite beam, like in the laboratory tests carried out on granite samples
by Chernis and Robertson [8] and by Takarli and Prince-Agbodjan [35].
The experimental stress represented by the size of the beam and its
clamping to the support, as well as the desire to limit the damage to a
specific portion of the beam, prevent the use of an oven to heat the
sample in a gradual and uniform manner, as was the case in the
aforementioned articles. Chernis and Robertson [8] indicated that the
thermal cracking temperature threshold of granite is approximately
80 °C, and that the higher the temperature applied to the granite, the
greater the thermal fracturing, and thus the greater the damage

Fig. 4. Variation of the frequency (mode 3) during a dynamic solicitation. The red line is the average of 15 repeated trials. The error bars (grey) are the uncertainty of
the frequency measurements for the 15 tests. The thick black line is the average. The inset on the right is a zoom of the acceleration during a shock.

Fig. 5. Comparisons of the estimations of the instantaneous frequency variations by the standard RDT method and the NRDT method (cases 1 and 2). (a) Window of
length 1000 T. (b) Window of length 400 T. (c) Time history of the acceleration.

P. Guéguen, et al. Engineering Structures 202 (2020) 109833

5



characterised by the Young’s modulus reduction. Fig. 6a shows the ef-
fects of heating on the beam, which are characterised by an increase in
the acoustic emissions recorded on the beam during the heating, a
characteristic of thermal fractures. The consequences to the resonance
frequency are shown in Fig. 6b. A significant variation is observed after
heating: 0.63%, 4.43%, 2.33% and 1.87% for modes 1 to 4, respec-
tively. As shown by Roux et al. [30], the mode frequency variation is
directly dependent on the position of the damage, and the variations
between the modes will not be discussed further herein. Only the ef-
fectiveness of the damage is relevant to the rest of the present study.

4. Analysis of the slow dynamics

The results analysed in this study were obtained from two experi-
ments that comprised a series of 15 impacts that were applied before
and after damaging the granite beam. Fig. 7 shows the frequency re-
covery for the first four modes of the granite beam in these two states.
Frequency monitoring was obtained by averaging the recovery over the

period of the 15 impacts. Fig. 7 and Table 1 indicate major modifica-
tions of the frequency variation time dynamics after the damage, when
all of the modes show a greater frequency drop (ΔF/F0) associated with
an increase in recovery speed (gradient p) for impacts of similar am-
plitudes. The increase in ΔF/F0 means that once it has been damaged,
the system is less resistant, and reduces its transient stiffness more ea-
sily, an observation that was also reported for an actual building during
an earthquake [2]. ΔF/F0 and p of the relaxation relationship of Eq. (17)
( = + −F t p( ) log (t) (1 ΔF/F )10 0 show the same relative increases for the
first three modes (and, to a lesser extent, for the fourth mode), which
indicates the strong dependency between these two parameters, and
ultimately, an identical recovery time specific to the beam, regardless of
the mode considered. Nevertheless, [20] Lott et al. [21] showed that the
strain field controls the non-linear behaviour. Of note, Tencate et al.
[36] normalised the relaxation coefficient p with the strain values of
each mode, to consider the sensitivity of the mode to the damage ac-
cording to its localisation. Indeed, Roux et al. [30] used the sensitivity
of the modal frequencies to the position of damage for localisation, and

Fig. 6. Illustration of the damage by heating to the beam. (a) Variation in temperature (dashed line) and number of associated acoustic emissions. (b) Variation of the
modal (1 to 4) frequencies due to the heating period. Vertical dashed lines indicate heating periods when the modal analysis is interrupted.

Fig. 7. Recovery of the normalised frequencies
for modes 1 to 4 of the granite beam before
(grey) and after (black) the damage. The re-
covery is the average of 15 successive shocks.
Bold lines: experimental smoothed normalised
values of the fundamental frequency; continuous
thin lines: linear model fit (Eq. (17)); dotted
lines: extension of the model to short times.
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the strain value of each mode could be considered for normalised p
values. In the present study, the strain value is not computed (as only
one sensor at the top of the beam was used), although the relation
between the strain and the p values of each mode could be used for
localisation, following the concept proposed by Roux et al. [30], but not
considered in this study.

Fig. 8 shows the frequency monitoring for mode 3 of the granite
beam, as determined by the relaxation model proposed by Snieder et al.
[34] and applied to the experiment results (Eq. (14)). In this example,
the frequency monitoring was decimated at the long time logarithmic
scale, to reduce the weight of this part in the error calculation used for
convergence of the non-linear regression. The frequency drop ΔF/F0 is
initially 4.2× 10−3 and 5.8×10−3 before and after the damage, re-
spectively, for the equivalent conditioning. These values therefore in-
creased by 38.1%, which is the same as the increase observed for this
mode when the linear relationship is adjusted according to the time
logarithm (30%; Table 1).

Determination of the time constant τmax appears less certain. Indeed,
no long-term curvature characterises τmax in the frequency monitoring
in either case, with the beam recovery being very slow with respect to
the time periods between the repeated impacts. Parameter τmin is de-
termined by the curvature visible for short times; this is 22.1 s for the

undamaged beam, and 10.8 s for the damaged beam (Fig. 8). According
to Snieder et al. [34] and the development described in Section 1, τmin
depends on the smallest characteristic size cracks. Reduction of this
constant therefore implies the creation of cracks that are smaller than
the heterogeneities initially present in the beam, which is one of the
processes that results from damage by heating.

Adjustment of the experiment data of the relaxation relationship
proposed by Snieder et al. [34] provides additional information. The
time constant τmin defines the minimal activation energy required to
close the cracks in the material, and therefore the smallest character-
istic size crack. We can estimate this minimal energy barrier for both
states of the beam using the Arrhenius equation, of Eq. (2). The energy
barrier U is therefore written as:

=U k Tlog τ τ( / )B 0 (18)

For high temperatures, TenCate et al. [36] indicated that
≈τ k Tℏ/ B0 , where ℏ is Planck’s constant. The numerical application of

Equation (18) gives a minimal energy barrier of 0.829 eV and 0.837 eV
for the undamaged and damaged beam, respectively. Thus, there is a
moderate reduction in the minimal energy barrier associated with the
damage; i.e., the smallest crack size results in a large variation in τmin.
This observation is all the more critical because determining τmin is
difficult and depends on the monitoring method used (NRDT in the
present case) and the ability to correctly identify the start of the re-
covery. Longer recovery times are characterised by increasingly small
variations, and are polluted by long-term oscillations; e.g., due to
temperature fluctuations or successive conditioning.

The fitting of the data with a logarithmic function of time is more
robust than the non-linear regression of a complex function, where the
parameter determination depends on the first and last measured fre-
quencies. However, the generalised relaxation law in Eq. (14) [34]
results from the superimposition of characteristic times between τmin
and τmax directly proportional to the size (i.e., characteristic time) of
cracks. For application to the civil engineering structures, only the
Snieder et al. [34] model will be considered herein.

5. Application of slow dynamics to actual civil engineering
structures

The first building considered here is FB-UCLA on the campus of
UCLA, which was built in the 1970s. A full description of the structure,
the modelling, and the first experimental data were provided in Kohler
et al. [18], Nayeri et al. [26] and Skolnik et al. [33]. This building has
17 stories, two of which are below ground level. It has a steel structure
with brick facing and concrete foundations. Its ground footprint is
rectangular, with the long side as the north-south direction. The initial
network of 72 accelerometers that was installed in 1994 was upgraded
in 2003 by the US Geological Survey, to improve the sensor sensitivity
and enable acquisition of ambient vibrations. The present study is fo-
cussed on the monitoring of its fundamental mode frequency in the
north-south direction, as identified by Kohler et al. [18] and already
monitored using RDT by Guéguen et al. [12]. This mode corresponds to
the peak shown on Fig. 9 at ~0.6 Hz. The continuous records sampled
at 100 Hz that are used in this study come from the station at the top in
the south-east corner (station GE, component HNN). The data were

Table 1
Values of p and ΔF/F0 of the recovery relationships of the shape = + −F t p( ) log (t) (1 ΔF/F )10 0 for modes 1 to 4 for an undamaged and a damaged beam. diff,
variation of the parameter characterising the slow dynamics.

Mode 1 Mode 2 Mode 3 Mode 4

p ΔF/F0 p ΔF/F0 p ΔF/F0 p ΔF/F0

Undamaged 2.23× 10−4 8.25× 10−4 2.43× 10−4 9.21× 10−4 1.26× 10−3 5.52× 10−3 1.21× 10−4 5.48× 10−4

Damaged 4.67× 10−4 1.73× 10−3 4.24× 10−4 1.60× 10−3 1.64× 10−3 7.16× 10−3 3.53× 10−4 1.40× 10−3

diff (%) 109 109 74 74 30 30 192 155

Fig. 8. Recovery of the values of the normalised frequencies for mode 3 of the
granite beam before (grey) and after (black) the damage. The recovery is the
average of 15 successive shocks. Bold lines: experimental smoothed normalised
values of the fundamental frequency; continuous thin lines: model fit (Eq. (14));
dotted lines: extension of the model to long times.

P. Guéguen, et al. Engineering Structures 202 (2020) 109833

7



downloaded from the IRIS datacentre website (http://www.iris.edu).
The second building used for this study is IG-EPN in Quito, Ecuador,

in the National Polytechnic University campus. This was built in 1976
before the first earthquake engineering construction code was in-
troduced in Ecuador. It has eight stories of the same height, each of
which comprises a slab supported by reinforced concrete columns.
Since 2011, the structure has been permanently equipped with a triaxial
accelerometer (GURALP-5TD) positioned at the top. The acceleration is
continuously recorded at 100 Hz; this structure shows a resonance
frequency of ~1.5 Hz (Fig. 9).

For FB-UCLA, the earthquake used is the Chino Hills earthquake of
29 July 2008, of magnitude 5.5, the epicentre of which was 45 km from
Los Angeles. The signal recorded at the top of the structure (Fig. 10)
shows an acceleration peak at 1.2 m s−2, and the deformation calcu-
lated on the basis of the acceleration indicates a maximal of
~5×10−4. For IG-EPN, the 7.8 magnitude Pedernales earthquake on
16 April 2016, was used, which had an epicentre 170 km from Quito
(Fig. 10). The acceleration recorded at the top of IG-EPN during the
earthquake shows an acceleration peak of 0.72m s−2, with the maximal
calculated deformation of 7×10−4. In both cases, the deformation is
below the standard threshold of damage appearance, which is assumed
to be ~3×10−3.

The time resolution of NRDT depends on the specific period of the
mode of the structure, which is around 1 s for each of these two
structures. We used NRDT with the 100T signal duration, after checking
the validity of this choice in preliminary tests. The recovery between
two successive signal segments is 90%, to reduce the time interval of
the monitoring and to enable optimal τmin evaluation. We also chose to

validate this by applying a more conventional time–frequency dis-
tribution, of the Cohen class. We therefore applied the Wiegner–Ville
method that was tested by Michel and Guéguen [23] on earthquake
data recorded for these buildings. The principle is to distribute the
signal energy in the time–frequency space. The energy at a point in the
time–frequency space is not calculated in a time window, but between
− ∞ + ∞and . As the signals are finite in time, the distribution ac-
tually calculated in practice is therefore the smoothed pseudo
Wigner–Ville distribution. This corresponds to the Wigner–Ville dis-
tribution for which the energy values of time–frequency pairs are cal-
culated in windows limited in time and in frequency. The frequency
range of this distribution is large, which makes it difficult to measure
small frequency variations. To counter this difficulty, the reassignment
method was applied, as described in Michel and Guéguen [23]. The
local energy of the distribution is reassigned to the centre of gravity of
the domain around each time–frequency point. Michel and Guéguen
[23] indicated that this reassigned pseudo-distribution is particularly
suitable for the measurement of sudden variations in frequency, as for
the present case. The value used for the frequency at each time t is then
determined by picking the maximum value of the reassigned pseudo
Wigner–Ville distribution at that time. Hereafter, we use the term
Wigner-Ville distribution (WV) to indicate the reassigned pseudo
Wigner–Ville distribution.

Fig. 11 shows an example of the monitoring of the fundamental
frequency of IG-EPN during the 2016 earthquake, as calculated by
NRDT and WV, which characterises the ANFD and slow dynamics. A
Savitzky-Golay [27] type of smoothing method is applied to the fre-
quency variations on which the recovery analysis is carried out. The

Fig. 9. Buildings tested in the present study, and their responses computed as the Fourier transforms of the ambient vibration recording at the top. (a) Factor building
(FB-UCLA). (b) Institute of Geophysics (IG-EPN).
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frequency drops by about 30% during the earthquake. The frequency
then recovers partially, towards a value lower than the frequency
measured before the earthquake. This suggests that the structure of IG-
EPN was slightly damaged during the dynamic loading. The recovery
immediately after the loading is similar with both of the monitoring
methods, although differences remain for the short times, which affect
the τmin estimate.

The Snieder et al. [34] model for characterising relaxation is shown
as a function of the time logarithm in Figs. 12 and 13 for FB-UCLA and
IG-EPN, respectively. The frequencies are normalised by their values at
long times, as a convergence value of 1 is required.

For FB-UCLA, the results obtained by NRDT and WV are compar-
able, with a co-seismic drop in frequency of around 0.15. τmin and τmax
are very similar, at 182 s and 165 s for NRDT and WV, respectively. The
minimum (τmin) and maximum (τmax) characteristic times are compar-
able, which according to the Snieder et al. [34] model, suggests that the
cracks or joints that are opened by the earthquake show a distribution
of energy barriers, and therefore a distribution of characteristic sizes
that is limited around a central value.

For IG-EPN, a few variations are seen, depending on the time–-
frequency monitoring methods. The co-seismic frequency drop is
around 33% to 36%. τmin and τmax are different, as 45 s to 106 s and

Fig. 10. Time history of the acceleration recorded at the top of the buildings for the earthquakes used for the frequency recovery analysis.

Fig. 11. Monitoring of the resonance frequency at IG-EPN for the Pedernales earthquake. (a) WV and (b) NRDT. Thick lines, smoothed variations using a Savitzky-
Golay fit function. (c) Smoothed function for NRDT and WV. (d) Time history of acceleration recorded at the top of IG-EPN.
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279 s and 214 s using NRDT and WV, respectively. The difference be-
tween the two monitoring methods indicates that in this specific case
(Pedernales earthquake recorded at IG-EPN), the short characteristic
times are not as well identified near the main shock, introducing un-
certainties on the real state assessment of the building that must be
considered before operational application. It is also interesting to note
that the Pedernales shock was greater than the earthquake suffered by
FB-UCLA, and it resulted in a permanent frequency variation after the
main shock, which indicates increased cracking.

The conditioning sequence of IG-EPN also included a foreshock and
an aftershock (Fig. 14a), with these two events generating transient
frequency variations (Fig. 14b). Their amplitudes are smaller than that
of the main shock, with the initial pre-loading recovered relatively
quickly. The evolution of τmin and τmax with the damage is confirmed in
Fig. 15 and Table 2, which show the Snieder et al. [34] function and the
associated parameters applied to WV for the three events. The non-
linearity measured increases as the deformation measured in the

structure increases. ΔF/F0 is 0.087, 0.190 and 0.366 for the foreshock
(deformation 16,980 5.3× 10−6), aftershock (1.7×10−5) and main
shock (7.6×10−4), respectively. Furthermore, for the foreshock and
aftershock, the two characteristic dimensions τmin and τmax are identical;
i.e., 37 s and 66 s for the foreshock and aftershock, respectively. As
mentioned previously for FB-UCL, this indicates that these moderate
stresses only activate heterogeneities (i.e., cracks in the present case)
the size distribution of which is limited around a main value. In such
cases, the structure deformation is such that the existing cracks are
stressed to their maximum, although no new cracks are formed. For the
main shock, τmin and τmax are very different (45 s, 279 s, respectively),
indicating the mobilising of new cracks created by a major deformation,
as observed in the laboratory on the granite beam. τmax is so much larger
for the main shock than for the fore and after shocks because of the size
of the cracks activated by this loading. The characteristic times τmin also
increase with each earthquake. According to the interpretation that
links these times directly to crack size, the minimum size of the cracks

Fig. 12. Recovery of the normalised frequency of the fundamental mode for FB-UCLA after the Chino Hills earthquake, using NRDT (upper panel) and WV (lower
panel). Thick black line, Snieder et al. [34] fit model; grey line, experimental smoothed normalised values of the fundamental frequency.

Fig. 13. As for Fig. 12 for IG-EPN for the Pedernales earthquake.
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opened by the successive stresses might increase as the dynamic loading
events are repeated. In other words, the damage estimated after the
permanent drop in frequency observed for the main shock consists, at
least in part, in the lengthening of the crack sizes. Further analysis must
be carried out on the accuracy and the values of τmin and τmax according
to the amplitude of the loadings (or conditioning) and the weather
condition.

6. Conclusions

Analysis of the non-linear phenomena (i.e., ANFD, slow dynamics)
observed in the granite beam before and after damage and in the actual
civil engineering structures that suffered earthquakes confirm the direct
relationship between the properties of elastic characteristic recovery
(i.e., resonance frequency) and damage. This relationship between slow
dynamics and the degree of system heterogeneity has already been
confirmed at the laboratory scale and in seismology. For the first time, a
detailed analysis of the slow dynamics applied to civil engineering
structures is shown herein. It opens the route for monitoring the

structural integrity of civil engineering structures. However, it is con-
ditioned by the adjustment of the recovery model for system dynamics,
and the possibility of precise monitoring of the various elastic proper-
ties (or a proxy; i.e., resonance frequency, in the present case).

In this study, the two methods used are a modified version of a
conventional method (NRDT), and a conventional method (WV). These

Fig. 14. Fore-shock, main shock and after-shock earthquakes recorded for the IG-EPN building for the Pedernales sequence. (a) Wiegner-ville function applied to the
variation of the resonance frequency (black) and the Savitzky-Golay smoothing function. (b) Time-history of acceleration at the top of IG-EPN.

Fig. 15. Recovery of the normalised frequency of the fundamental mode for IG-EPN for the fore-shock (black), the main shock (red) and the after-shock (grey) of the
Pedernales sequence. Thick lines, experimental smoothed normalised values of fundamental frequency; continuous lines, univ fit models.

Table 2
Parameters of the recovery relationships of the fundamental mode frequency of
IG-EPN after the three events, as foreshock, main shock and aftershock, using
the Snieder et al. [34] model. Dmax is the maximal drift measured during each
event by the relative displacement between the top and bottom, divided by the
height.

Shock ( )F
F
Δ

0
τ s( )min τ s( )max Dmax

Fore 0.087 37.22 37.24 5.3× 10−6

Main 0.366 45.15 279.0 7.6× 10−4

After 0.190 65.81 65.83 1.7× 10−5
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showed differences for the characterisation of the short and long re-
covery times. At long times, as the recovery processes can be long [2], it
is also preferable to have continuous data, as for IG-EPN.

Using a laboratory analogue, i.e., the granite beam, recovery of the
frequency fitted by a linear function of the time logarithm depends on
the health state (i.e., damaged or undamaged) of the beam. In spite of
the difficulties in adjusting the long and short characteristic times, the
Snieder et al. [34] model enabled the definition of a narrow correlation
of characteristic times with damage. These data are fully confirmed in
the civil engineering buildings, with the definition of the physical
properties of the recovery according to the loading or damage, parti-
cularly for IG-EPN. Slow dynamics are observed after strong loadings,
and for this level of strain (or structural drift), we assume little sensi-
tivity to environmental conditions or conditioning, which suggests the
absolute characterising of the damage.

We note that the characteristic times offer direct insights into the
types of cracks. The designs of the buildings tested in the present study
were different: FB-UCLA has a steel structure and IG-EPN has a re-
inforced concrete structure. The characteristics of the slow dynamics
depend on both the deformation caused by the loading and the het-
erogeneities present in the structure. A drop in frequency was also
observed in a unique building in Japan during a long series of seismic
loading [2]. In that particular case, the frequency drop was conditioned
by the deformation and damage that accumulated over time. For IG-
EPN, the damage is also characterised by a faster recovery rate in the
event of stronger loading. Without knowing their exact dimensions, the
difference between τmin and τmax provides information on both the dis-
tribution of the energy barriers, and therefore the cracks, and on their
evolution according to the level of loading.

We have shown that the characteristic times τmin and τmax were very
close, both for FB-UCLA and its moderate earthquake (Chino Hills), and
for IG-EPN for the foreshock and the aftershock. This indicates a limited
distribution around a central value of the sizes of the cracks opened by
the seismic event, without the creation of new cracks. In the case of FB-
UCLA, which mainly constituted a steel structure, the structural ele-
ments are not fractured, and the time constants correspond to the en-
ergy barriers associated with the joints between the structural elements.
IG-EPN is made of reinforced concrete, which is known to fracture. The
proximity of τmin and τmax suggests that only the smallest cracks were
opened by the two low amplitude earthquakes. In the case of IG-EPN,
the increase in τmin with the deformation caused by the earthquakes also
indicates increased cracking caused by the seismic damage. This in-
crease is confirmed by the difference between τmin and τmax observed
during the main shock, and similarly between the undamaged and da-
maged beams. This observation enables us to envisage a data-driven
method for monitoring structure integrity in the event of seismic
loadings in a sequence. This is all the more important as damage affects
the response, and therefore the vulnerability, of structures ([15,37]),
with probable consequences on the safety of the local inhabitants in the
event of a seismic crisis.

The sensitivity and accuracy of τmin and τmax with damage, and ac-
cording to the conditioning and the weather condition, must be in-
vestigated before concluding on a possible operational framework for
structural monitoring. The sensitivity of the resonance frequency and of
its recovery to weak loadings may control the efficiency of this model
for monitoring and must also be considered before operational appli-
cation. In addition, adjustment of the Snieder et al. [34] relaxation
model via a non-linear regression algorithm is difficult to implement.
There are other models, and although these have only been applied in a
laboratory setting to date [32], if applied to civil engineering structures
[3], these could provide more precise information on the nature of the
cracks (i.e., dimension, energy, distribution), including sensitivity to
the conditioning and the external forcing such as temperature or hu-
midity.
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