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A B S T R A C T

Power system operation with proper planning is an utmost task for enhancing the economy of the country. The
Optimal Reactive Power Dispatch (ORPD) plays an important task for secure, reliable and optimal operations of
power system. ORPD is a complex, non-linear, non-convex, non-continuous and multi-model problem which
involves discrete as well as continuous variables. Thus, its solution comprises of different objective functions like
improving voltage profile, reducing power losses, voltage stability enhancement and transmission cost mini-
mization. Due to the non-linear nature of problem, most of the techniques applied to ORPD are meta-heuristic.
Despite the numerous articles published on these techniques, none has given sufficient emphasis on the com-
prehensively summarizing the existing meta-heuristic methods for solution of ORPD problem. This work presents
a survey of different meta-heuristic techniques applied for solution of ORPD problems in power transmission
system. Moreover, a new meta-heuristic Sine-Cosine algorithm is also proposed to solve the problem. A case
study is performed where different meta-heuristic techniques are implemented to solve the same problem. Later,
statistical analysis is performed to rank all implemented techniques. It is envisaged that the information gathered
in this paper will be a valuable one-stop source of information for researchers working on this topic.

1. Introduction

Optimal Reactive Power Dispatch (ORPD) plays a major role in
economical operation of power system. Complex power is drawn from
the electric power system. Active power is utilized by the system while
reactive power circulates in the power system. But, the reactive power
plays important role in voltage stability and real power transfer within
the system. Thus, it is mandatory to evaluate reactive power dispatch.
The main objectives of ORPD are; active power losses minimization [1],
improvement of voltage profile [2], minimization of transmission cost
[3] and maximization of voltage stability in the power system [4].

The ORPD is a sub-problem of Optimal Power Flow (OPF) which
manages the reactive power flow within the electric power system.
ORPD is a complex nonlinear programming problem of mixed integers
combining successive decision variables (tensions in the generation

bars) and discrete variables (transformer taps and reactive power
compensators). Because of this, most of the techniques used to solve
this problem are based on meta-heuristics [5]. These meta-heuristics
techniques are: Genetic Algorithm (GA), Differential Evolution (DE),
Optimization by Mean Variance Mapping (MVMO), Evolutionary Pro-
gramming (EP), Optimization by Swarming Particles (PSO), Moth
Flame Optimization (MFO), etc.

Due to non-convex, non-linear and multimodal nature of ORPD
problem, the above-mentioned techniques have been shown to be ef-
fective in finding high-quality solutions to this problem. DE have re-
ceived great attention from researchers because of their ease of im-
plementation and its effectiveness [6]. Although they are effective in
solving complex problems, but meta-heuristic techniques do not guar-
antee overall optimality. These methods could possibly be stuck in local
optima while solving complex multi-modal problems. In addition, their
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speed of convergence depends on the appropriate adjustment of the
parameters associated with each meta-heuristic [7].

To solve the issue of getting stuck in local optima, hybrid techniques
have been developed [8]. This article presents a bibliographic survey of
different techniques used to solve ORPD problem [9]. The data is taken
from various databases like IEEE Explore, Elsevier, Springer, Taylor &
Francis and IET. The increasing research interest in this field can be
observed from Fig. 1. This figure shows the number of publications
(journals) in the last 20 years, where ORPD is addressed by meta-
heuristic techniques.

The rest of the manuscript is organized as follows; firstly, most
common mathematical formulation of ORPD is presented along with
changes in objective function and adaptive functions. In next section
the techniques used to solve the ORPD are described and classified.
Further several comparative studies are presented. Finally, some im-
portant conclusion is drawn to highlight potential avenues in this re-
search area.

2. Mathematical modelling of ORPD

The general purpose of solving the ORPD problem is the mini-
mization of complex and nonlinear function by satisfying both equality
and in-equality constraints. Control variables are generator voltages,
transformer taps and reactive power injection of switched capacitors
and reactors. The dependent variables are swing bus power, load bus
voltage, generator reactive powers and line flows.

ORPD problem can be of single objective as well as multi-objective
nature. Both cases are discussed separately.

2.1. ORPD as a single objective optimization problem

Most of the researchers have solved the ORPD problem as a single
objective optimization problem to minimize active power losses ( f1),
improve voltage profile ( f2), improve voltage security ( f3) and minimize
system costs ( f4). The mathematical models of these four objective
functions are explained.

2.1.1. Active power losses minimization
In literature mostly ORPD problem are solved by the transmission

loss minimization keeping control variables, (transformer taps, gen-
erator bus voltages and reactive power injection of capacitor bank)
within specified limit. ORPD problem contains both equality as well as
inequality constraints. Equality constrains of ORPD problem include
power flow equations and inequality constrains include state variables
such as load bus voltages, swing bus power, generator reactive power
and line flows.

Objective function used for transmission loss minimization is [10]:
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where,
Vi: voltage at bus i
Vj: voltage at bus j
k: branch number
Ni: number of transmission lines
gk: conductance

ij: voltage angle difference
V: voltage magnitude

2.1.2. Voltage profile improvement
Voltage profile improvement have also been used as objective

function in ORPD problem. The most common mathematical equations
used for voltage profile improvement are as follows [2,9]:
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where,
i: bus number
V :Li actual voltage of bus
V :L

sp
i specified voltage of buses (1 pu)

NL: number of load buses
Eqs. (2) to (5) show the objective function that is used for voltage

profile improvement in literature. However, most of the researchers
have used Eq. (2) to deal with the objective of voltage profile im-
provement. That is because Eq. (2) is simpler than others and compu-
tational time is less than other equations being used in literature so it is
best among all for its voltage profile improvement.

2.1.3. Voltage stability enhancement
Some researchers also include objective function of voltage stability

index. Static as well as dynamic factors are included in the analysis of
voltage stability. However, mostly the static factors are considered for

Fig. 1. Yearly Publications of ORPD.
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stability assessment and control due to time consuming in dynamic
factors. Various objective function equations for voltage stability en-
hancement are available in the existing literature. Some commonly
used objective function equations are as follows [4]:
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where,
Lk: voltage stability indicator (L-index)
Y: admittance

: phase angle
NG: number of generation buses
Another index of stress stability monitoring commonly found in the

literature is as follows [11] :

= =f max VSM max min eig( ) ( | (Jacobi)|)3
'' (9)

where,
VSM: voltage stability margin
Jacobi: Jacobian matrix of the power system
eig(J) represents all the eigenvalues of the Jacobian matrix; min∣eig

(Jacobi)∣ is the minimum of the eigenvalues in the Jacobian matrix and
max(min∣eig(Jacobi)∣) is maximizing the minimal eigenvalue in the
Jacobian matrix.
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where,
Lk: index value of bus k
H2k: sub matrix generated from partial inversion of Ybus

2.1.4. Transmission cost minimization
This objective function includes the cost minimization of reactive

power obtained from generator and compensators. Initial cost ex-
pressed as the reactive cost of the generator which is given by the
equations as follows [12]:

= …C Q C S C S Q k[ ( ( ) )]gpi gi gpi gi max gpi gi max gi gi
2 2

(13)

A quadratic function:

= + +C P aP bP cgpi gi gi gi
2 (14)

Reactive power cost of shunt compensators employed in the system
is as follows;

=C Q r Qcj cj j cj (15)

where,
rj: reactive cost
Qcj: reactive power purchased
The above costs can also be written in the form of objective function

which are as follows

= +C N C Q N C QMin Q
i

G gpi gi
i

c ci ci (16)

where,
CQ: total cost of the generator and compensator
NG: set of all generators
NC: set of all compensation buses

2.2. ORPD as a multi-objective optimization problem

Most of the power system researchers have addressed ORPD as a
multi-objective problem which include power loss minimization (F1),
voltage profile improvement (F2), voltage stability enhancement (F3)
and reactive power cost minimization (F4) by keeping all the control
variables within defined limit.

Table 1 presents the articles that use the objective functions de-
scribed above. It is evident from the table that the objective function
implemented with the most recurrence is the minimization of active
power losses.

2.3. ORPD considering the impact of Renewable Energy Sources

Renewable energy based Distributed Generation (DG) integration
has a significant impact on reliability, security and economic operation
of power system. However, improper allocation of such DG units (wind
and solar) raises other issues such as voltage deviation, voltage in-
stability, active and reactive power losses. The power system has be-
come more complex and critical after the penetration of Renewable
Energy Sources (RESs). RESs have made the reactive power control
more critical. The uncertainties of RESs have made the system unstable
and the voltage collapses are likely to occur due to volatile nature of
such resources. In the recent studies, the impacts of various un-
certainties on ORPD problem have been discussed in Ref. [13]. In Ref.
[14] ORPD problem been solved considering load and wind power
generation uncertainties using enhanced firefly algorithm. On the other
hand, the integration of RESs has several advantages such as reduction
of cost of energy, environmental benefits and so on. However, the op-
erational and maintenance cost of such resources must be considered by
system operators to obtain optimal dispatch of RESs.

Table 1
Publications considering the ORPD as single & multi-objective problem.

Function type Publications

F1 [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,8,31,32,33,34,35,36,37,38,39,40,41,42,43]
F2 [2]
F3 [44,4,45],
F4 [46,12,47,48,49]
F1,F2 [50,51,52,53,54,55,56,57,14,58,59,60,61,62,63,64]

[65,66,67,68,69,70,71]
F1,F3 [72,73,74,75]
F1,F4 [76,77]
F1,F2,F3 [78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]
F1,F3,F4 [97,98]
F1,F2,F4 [99]
F1,F2,F3,F4 [100,101]
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2.4. Constraints

The ORPD must comply with the power balance (active and re-
active) and with the operating limits of the system. These conditions are
represented by equality and inequality constraints, respectively.

2.4.1. Equality constraints
Equality constraints usually represented by power balance equa-

tions which guarantee that the load demand is met by considering
transmission losses of the system and shown as follows:

i By excluding swing bus, active power flow balance equation of all
buses are;

+ =P P V V g B( cos sin ) 0gi Li i
j N

j ij ij ij ij

i (17)

i Reactive power flow balance equation for all load buses are;

+ =Q Q V V g B( sin cos ) 0gi Li i
j N

j ij ij ij ij

i (18)

where,
Bij is the susceptance

2.4.2. Inequality constraints
In ORPD, there are two types of inequality constraints mainly

named as control variables & state variable. The control variable in-
cludes setting of the transformer output, bus voltages of generator and
the reactive power produced by the shunt capacitors. The state vari-
ables consist of load bus voltages, reactive power generation of PV
buses, line flow limit and active power generation at the slack bus. The
constraints are given below;

i The state variable for voltage magnitude of each bus is given by;

V V V i N,i
min

i i
max

B (19)

where i is the bus number and NB is the total number of buses.

i The state variable for reactive power generation limit is given by;

i NQ Q Q ,gi
min

gi gi
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g (20)

where i is the bus number and Ng is total number of generators

i The control variable for reactive power output of the compensator
is,

i NQ Q Q ,ci
min

ci ci
max

c (21)

where i is the bus number and Nc is total number of capacitors

i The control variable for transformer tap-setting constraint

T T T i N,k
min

k k
max

T (22)

where k is the branch number and Nc is total number of capacitors

i The constraint for power flow limit of each transmission line

S Si i
max (23)

2.4.3. Penalty function
The penalty function formed by transforming equality constraints

and inequality constraints in terms of penalties.
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where,

P (t): Penalty function
Ω (t): Penalty term
ρ: Penalty factor
Mathematically, penalty function can be framed as follows:
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where,
i: starting bus; j: ending bus ; k: branch number ; :P penalty term

for active power; :Q penalty term for reactive power; :C penalty term
for shunt capacitors; :T penalty term for transformer taps; :V penalty
term for bus voltage; :G penalty term for generated power; P :Gi power
generation of ith generator; P :G i

max
, max power generation of ith generator

; P :G i
min

, min power generation of ith generator; P :Di power demand ; Q :Gi
reactive power generation of ith generator; Q :Di reactive power demand

Q :comp shunt compensator value ; Q :comp
max max value of shunt com-

pensators; Q :comp
min min value of shunt compensator; T:i transformer tap

setting; T :i
max max valve of transformer tap setting; T :i

min min value of
transformer tap setting; V :i bus voltage ; V :i

max max bus voltage; V :i
min

min bus voltage; NG: total number of generator; NC: total number of
sources for reactive power generation; NT: total number of transfor-
mers.

3. Methods of Solution

Meta-heuristics do not involve mathematical deterministic proce-
dures. This is an intelligent approach used to search for the optimum
solution. For this, different principles or mechanisms have been pro-
posed. Below is a classification of different Meta-Heuristics for the
ORPD solution.

3.1. Evolutionary algorithms

The term Evolutionary Algorithms (EA) is used to describe systems
for solving optimization or search problems based on biological evo-
lution. Evolutionary computation uses an iterative process based on the
development and growth of the population. The population is selected
in a random search where the individuals mix and compete with each
other such that the fittest prevail throughout the process, allowing to
reach a desired objective. The paradigm of evolutionary computing
techniques refers to the principles of the 50 s, when the idea of using
Darwinian principles for automation problems was introduced [102].
Mostly used evolutionary algorithm is genetic algorithm.

Genetic algorithms (GA) are a class of adaptive search based on the
principles derived from the dynamics of genetics. Proper representation
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or coding of individuals in the population is a key aspect to the success
of this type of methodology. GA starts with the random or pseudo
random creation of an initial population of individuals with certain
characteristics. Each individual represents a candidate solution for the
problem addressed. In the process of solution, the characteristics of the
individuals are copied and transmitted to the new generations. The GA
mechanisms consist of copying the characteristics and partially ex-
changing them. The GA requires three basic operators which are named
according to the corresponding biological mechanisms: reproduction,
crossing and mutation. In Refs. [24,50,55,103,104,105] the GA is used
to address the ORPD problem.

Many conventional evolutionary algorithms are employed for the
solution of ORPD [106]. In Refs. [3,6,11,33,107,108,109,110] the dif-
ferential evolution (DE) technique is used. This technique was initially
proposed by Storn and Price in 1997 [111]. In Ref. [3] an evolutionary
algorithm inspired by Quantum is presented for the optimal dispatch of
power. This type of algorithm combines principle of quantum and
evolutionary computation; in this way, they seek to explore an addi-
tional level of randomness inspired by the concepts and principles of
quantum mechanics. In Ref. [8], an imperialist competition algorithm
applied to the ORPD is presented. This type of algorithm is based on the
geopolitical interactions of the countries (which represent the solution
candidates). During the iterative process, revolutions and annexations
are presented; in this way the weakest empires are eliminated, giving
way to stronger empires (better solution candidates). In Ref. [112], an
algorithm based on the jump of the frogs is presented to give solution to
the ORPD. In this case each "frog" is a vector that contains possible
values of the control variables (solution candidate). A detailed de-
scription of this method can be found in Ref. [113]. Finally, in Refs.
[114,115,116,117], hybrid evolutionary strategies are presented to
address the ORPD problem. Table 2 presents some bibliographic re-
ferences that have used EA’s to solve ORPD problem. Objective function
used in these articles are shown in column three of Table 2. The pro-
posed techniques results are compared with different meta-heuristic
techniques as shown in column 4.

The advantages, disadvantages and applications of EA discussed in
Refs. [117,118] are summarized in Table 3.

EA’s are intelligent algorithms that have been used as meta-heuristic
techniques instead of linear programming (LP) and non-linear pro-
gramming (NP) to solve complex engineering problems. The advantages
and disadvantages of EA’s have already been discussed in Table 3. EAs
work with different structures in different environments. We cannot say
that EAs always gives the global optimal results of complex engineering
problems. So to enhance the capability of solving engineering optimi-
zation problem, swarm intelligence algorithms (SIA) was introduced
which are discussed in next section.

3.2. Swarm intelligence algorithms

3.2.1. Algorithms based on natural phenomena
These algorithms are inspired by physical laws (forces between

electric charges, gravity, river systems, birds flock, etc.) for its opera-
tion. Although there are many methods of Meta-Heuristic optimization
that are based on physical phenomena have not been widely dis-
seminated [118]. Algorithms involving physical phenomena include
simulated annealing and GSA. Simulated annealing mimics emulation
of the annealing of steel and ceramics. This technique involves heating
and then slowly cooling the material to vary its physical properties. The
SA was proposed by Kirkpatric, Gelatt and Vecci in Ref. [119]. On the
other hand, the GSA is based on the gravitational and movement law. In
this algorithm each agent is considered as an object and its mass re-
presents its adaptation function. At the end of this algorithm, the po-
sition of the highest mass object represents the best solution. Other
algorithms based on little-used physical phenomena are loaded system
search, harmonic search and cultural algorithm. The Charged System
Search (CSS) technique was introduced by Kaven and Talatahari in
2010 [120]. Laws of Gauss and Coulomb are used in CSS. In this al-
gorithm, each individual represents a charged particle (CP). Each CP is
considered as a solution candidate. The law of motion is also used to
guide the path of CPs. CPs are affected by other charged particles with
their adaptation values and separation distances. The force acting on
each PC determines its new position, speed and acceleration. Harmonic
Search (HS) is an algorithm of imitation of a phenomenon inspired by
the process of improvisation of the musicians proposed by Zong Woo
Geem in 2001[121]. In the HS, each musician modelled as decision
variable plays (iteration) a note (value) to search for the best harmony
(global optimum). This is done by following an established set of rules.
On the other hand, the cultural algorithm was introduced by Robert G.
Reynolds in 1994 [122]. It consists of generation of a space involving
beliefs that are divided into various categories. These categories mimic
various domains of knowledge in which population is a search space. At
the end of each iteration, the belief space is updated to search the best
individual (solution candidate) of the population. With respect to the
ORPD problem, in Ref. [123] a simple gravitational search algorithm is
used. In Ref. [124] a cultural algorithm is presented. In Ref. [125], a
simulated annealing is discussed. A hybridization between a genetic
algorithm with simulated annealing ideas is presented in Ref. [114].
Table 4 shows articles which used nature inspired swarm intelligence
algorithms to solve ORPD.

Above table shows that the most of the researchers have used par-
ticle swarm optimization (PSO) and its modified forms to solve ORPD. A
tendency have also been seen to solve ORPD using hybrid Nature in-
spired SIA which gives better results for engineering optimization
problems. SIA derived from physical phenomena in the universe have
been discussed in below section.

3.2.2. Algorithms based on physical phenomena
Some algorithms are based on statistical analysis and normalization

of the search space. The most prominent algorithms of this type in
ORPD applications include iterated local search [124] and teaching-
learning-based optimization (TLBO). In [128], an algorithm known as
optimization based on teaching-learning was proposed, which mimics

Table 2
Publications used Evolutionary algorithms to solve ORPD problem.

Reference Proposed meta-heuristic technique Objective function Comparasion

[17] Evolutionary Programming (EP) F1 Conventional gradient based optimization
[24] Self-Adaptive Real-Coded Genetic Algorithm (SARGA) F1 PSO
[33] Differential Evolution (DE) F1 PSO, IP
[50] Improved Genetic Algorithm (IGA) F1, F2 Conventional Gradient based optimization
[72] MNSGA-II F1, F3 NSGA-II, MOPSO
[73] Hybrid Fuzzy multi- objective Evolutionary algorithm (HFMOEA) F1, F3 RCGA, NSGA-II, MNSGA-II
[87] Opposition based Gravitational Search algorithm (OGSA) F1, F2, F3 GSA, BBO, DE, CLPSO, PSO, SARGA
[92] Multi-Objective Differential Algorithm (MODE) F1, F2, F3 SPEA 2
[93] Quasi-Oppositional Differential Evolution (QODE) F1, F2, F3 DE
[95] MNSGA-II F1, F3 NSGA-II, MOPSO
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teaching-learning phenomenon such as in classrooms. This algorithm
comprises of two phases: the first known as Teacher phase and second is
termed as Learner phase. TLBO is an algorithm where a group of stu-
dents are known as the population and various subjects offered to the
students are analogous to the design variables of the optimization
problem. The best solution of the population is considered as the tea-
cher. The reinforced learning algorithm [129] differs from TLBO be-
cause it focuses on online performance, which involves finding an
equilibrium among exploration (of the non-tabulated territory) and
exploitation (current knowledge). Mean-variance optimization algo-
rithm was conceived and developed by István Erlich in 2010 [130]. The
basic concept shares some similarities with other heuristic techniques,
but the novel feature is the use of a mapping function applied to the
mutation of the new generations based on the average and variance of
the best population found so far. Other reinforced learning and
teaching-learning-based algorithms applied to the ORPD problem are
reported in Refs. [31,86,131]. Table 5 shows articles that used physical
phenomena to solve ORPD.

Another form of SIA is artificial immune algorithm (AIA) which is
discussed briefly in below section.

3.2.3. Artificial immune algorithms
The immune algorithms are adaptive systems, inspired by the theory

of immunology, as well as functions, principles and models observed in
the immune system. Among the most used immune algorithms are the
artificial immune algorithms. The artificial immune algorithm (AIA)
was proposed by Dasgupta in 1993 [132]. It is based on the principle of
selecting the clonal and is a population-based algorithm in which an-
tigens (candidate solution) and antibodies (target) interact to find an
optimal solution following some biological rules. The main inspiration
of AIA is by the immune system of human which is highly parallelized,
evolved and Distributed Adaptive system which highlight the strengths:
Immunological recognition, Reinforced learning, characteristic extrac-
tion, Immunological Memory, Diversity and Robustness. The AIA merge
all these strengths and due to its adaptive capacity of learning and
memory, it has gain attention. The vital power of search in AIA is based
on the mutation operator and therefore, it is the unique factor of this
technique. The algorithm of artificial immune recognition performs the
identification of foreign bodies as molecules that are not native to the
body to be eliminated. In Ref. [79] a multi-objective adaptive immune
algorithm was implemented for the ORPD solution and in Ref. [133] an
artificial immune system algorithm was implemented to address the
same problem. Table 6 shows articles that used AIA to solve ORPD.

Table 3
Advantages, disadvantages and further applications of Evolutionary algorithms.

Algorithm Advantages Disadvantages Applications

Evolutionary Algorithms (EA) 1) No presumptions w.r.t problem space 1) No guarantee for optimal solution within finite
time

1) Numerical & computational
optimization

2) Widely applicable 2) Weak theoretical basis 2) System modeling and identifications
3) Low development and application cost 3) May need parameter tuning 3) Planning and control
4) Easy to incorporate other methods 4) Often computationally expensive and slow 4) Data mining
5) Solutions are interpretable unlike neural
network

5) Machine learning

6) Can be run interactively 6) Artificial life
7) Accommodate user proposed solution
8) Provide many alternative solutions

Table 4
Publications used natural phenomena to solve ORPD problem.

Reference Perposed meta- heuristic technique Objective function Comparasion

[18] Particle Swarm Optimization (PSO) F1 Reactive TABU search (RTS), Enumeration Method
[19] Multi-agent Particle Swarm optimization (MAPSO) F1 SGA, PSO
[22] Hybrid Multi-agent Particle Swarm optimization (HMAPSO) F1 GA, HPSO, MAPSO, PSO
[25] Comprehensive Learning Particle Swarm optimization (CLPSO) F1 PSO
[26] Ant Colony Optimization (ACO) F1 LP, GA, PSO
[29] Hybrid Artificial Bee colony assisted Differential Evolution algorithm (DE-ABC) F1 DE, ABC
[37] Whale Optimization Algorithm (WOA) F1 MGBTLBO, PSO, PSO-TVAC
[38] Moth Flame Optimization Algorithm (MFO) F1 MICA-IWO, HAS, DE, GA, GWO
[48] Cuckoo Search Algorithm (CSA) F4 ABC, FA
[54] Turbulent Crazy Particle Swarm Optimization (TRPSO) F1, F2 PSO, GPAC, LPAC, CA
[57] Combination of PSO and Biogeography-based optimization (BBO) algorithm (HPSOBBO) F1, F2 CA, CPSO, LPAC, GPAC, IP-OPF
[14] Enhanced Firefly Algorithm (EFA) F1, F2 DE, EP, PSO, GA, FA
[58] Grey Wolf Optimization Algorithm (GWO) F1, F2 SGA, PSO, HAS
[60] Hybrid Firefly Algorithm (HFA) F1, F2 PSO, BFO, ABC, GSA, FA
[61] Hybridization of Aging Leader and Challengers & PSO

(ALC-PSO)
F1, F2 GSA. BBO, DE, CLPSO, PSO, SARGA

[66] Two Archive Grey Wolf Optimization Algorithm
(TAGWO)

F1, F2 MPSO, MBPIL, DEMO, NPGA-II, NSGA II, MPPA

[67] Fuzzy Adaptive Heterogeneous Comprehensive-Learning
PSO (FAHCLPSO)

F1, F2 PSO

[69] Artificial Bee Colony and Firefly Algorithm (ABC-FF) F1, F2 GA, FF, PSO, ABC
[75] Ant Lion Optimization (ALO) F1, F3 PSO, CLPSO, BA, GWO, ABC
[76] Parallel Particle Swarm Optimization (PPSO) F1, F4 SGA, PSO
[78] Fuzzy adaptive Particle Swarm optimization (FAPSO) F1, F2, F3 PSO
[89] Strength Pareto Multi-Group search optimizer (SPMGSO) F1, F2, F3 NPGA, NSGA, NSGA-II, MOPSO, SPEA, NSDE
[101] Hybrid Particle Swarm Optimization-Multi Verse Optimization (PSO-MVO) F1, F2, F3, F4 PSO, MVO
[126] Hybrid Particle Swarm optimization and Imperialist competitive algorithms (PSO-ICA) F1, F2 PSO, ICA
[127] Improved GSA-Based Algorithm

(IGSA-CSS)
F1, F2 GSA, PSO, GSA-CSS
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The advantages, disadvantages and applications of SIA discussed in
Refs. [134,135] are summarized in Table 7.

All the algorithms discussed above have their on way to solve
complex engineering optimization problems. Each algorithm shows its
performance in finding best solution, depending upon the problem. Due
to the difference in their working they can be compared with each
other. A case study analysis is being performed in the below section for
the comparison of EA and SIA.

4. Case study: a comparative analysis of different meta-heuristic
techniques for solving ORPD problem

To solve electrical energy crises, the world is looking forward to
minimize transmission and distribution line losses by using full tech-
nical and engineering approach. The traditional model of optimal re-
active power dispatch (ORPD) for power systems is based on the prin-
ciple of income maximization, which aims at minimizing active power
loss of the whole networks [12]. In ORPD problem most of the re-
searchers have considered the objective of transmission power loss
minimization as shown in Table 1. Previously, ORPD have been solved
by numerous classical algorithms such as Linear programming [136],
Nonlinear programming [137], Quadratic programming [16], Sequen-
tial quadratic programming [138] and interior point methods [139]. So
in this case study, a deterministic algorithm and four different Meta-
Heuristic techniques are used to minimize transmission line losses. This
case study evaluates the behavior of both deterministic and Meta-
Heuristic techniques to solve ORPD problem. ORPD solved by Newtons
Method (NM), Differential Evolution (DE), Particle Swarm

Table 5
Research work based on physical phenomena to solve ORPD problem.

Reference Perposed meta- heuristic technique Objective function Comparasion

[8] Modified Imperialist competitive algorithm & Invasive Weed optimization (MICA-IWO) F1 SGA, PSO, MAPSO, HAS, ICA, IWO
[23] Seeker Optimization Algorithm (SOA) F1 NLP, CGA, AGA, PSO, SPSO
[31] Hybridization of Modified Teaching Learning algorithm (MTLA) and Double Differential

Evolution (DDE) algorithm (MTLA-DDE)
F1 TLA, DE, MTLA, DDE, ABC, LCA, PSO, CSS,

PBIL
[32] The Gauss bare-bones TLBO (GBTLBO) Algorithm F1 TLBO, BBPSO, BBDE
[36] Chaotic Krill Herd Algorithm (CKHA) F1 CKHA
[56] Biogeography-Based optimization (BBO) F1, F2 PSO, RGA, DE
[62] Two-Point Estimation Method (TPEM) F1, F2 DA, MCS
[63] Chaotic Krill Heard Algorithm (CKHA) F1, F2 PSOIWA, RCGA, DE, CRPSO, TRPSO, BBO
[64] Oppositional Krill Herd Algorithm (OKHA) F1, F2 BBO, DE, KHA
[68] Backtracking Search Algorithm (BSA) F1, F2 GA, PSO, DE
[83] Gravitational Search Optimization (GCO) F1, F2, F3 BBO, DE, CLPSO, PSO, SARGA
[85] Opposition based self-Adaptive modified Gravitational search algorithm

(OSAMGSA)
F1, F2, F3 EA, PSO, CA, GSA

[86] Quasi-Oppositional TLBO (QOTLBO) F1, F2, F3 TLBO
[90] Chemical Reaction Optimization (CRO) F1, F2, F3 DE, PSO
[91] Exchange Market Algorithm (EMA) F1, F2, F3 DE, GSA, OSGA, PSO
[97] Multi-objective Harmony Search algorithm (MOHS) F1, F3, F4 NSGA-II

Table 6
Publication used Artificial Immune Algorithm to solve ORPD problem.

Reference Perposed meta-heuristic technique Objective
function

Comparasion

[79] Multi-Objective Adaptive Immune
Algorithm (MOAIA)

F1, F2, F3 IGA

Table 7
Advantages, disadvantages and further applications of Swarm Intelligence Algorithms.

Algorithm Advantages Disadvantages Applications

Swarm Intelligence
Algorithms (SIA)

1) These algorithms are scalable because same
control architecture can be applied to couple of
agents and thousands of agents.

1) Non-optimal, highly redundant and have no central
control.

1) Movie effects- “lord of the ring”.

2) These algorithms are flexible because agents
can be easily added or removed without changing
the structure.

2) Uncontrollable-it is very difficult to exercise control
over a swarm.

2) Network routing-ACO routing.

3) These algorithms are robust and simple in
design.

3) Unpredictable-The complexity of swarm systems
leads to unforeseeable results.

3) Swarm robotics- swarm bots.

4) Reliance on individual agent is small so failure
of single agent has little impact on systems
performance.

4) Non-understandable-swarm based algorithms are a
jumble of intersecting logics.

4) Human tremor analysis.

5) These algorithms can adopt new situations
easily.

5) Non-immediate- complex swarm systems with rich
hierarchies take time. The more complex the swarm, the
longer it takes to shift states

5) Human performance assessment.

6) Ingredient mix optimization.
7) Evolving neural networks to
solve problems.
8) U.S. Military is applying SI
techniques to control of unmanned
vehicles.
9) NASA is applying SI techniques
for planetary mapping.
10) Medical Research is trying SI
based controls for nanobots to fight
cancer.
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Optimization (PSO), Whale Optimization Algorithm (WOA) and Sine
Cosine Algorithm (SCA) and their behavior is compared graphically.

The primary objective of ORPD is to reduce transmission power loss
to enhance the performance of system. Therefore, marginal improve-
ment in losses reduction is its technical improvement. The other benefit
that can be achieved is the cost of power losses reduction. It can be
obtained in terms of fuel cost function of active power generation at
slack bus given as follows [10,140]:

+ +=F a Pg b Pg cs s s s s s
2 (33)

where Fs is the operational cost in real power losses; Pgs is increased
incremental cost of slack generated power to match transmission power
losses ( =Pg Ps loss); and a b c, ,s s s are the cost coefficient of slack power
generation [140]. Cost of power loss reduction ($/h) for NM, DE, PSO,
WOA and SCA are calculated using Eq. (24) and shown in Table 9.

4.1. Simulation setup

Above mentioned Meta-Heuristic techniques are implemented using
MATLAB software. MATPOWER 3.2 is used for power flow analysis.
The flow diagram for solution of ORPD using Meta-Heuristic techniques
is shown in Fig. 2.

The number of control variables considered in case study analysis
are 19, including six generator voltages (V , V , V , V , V , Vg1 g2 g5 g8 g11 g13), in
the range [0.9, 1.1] p.u at buses 1 (i.e. slack bus), 2, 5, 8, 11 and 13,
four number of transformer taps (T T T T, , ,6 9 6 10 4 12 28 27) in the range
[0.9, 1.05] p.u. placed at the lines 6–9, 6–10, 4–12 and 28–27. There
are 9 shunt compensation devices (QC , QC , QC , QC ,3 10 12 15
QC , QC , QC , QC , QC17 20 23 24 29) situated at buses 3, 10, 12, 15, 17, 20,
23, 24 and 29 within the range [0, 0.05] p.u. The maximum and
minimum limits of control variables such as generator bus voltage (Vg),
load bus voltage (VL), transformer tap setting (Tap) and shunt com-
pensator (Qc) are shown in Table 8.

Four meta-heuristic techniques will be tested using IEEE 30-bus
system. The Description of IEEE 30-bus system is given in Table 9.

The simulation setup is shown in Table 10. Population size, control
variables limits, no of iterations and no of runs are kept constant to
perform case study analysis. Later, superiority of one of the technique
among DE, PSO, WOA and SCA will be shown using some statistical
approach.

Step by step procedure for solving ORPD problem using Meta-
Heuristic techniques is as follows:

(1) Define population size, no. of iteration ( = 100) and input the data
of IEEE 30-bus test system.

(2) Initialize
(V , V , V , V , V , V , T , T , T , T QC , QC ,g1 g2 g5 g8 g11 g13 6 9 6 10 4 12 28 27, 3 10
QC , QC , QC , QC , QC , QC , QC12 15 17 20 23 24 29) within their permissible
range.

(3) For each particle, run Newton Raphson (NR) load flow to find out
losses.

(4) Calculate the fitness function of each particle using Eq. (4).
(5) Find out the best search agent among all the search agents.
(6) A Meta-Heuristic technique (DE, PSO, WOA, and SCA) is applied to

update the search agents.
(7) If control variables are not in limits penalize otherwise move to step

8.
(8) Calculate the fitness function of each updated particle using Eq. (4).
(9) Go to step no. 6, until max. no. of iterations is completed.

Step by step procedure for solving ORPD problem using Newtons
Method is shown in flow diagram in Fig. 3:

Based on above simulations, the obtained results are presented in
the following sections.

4.2. Results

Newtons Method and All the four meta-techniques are implemented
on MATLAB and best result for power losses minimization out of thirty
runs is saved. The results are given in Table 11. Base case power losses
(without capacitor placement) are 5.812 MW. In the table, control
variables to find the power losses are generated bus voltage (V , V ,g1 g2
V , V , V , Vg5 g8 g11 g13), transformer tap settings (T T T T, , ,6 9 6 10 4 12 28 27)
and shunt VAR compensators (QC , QC , QC , QC , QC , QC ,3 10 12 15 17 20
QC , QC , QC23 24 29). All the control variables are in per unit (pu).

Table 11 shows the optimum values of control variables and mini-
mized power losses for NM, DE, PSO, WOA and SCA. The results show
that for given experimental setup (Table 10) SCA gives the best results.
Working and convergence characteristics of these meta-heuristic tech-
niques are shown in further section.

4.2.1. Differential evolution (DE) results
Differential evolution is a meta-heuristic technique proposed by

Storn and Price. It is a population based algorithm that uses cross over,
mutation and selection operators. DE works on simple cycle of stages as
shown in Fig. 4.

Mathematical equation for the initialization of chromosome is as
follows:

= +X X rand X X(0) (0,1). ( )a b b
L

b
U

b
L

, (34)

where,
Xb

U = Upper limit of population
=Xb

L Lower limit of population
rand(0,1)= Random number between 0 and 1
Mathematical equation for mutation operator is as follows:

+ = +V t X t F X t X t( 1) ( ) . ( ( ) ( )a b r b r b r b, 1, 2, 3, (35)

where,
+V t( 1)a b, = Donor vector generated from each initialized popula-

tion
X t( )r b1, = First randomly chosen control variable not coinciding

Table 8
Variable limits for the IEEE 30-bus test system.

Range Generator bus voltage (Vg) Load bus voltage (V )L Transformer tap settings (Tap) Shunt compensator (Q )C

Min (pu) 0.90 0.90 0.90 0
Max (pu) 1.1 1.1 1.05 0.05

Table 9
Description of IEEE 30-bus test system.

Description IEEE 30-bus

Buses 30
Lines 41
Generators 6
Tap transformers 4
Shunt capacitors 9
Load buses 24
P load (MW) 283.40
Q load (Mvar) 126.20
Pgen (MW) 289.211
Qgen (MW) 108.922
Initial P loss (MW) 5.812
Initial Q loss (Mvar) 32.417
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with control variable which is already selected
X t( )r b2, = Second randomly chosen control variable not coinciding

with control variable which is already selected
X t( )r b3, = Third randomly chosen control variable not coinciding

with control variable which is already selected
F = Scaling factor between 0.4 and 1.

Mathematical equation for cross over operation is as follows:

=
<

U t
V t if rand CR
X t else

( )
( ) (0,1)
( )a b

a b

a b
,

,

, (36)

where,
CR = Cross over ratio [0.9,1]
U t( )a b, = Child that will compete with parent X t( )a b,
V t( )a b, = Donor vector obtained from mutation
Mathematical equation for selection operator is as follows:

<
U t if f U t f X t
X t if f X t f U t

( ) ( ( )) ( ( )
( ) ( ( ) ( ( ))

a a a

a a a (37)

where =f U t( ( )) Power Losses (PL)a is the function to be minimized.
The convergence characteristics of algorithm are shown in Fig. 4.

For first 40 iterations control variables have not shown any decrease in
power losses because cross over, mutation and selection operators up-
dated the control variables to the values which are unable to reduce the

Fig. 2. Flow diagram to solve ORPD problem using Meta-Heuristic techniques.

Table 10
Experimental setup for case study.

Transmission system IEEE 30 Bus System

No. of Generator variables 6
No. of Transformer variables 4
No. of Shunt compensators 9
Population size 50
No. of Iterations 100
No. of runs 30

Fig. 3. Flow diagram to solve ORPD problem using Newtons Method.
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power losses. From approximately 42th iteration DE show reduction in
power losses from 5.3 MW TO 5.24 MW. Approximately after 43th
iteration DE got stuck in local optima and did not show any decrease in
power losses till 77th iteration. DE Converges at approximately 78th
iteration. At 78th iteration cross over and mutation operator provide
such updated values of control variable which reduce the power losses
to minimum value. For given experimental setup the algorithm reaches
a minimum value of 5.0989MW. Optimal values of control variables
are given in third column of Table 9. Comparison of the power losses
obtained from DE with base case power losses (5.812 MW) show
12.4220% power losses reduction. The cost of power loss reduction for
DE is 1.4281 $/hr as calculated by means of Eq. (24) (Fig. 5).

4.2.2. Particle swarm optimization (PSO) results
PSO is an efficient population-based optimization algorithm which

utilizes the mechanism of birds flocking and fish schooling. It was
proposed by Eberhart and Kennedy. Each particle updates its position
based upon its own best position, global best position among particles
and its previous velocity vector according to the following equations:

= + ++V w V c r P X c r g X. . . ( ) . . ( )i
k

i
k

best i
k

best i
k1

1 1 2 2 (38)

= ++ +X X V.i
k

i
k

i
k1 1 (39)

where,
+Vi

k 1 = Velocity of ith particle at (k+1)th iteration
w = Inertia weight of the particle
Vi

k = Velocity of ith particle at kth iteration
c c,1 2 = Constants having values between 0 and 2.5
r r,1 2 = Randomly numbers between 0 and 1
Pbest = The best position of the ith particle obtained based upon its

own experience
gbest = Global best position of the particle in the population

+Xi
k 1 = The position of ith particle at (k+1)th iteration

Xi
k = The position of ith particle at kth iteration

α = Constriction factor which will help to insure convergence
Optimally selected inertia weight w provides good balance between

global and local explorations. So the equation for inertia weight is as
follows:

Table 11
Comparison of the results of case study.

Control variables Base case variables
(without capacitor
placement)

Optimal variable
for NM

Optimal variable for
DE

Optimal variables for
PSO

Optimal variables for
WOA

Optimal variables for
SCA

Vg1 (pu) 1.05 1.09713 1.099425 1.1 1.098734 1.1
Vg2(pu) 1.04 1.09446 1.096135 1.0930 1.098659 1.1
V (pu)g5 1.01 1.08282 1.071103 1.0731 1.098547 1.0869
Vg8 (pu) 1.01 1.08157 1.077679 1.0743 1.098547 1.0870
Vg11 (pu) 1.05 1.06924 1.065779 1.0275 1.098547 1.1
V (pu)g13 1.05 1.05356 1.003751 1.0335 1.05 1.0800
T6 9 (pu) 1.078 0.9609 0.99476 1.0161 1.05 1.05
T6 10 (pu) 1.069 0.9157 0.996979 1.0008 1.05 1.05
T4 12 (pu) 1.032 1.0317 1.0369 1.0089 1.05 1.05
T28 27 (pu) 1.068 0.9957 1.020303 1.0245 1.05 1.05
QC3 (pu) 0 0.02949 0.01911 0.0364 0.029414 0.04631
QC10 (pu) 0 0.02154 0.039475 0.03541 0.018422 0.03089
QC12 (pu) 0 0.04027 0.034769 0.01664 0.036252 0.05
QC15 (pu) 0 0.02980 0.029612 0.04009 0.010411 0.04697
QC17 (pu) 0 0.03205 0.03146 0.0406 0.022164 0.02129
QC20 (pu) 0 0.00736 0.003442 0.0408 0.049714 0.03191
QC (pu)23 0 0.02778 0.017326 0.0414 0.031847 0.05
QC24 (pu) 0 0.01944 0.028057 0.03948 0.03902 0.04388
QC29(pu) 0 0.01267 0.042639 0.02246 0.030282 0.03575
Power Losses (PL) (MW) 5.812 5.0318 5.0989 4.7797 5.0625 4.7086
% reduction – 13.422 12.422 17.792 12.89 18.98
Cost of power losses reduction

$/h
– 1.656 1.4281 2.0722 1.5011 2.2113

Fig. 4. DE is cycle of stages.

Fig. 5. Power losses minimization by using Deferential Evolution.
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=w w w w
iter

iter. ( )max
max min

max (40)

where,
=wmax Inertia weight at the beginning of iterations
=wmin Inertia weight at the end of iterations

iter = Current iteration number
=itermzx Maximum number of iterations

Minimum losses found by PSO are 4.7797MW. Optimal values of
control variables for PSO are shown in fourth column of Table 9. The
convergence characteristics of PSO are shown in Fig. 6. The drawback
of PSO is that it is more a local search algorithm rather than global
search. That is why PSO have taken maximum number of iterations to
reach an optimum value. PSO Converges at 99th iteration. PSO got stuck
in local optima and converges slowly. Comparison of power losses ob-
tained from PSO with base case losses (5.812 MW) show 17.792%
power losses reduction. The cost of power losses reduction for PSO is
2.0722$/hr as calculated via Eq. (24). Thus, PSO also gives better re-
sults as compared to DE.

4.2.3. Whale optimization algorithm (WOA) results
WOA is a noval nature inspired meta-heuristic optimization algo-

rithm which utilizes the social behavior of humpback whales. WOA was
introduced by Mirjalili and Lewis. It uses encircling and spiral updating
mechanism of whales. Mathematical model of different behavior shown
by humpback whales are given below.

Mathematical equations of encircling behavior of whales is as fol-
lows:

=D C X t X t| . ( ) ( )|* (41)

+ = <X t X t A D if p( 1) ( ) . 0.5* (42)

where,
p = Random number between 0 and 1
t = Current iteration
A&C = Coefficient vectors
X* = Position vector of the best solution

=A a r a2. . (43)

=C r2 (44)

where,
a = linearly decreased from 2 to 0 in both exploration and ex-

ploitation
r = Random number between 0 and 1
Mathematical model of spiral updating phenomena is as follows:

=D X t X t( ) ( )/ * (45)

+ = +X t D e pi l X t if p( 1) . . (cos2. . ) ( ) 0.5bl/ * (46)

where,

p = random number between 0 and 1
b = Constant to define the shape of spiral
l = Random number uniformly distributed in the range [1,−1]
For global search we do not relay on best solution rather we choose

random control variable. The global search will be done when value of
A is greater than 1. The equations for global search are as follows:

=D C X| . X(t)|rand (47)

+ =X t X A D( 1) .rand (48)

where,
Xrand = Randomly chosen from current population
Minimum losses found by WOA are 5.0625MW. Optimal values of

control variables for WOA are shown in fifth column of Table 9. The
convergence characteristics of WOA are shown in Fig. 7. It can be seen
that WOA is a global search algorithm and did not stuck in local op-
timum. WOA converges before 20th iteration, in comparison to the 78th
and 99th iteration attained by DE and PSO respectively.

Comparison of power losses obtained from WOA with base case losses
(5.812 MW) show 12.89% power loss reduction which is slightly better than
DE. The cost of power losses reduction for WOA is 1.5011 $/hr as calculated
from Eq. (24). Hence, the WOA gives better results as compared to DE.

4.2.4. Sine cosine algorithm (SCA) results
SCA is a population based algorithm proposed by Seyed ali Mirjalili.

SCA uses the adaptive nature of sine and cosine functions to get the
optimum result of desired problem. SCA uses the following position
updating equations for both phases (exploration and exploitation):

= + × ×+X X r sin r r P X( )i
t

i
t

i
t

i
t1

1 2 3 (49)

= + × ×+X X r cos r r P X( )i
t

i
t

i
t

ii
t1

1 2 3 (50)

where Xi
t is the position of the current solution in i-th dimension at t-th

iteration, r1/r2/r3 are random numbers, Pi
t is position of the destination

point in i-th dimension, and || indicates the absolute value. These two
equations are combined to be used as follows:

=
+ × × <
+ × ×

+X
X r sin r r P X r
X r cos r r P X r

( ) 0.5
( ) 0.5i

t i
t

i
t

i
t

i
t

i
t

ii
t

1 1 2 3 4

1 2 3 4 (51)

where,

= =r a a t
T

a 0.09,1 (52)

where t is the current iteration, T is the maximum number of iterations,
and “a” is a constant.

r2 = 2*pi*rand()
r3 = 2*rand()
r4=rand()

Fig. 6. Power losses minimization by using Particle swarm optimization. Fig. 7. Power losses minimization by using Whale Optimization Algorithm.
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Above mentioned parameters r1, r2, r3, r4 are responsible for the
behavior of graph. r1 dictates the position region or the movement of
direction of search agents (exploration). r2 dictates how far the move-
ment should be towards or outwards the best solution (exploitation).
The parameter r3 gives the random weight for destination to emphasize
(r3 > 1) and to deemphasize (r3 < 1). Finally r4 is used to equally
switch between sine and cosine functions as shown in Eq. (53). r4 is
responsible for the usage of adaptive nature of sine and cosine function.

Minimum losses found by SCA are 4.7067 MW. Optimal values of
control variables for SCA are shown in sixth column of Table 9. The
convergence characteristics of SCA are shown in Fig. 8. It can be seen
that initially search agents show large fluctuations approximately till 5th

iteration which shows the exploration phase of SCA but control variable
got stuck in local optima before 10th iteration and found a way out at
approximately 20th iteration. After that there is small decrease in power
losses which shows the exploitation phase of SCA. During this whole
process SCA switches between sine and cosine function depending upon
the value of r4. At approximately 39th iteration due to stochastic nature
of SCA again there is exploration phase and large fluctuation which then
converge around best solution. It can be seen that SCA converges before
40th iteration so its convergence is better than both PSO and DE. Com-
parison of power losses obtained from SCA with base case losses
(5.812 MW) shows 18.98 % power loss reduction. The cost of power
losses reduction for DE is 2.2113 $/hr as calculated from Eq. (24). SCA
gives the best result out of all the techniques used for case study analysis.

4.2.5. Newton method (NM) results
Newtons Method is well known tool for the solution of Optimal

power flow problems [141]. The Newton approach is a flexible for-
mulation that can be adopted to develop different OPF algorithms
suited to the requirements of different applications. This method is a
very powerful algorithm because of its rapid convergence near the so-
lution. This property is especially useful for power system applications
because an initial guess near the solution is easily attained.

To solve ORPD using Newtons Method we must convert objective
into lagrangian function as shown below;

= + +µL(x) f(x) x
T

x
T

( ) ( ) (53)

where µ and are vectors of lagrangian multiplier.
A gradient and Hessian of the Lagrangian is then defined as Gradient

=L z
L Z

Z( )
( )

( i) (54)

where L z( ) is a vector of the first partial derivatives of the Lagrangian.
The flow diagram for the solution of ORPD using Newtons Method is

shown in Fig. 3. The convergence characteristics of Newtons Method are
shown in Fig. 9. Power losses reduced to value of 5.031 MW showing a
percentage decrease of 13.422% and cost reduce to value of 1.656 $/h.

Newton based techniques have some drawbacks due to which it is
not suitable for the solution of large test systems. Its convergence
characteristics are sensitive to the initial conditions and they may even
fail to converge due to inappropriate initial conditions [142]. It is not
possible to develop practical ORPD programs without employing
sparsity techniques.

The comparative study of four techniques is performed which shows
that SCA gives best results after thirty runs. However, in the technical
literature, several comparisons between methods are reported to ad-
dress the ORPD problem. Tables 2–5 present articles that carry out such
comparisons. Despite the multiple comparisons that have been reported
between methodologies to address the ORPD, it is not possible to affirm
that there is one superior to the others. This is because a particular
characteristic of meta-heuristics is that their operators can be modified
to improve their performance. Thus, one can report the superiority of
one method over another and later reverse this condition. For example,
in Refs. [98,110] the superiority of evolutionary techniques versus
techniques based on swarm intelligence is shown; however, in Refs.
[143] and [19] the reverse situation is shown. However, from the lit-
erature, it is evident that in recent years there has been a tendency to
explore new Meta-Heuristic techniques to solve the ORPD. Due to its
effectiveness, the evolutionary algorithms have remained valid over the
time. Additionally, it is observed that publications on studies carried
out in swarm intelligence have increased in recent years.

As mentioned earlier, in this manuscript, the ORPD problem have been
solved using four different meta-heuristic techniques including DE, PSO,
WOA and SCA. IEEE 30-bus system have been used to implement these
algorithm and results of 30 independent trail runs have been saved for each
technique. Then, to prove the superiority of one of the meta-heuristic
techniques, a statistical analysis is performed showing best, worst, mean,
standard deviation and rank of each technique as performed in Ref. [144].
This statistical analysis is performed on IEEE 14-bus, 30-bus and 57-bus
system by taking the data of 30 runs independently for all techniques as
discussed previously and results are shown in Table 12.

For small system such as 14 bus system as shown in table, WOA
ranked better than PSO but as we move to larger system WOA ranked
less than PSO. It can be seen from Table 12 that SCA outperforms all
algorithms in all test system which shows its strength in solving com-
plex engineering problems.

On the basis of data obtained from 30 independent trial runs of each
technique, a statistical graph is plotted on the basis of probability density
function (PDF) which shows the superiority of SCA as shown in Fig. 9.

It can be seen from Fig. 9 that for 14-bus system results of power
losses for all Meta-Heuristic techniques lies between 12.274 MW to
15.22 MW as shown in Table 12. For 30-bus system, the results of 30
independent trial runs for all four Meta-Heuristic techniques lies be-
tween 4.708 MW to 6.201 MW. Similarly, for 57-bus system, results of
all Meta-Heuristic techniques lies between 24.054 MW to 28.729 MW.

Fig. 8. Power losses minimization by using Sine Cosine Algorithm.
Fig. 9. Power losses minimization by using Newtons Method.
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These results are evident that for all test systems, SCA power losses
have less distribution. The closest distribution of results of SCA in graph
shows that the losses obtained in all 30 trail runs are close to optimal
result obtained in SCA. The data distribution is widest in case of DE
which shows that deviation from optimal power losses is highest in case
of DE.

Complexity of any algorithm depends on its time of execution.
Execution time of our own implemented algorithms is given below in
Table 13.

The above table shows that complexity level of SCA is minimum.
SCA involve less mathematical calculations to find the optimum result
of specified problem (Fig. 10). < – >

5. Conclusion

This review presents the meta-heuristic techniques which are used
to solve the ORPD problem. The mathematical formulation of the ob-
jective and aptitude functions commonly used in the ORPD were also
presented. These techniques are classified on the basis of their objective
functions. Furthermore, these are categorized into evolutionary algo-
rithms and swarm intelligence algorithms. From the last 20 years
survey, it can be seen that for the first decade, evolutionary algorithms
were frequently used to solve the ORPD problem. On the other hand, a

tendency was found in the last decade to approach the ORPD through
swarm intelligence algorithms. The main advantage of each meta-
heuristic technique lies in its versatility to handle multi-objective pro-
blems, restrictions and the fact of finding a set of high-quality optimal
solutions. From this survey we can conclude that most of the re-
searchers have considered the objective of active power losses mini-
mization in transmission system for the solution of ORPD problem.
Based on this conclusion a case study is performed in the last part of this
survey, considering the objective function of power losses minimization
where DE, PSO, WOA and SCA are employed to solve ORPD problem for
a single test system by keeping the same initialized parameters for all
techniques. The results show that DE gives the worst results and SCA
gives the best results in terms of power losses minimization among the
four compared techniques. Finally, a statistical analysis is also per-
formed to evaluate the performance of techniques under discussion.
The analysis shows that SCA outperforms which would attracts the
researchers to use this technique for solving various engineering opti-
mization problems.
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Table 12
Statistical analysis performed to prove superiority of one technique

Test systems 14-bus system 30-bus system 57-bus system

Algorithms DE PSO WOA SCA DE PSO WOA SCA DE PSO WOA SCA

Best result (MW) 12.663 12.469 12.432 12.274 5.098 4.779 5.062 4.708 27.062 25.386 25.657 24.054
Worst result (MW) 15.272 14.569 13.723 12.832 6.201 5.876 5.996 5.286 30.644 26.951 28.729 25.527
Mean 13.356 13.332 12.901 12.526 5.501 5.273 5.243 5.030 29.047 26.250 27.223 24.694
Variance 0.303 0.212 0.110 0.022 0.154 0.045 0.050 0.017 0.744 0.174 0.506 0.119
Std 0.550 0.461 0.332 0.149 0.393 0.212 0.225 0.133 0.863 0.418 0.711 0.345
Rank 4 3 2 1 4 2 3 1 4 2 3 1

Table 13
Execution time of different algorithms.

Algorithm SCA PSO WOA DE NM

Execution Time (s) 90 103 140 145 158

Fig. 10. Power losses in (MW) plot on the basis of PDF.
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