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ABSTRACT As an important and novel model with multitudinous practical applications, the set-union
knapsack problem (SUKP) is a challenging issue in combinatorial optimization. In this paper, we present
an enhanced moth search algorithm (EMS) for solving SUKP, which introduces an enhanced interaction
operator (EIO) by integrating differential mutation into the global harmony search and then Lévy flight is
replaced by EIO. Comparative experimental results, which were conducted on three types of 30 popular
SUKP benchmark instances, demonstrate that EMS algorithm is superior to or competitive with the other
state-of-the-art metaheuristic algorithm. In particular, EMS reaches the best-known solutions for the great
majority of test instances and improves the best-known solutions for six instances. Two critical ingredients
of EIO is investigated to confirm their impact on the performance of EMS. The results show that both
components have an important role in improving the performance of EMS.

INDEX TERMS Differential mutation, global harmony search, moth search algorithm, set-union knapsack

problem.

I. INTRODUCTION

The classical knapsack problem (KP) [1] is still one of the
most challenging problems in combinatorial optimization.
Since KP is an NP-hard problem and has many practical
applications in reality, new varieties are emerging in recent
years.

In this paper we consider an extension of KP, namely, the
set-union knapsack problem (SUKP) [2], [3], which is a pop-
ular binary optimization problem with constraints. Although
SUKP was proposed long ago, it has recently attracted more
and more researchers to study this issue deeply, because it
has been proved that there are many important applications
in specific fields, such as public key prototype [4], data
stream compression [5], and financial decision making [3].
In addition, SUKP is more complicated and challenging than
the classical 0-1 KP. The classical 0-1 KP is characterized by
one item with a profit and a weight. Nevertheless, there are
a set of items and a set of elements in SUKP, in which each
item has a profit and each element has a weight. Particularly,
a set of items is required to pack into the knapsack in SUKP.
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In view of its important application in practice and its
theoretical research value, SUKP has attracted much atten-
tion in the community. According to the existing literature,
the method of solving SUKP problem can be categorized
into three groups based on their natures: (1) exact algorithm
(2) approximate algorithm, and (3) heuristic approach. Here,
we are mainly concerned with the most representative
research work. The representative exact approach is dynamic
programming (DP) algorithm. SUKP has been first intro-
duced in the literature by Goldschmidt et al. with DP [2].
However, the high time complexity makes it difficult to apply
in the real-world applications. Later, an approximation algo-
rithm A-SUKP for the SUKP was presented by Arulselvan
and some important proofs were provided [3]. Afterwards,
Taylor designed several approximation strategies for SUKP
and related problems [6]. Nevertheless, a satisfactory approx-
imate solution cannot be obtained by this kind of method
when facing large-scale SUKP instances.

In order to escape from the trouble when facing high-
dimensional SUKP instances with exact algorithms and
approximate algorithms, various heuristic methods have
been proposed to solve SUKP. Recently a binary artificial
bee colony algorithm (BABC) for SUKP was given by
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He et al. [7]. Meanwhile, SUKP has also been addressed
by Baykasoglu et al. [8], Ozsoydan and Baykasoglu [9].
The authors presented an effective binary swarm intelligence
technique which is based on genetic algorithm (GA) [10]
and particle swarm optimization (PSO) [11]. Lately,
Baykasoglu et al. addressed SUKP by using binary weighted
superposition attraction algorithm (WSA) [8]. Indeed, in the
light of NP-hard characteristic, it is significant to investigate
SUKP intensively, especially applying more novel meta-
heuristic algorithm.

Three metaheuristic algorithms based on the behavior of
moths in nature have been proposed. The main inspiration
of moth-flame optimization (MFO) [12] is transverse ori-
entation navigation method of moth. Inspired by the orien-
tation of moths towards moonlight, moth swarm algorithm
(MSA) [13] is proposed. In MSA, moth swarm consists of
three groups of moths according to their mission during flight,
namely, pathfinders, prospectors, and onlookers. As recently
introduced by Wang [14], moth search (MS) takes inspi-
ration from the phototaxis and Lévy flights of the moths
in nature. Similar to MSA, moth swarm in MS is divided
into two subpopulations based on the flight mode to light
source. Owing to its relative novelty, the related literature
includes studies of MS are few. Feng et al. employed a binary
MS algorithm (BMS) to solve discounted {0-1} knapsack
problem (DKP) [15]. Although BMS can effectively solve
DKP, whether MS can perform well in other complicated
combinatorial optimization problems like SUKP, still needs
to be studied.

This is the motivation for this work, in which an enhanced
interaction operator (EIO) is specially designed to replace the
Lévy flight operator in original MS and then an enhanced
moth search algorithm (EMS) is proposed. The basic frame
of EIO is embedding the mutation operator (MO) of differ-
ential evolution (DE) [16], [17] in global harmony search
algorithm (GHS) [18] to make full use of their advantages.
Concretely speaking, the effective combination of GHS and
MO can enhance the ability of information interaction among
individuals.

The main contributions of this work can be summarized as
follows.

« For the first time, we investigate an enhanced MS algo-
rithm for solving the SUKP. We replace Lévy flight
operator with the combination of GHS and differential
mutation operator that is capable of ensuring an effec-
tive diversification and intensification within the search
space.

o We provide experimental results on 30 commonly used
SUKP instances and compare the results of EMS with
those of state-of-the-art SUKP algorithms in the liter-
ature. It should be noted especially that we update the
best-known results for 6 SUKP instances.

The remainder of this paper is organized as follows.
Section II formally defines SUKP problem. Section III gives
a brief overview of the original MS algorithm. Section IV
provides the detailed introduction of EMS to solve SUKP.
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Section V makes the comparison and analysis of the exper-
imental results. Section VI draws conclusion of the present
work and gives perspectives for future studies.

Il. SET-UNION KNAPSACK PROBLEM

SUKP is essentially an extension of the 0-1 knapsack problem
(0-1 KP) [19] by assigning some elements to each item.
Formally, this problem can be defined as follows.

Given a SUKP instance withaset U = {1,2,3,...,n} ofn
elementsand asetS = {1,2,3, ..., m} of mitems. Moreover,
eachitemi € § (i =1, 2, ..., m) corresponds to a subset U;

m

of elements, and U; # @ AU; C U A |JU; = U. Each
item has non-negative profit p; (i = 1, 2, : m) and each of
the elements has non-negative weight w; G = 1,2, ..., n).
For an arbitrary subset A C S, total weight and total profit of
subset A is defined as W(A) = Zje U u Wi and P(A) = >_ pi,
ieA i€A

respectively. Then the SUKP is to select a subset of items
S* such that W(8*) < C where C is the capacity limit of
knapsack, while maximizing the total profit P(S*).

Then the mathematical model of SUKP can be formulated

as follows:

Max P(A) =) pi e
i€A
stW@A) =) wj<C, ACS )

jelU Ui
icA
In order to solve SUKP easily by using metaheuristic
algorithm, an integer programming model is proposed by
He et al. [7]. The new mathematical model can be defined
as follows:

Max f(Y) = ZZI yibi )
s.t. W(Ay) = Z]_E U v w; < C 4
ieAy

Here, any candidate solution Y can be represented by an
m-dimensional binary vector Y = (y1, y2, ¥3, ..., Ym), Ay =
{ilyi €e Y,yi= 1,1 <i < m} C S suchthaty, = 1if
and only if i € Ay. Particularly, feasible solution Y satisfies
Eq. (4), and infeasible solution otherwise.

Ill. MOTH SEARCH ALGORITHM

The MS was originally developed to solve continuous numer-
ical optimization problem [14]. MS is a swarm-based nature-
inspired metaheuristic algorithm. However, MS differs from
other state-of-the-art methods including genetic algorithm
(GA) [10], differential evolution algorithm (DE) [16], [17],
particle swarm optimization (PSO) [11], and harmony search
(HS) algorithm [20], [21]. In MS, there are two sub-
populations, namely, subpopulationl and subpopulation2.
Therefore, MS searches the problem space by moving the
moth individuals via Lévy flights in subpopulationl and fly
straightly in subpopulation2, respectively. The procedure of
MS is illustrated in Figure 1.
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Moth search algorithm

Begin
Step 1: Initialization.

Randomly initialize a population of NP moth individuals
randomly.

Divide the whole population into two subpopulations with equal
size according to the fitness, namely, subpopulationl and
subpopulation2
Step 2: While (termination condition is not satisfied) do

Update subpopulationl by Eqgs. (5) - (7) //Lévy flight phase

Update subpopulation2 by Egs. (8) - (9) //Fly straightly phase

Recombine the newly-generated subpopulations.

Sort the population by fitness.

Divide the whole population into subpopulationl and
subpopulation2.

end while
Step 3: Return the best individual found so far.

End.

FIGURE 1. Moth search algorithm.

According to Figure 1, the main formulas of Lévy flights
(Egs. (5) - (7)) and fly straightly (Egs. (8) - (9)) are described
as follows.

1
xl.t+ = xf + aL(s) (@)
a = Sma)c/t2 (6)
— DI(B — 1) sin(ZE-L
Ly = B= DM@ = Dsin(-2) .
wsh
where xl.’ +1and x! are respectively the position of moth i at

generation 741 and ¢. o refers to the scale factor based on
the relevant problem. S,,,4, is the max walk step and its value
takes 1.0 in this paper. L(s) represents the step drawn from
Lévy flights and I'(x) is the gamma function. Parameter g is
set to 1.5 for our experiments.

X = x (o + @ x (hyy — xD) ®)
B G o ) O)

where scale factor A is set to a random number drawn by
the standard uniform distribution and ¢ is an acceleration
factor that its value equals golden ration. xj,, is the best
individual at generation ¢. Note that moth individual i updates
the position with Eq. (8) or Eq. (9) with equal probability.
These two update processes are shown in Figure 2. In Fig-
ure 2, old, best, newl, and new2 indicate the original, best,
updated position by Eq. (8), and updated position by Eq. (9)
for individual i, respectively. As can be seen in Figure 2,
the control coefficient ¢ in Eq. (8) and 1/¢ in Eq. (9) can well
balance the individual to search in the two relative directions
of the global best position.

IV. ENHANCED MS ALGORITHM FOR SUKP
To describe the enhanced moth search algorithm for the
SUKP, we start with the solution representation. Then the
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FIGURE 2. The two new individual generations of rectilinear flight.

constraint handling method is explained. Followed by a
detailed introduction to EMS algorithm. Finally, we outline
the framework of EMS for solving SUKP.

A. SOLUTION REPRESENTATION

As mentioned earlier, given a SUKP instance with a set S =
{1,2,3, ..., m} of m items, any candidate solution Y can be

expressed as an m-dimensional binary vector Y = (y1, y2, y3,
.., ¥m) such that y; = 1 if the item j is selected, and y; = 0

otherwise.

Since MS algorithm was originally proposed to solve
numerical optimization problems, two operators perform the
optimization process in a continuous search space. Never-
theless, SUKP belongs to constrained discrete optimization
problem. In this work, we specifically employ two vectors X
and Y to represent each moth individual, namely, moth = <
X, Y >.

Let € be the set of all m-dimensional real-valued vectors,
ie.,

Q€ = (X|X € [-a,a]™) (10)
Let P be the set of all m-dimensional binary vectors, i.e.,
QP = {Y|Y € {0,1}"} (11)

where a = 5 in this work. The evolution of MS in continuous
space is still dependent on real-valued vector X. Meanwhile,
the mapping of X to Y is implemented by using transfer
function [22], [23]. In the present work, a simple and effective
transfer function [24] g : R™ — {0, 1} is defined as follows:

I, fxi=0
;= 12
Vi {O, else (12)

Finally, the objective function f(Y) is defined as follows to
evaluate the quality of any candidate solution.

fX) =Y "yipi (13)
=1

B. CONSTRAINT HANDLING

Obviously, QP consists of two parts: Feasible solutions and
infeasible solutions. Therefore, the strategy of dealing with
infeasible solutions effectively is one of the most important
issues in solving SUKP. A repairing and optimization algo-
rithm (named S-GROA) is specially proposed by He et al. [7]
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S-GROA algorithm for SUKP

Begin
Step 1: Input: the candidate solution
Y ={y, .)€ {0,137
Step 2: Preprocessing. The one-dimensional array
HI[L...m].
Step 3: Initialization. The m-dimensional binary vector
Z=[0,0,...,0].
Step 4: Greedy repair.
Fori=1tom do
If (v, =1 and W (4, U{H[i]})<C)
Zyy=1 and A4, =4, U{H[]}.
End if
End for
Y« Z
Step 5: Optimization.
Fori=1tomdo
If (=0 and W(4, U{H[i]}) £O)

Vi =1 and A4, =4, U{H[i]}.
End if
End for
Step 6: Output: Y ={y,,»,,...,y,,} and f(Y)

End.

FIGURE 3. S-GROA algorithm for SUKP.

for this purpose and is employed in this work. The prepro-
cessing phase of S-GROA can be summarized as follows:
1) Compute the frequency d; of the element j(j = 1, 2, 3,
...,n)inthe subsets U1, U2, U3, ..., Uy,.
2) Calculate the unit weight R; of the item i (i = 1, 2, 3,

.., m).
Ri = Z/eu,- (w;/d;) (14)
3) Record the profit density of each item in S according
to PD,;.
PD; =pi/R; (i=1,2,3,...,m) (15)

4) Sortall the items in a non-ascending order based on PD;
(i=1,2,3,..., m)and then the index value recorded
in an array H[1...m].
5) Defineaterm Ay = {U;lyi e YAyi=1,1 <i <m}
for any binary vector Y = [y, y2, ..., ym] €{0, 1}".
The pseudocode of S-GROA is outlined in Figure 3.
From Figure 3, one observes that S-GROA algorithm is
composed of two phases. The first phase repairs only infea-
sible solutions by eliminating some of the violating items.
After all the solutions have become feasible, the second phase
optimize the remaining items by packing suitable items into
knapsack with the aim of further utilizing the remaining
capacity.

C. ENHANCED MS ALGORITHM

As one of the main operators of MS, Lévy flight [25],
[26] should play a vital role in the optimization ability of
the algorithm. However, previous works indicate that Lévy
flights operator has relatively weak influence compared to fly
straightly operator [15].
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As a swarm intelligence algorithm [27], [28], the per-
formance of the MS depends heavily on the interaction or
information interchange among these individuals. However,
the moths in subpopulationl only fly around the global best
individual in the form of Lévy flights. Clearly, there is a lack
of sufficient information inheritance and interchange among
the moths.

In this paper, an enhanced interaction operator (EIO) based
on GHS [18] and mutation operator of DE [16], [17] was
specially designed. The main consideration in this new oper-
ator is making full use of information sharing among indi-
viduals so that the exploration capability of the EMS can
be improved. Additionally, Lévy flights have the character-
istics of random flights, which do not fully reflect the mode
of social cooperation. However, for differential mutation
(DE/best/1bin), the best individual and any two individuals
are selected to generate the mutation individual based on the
social cooperation strategy. Meanwhile, GHS is a simple and
effective heuristic global search algorithm than the original
HS. Embedding the mutation operator of DE into GHS not
only enhances the convergence of EMS, but also prevents the
algorithm from falling into local optimum.

Consequently, Lévy flight operator was replaced by an
enhanced interaction operator, and an enhanced MS algo-
rithm (EMS) was proposed.

1) THE GLOBAL-BEST HARMONY SEARCH
In brief, harmony search (HS) [21], [29] is an efficient opti-
mization metaheuristic inspired by the music improvisation
process. In the last years, HS has attracted many researchers
because of its excellent performance in solving various prob-
lems [30], [31].

Here, we adopt an efficient global-best harmony search
(GHS) [18], where memory consideration, pitch adjustment,
and random selection are calculated as follows:

xk = x}‘(jw U(l,...,HMS)) if rand < HMCR (16)
x{‘ = xéest if rand < HMCR A rand < PARAj~ U(1,N)

amn
x{ = LB* + rand x (UB* — LB")if rand > HMCR ~ (18)

where HMCR, PAR, HMS, and N are harmony memory con-
sidering rate, pitch adjusting rate, harmony memory size, and
problem dimension, respectively. xf, x;‘ are respectively the k
th element of individual 7, individual j. The jth of global best
individual represents by xz o5+ Rand is a function generating a
random number uniformly distributed in (0, 1). LB¥ and UB*
are the lower and upper limits for the kth.

2) THE DIFFERENTIAL EVOLUTION

Differential evolution (DE) [17], [32] is undoubtedly one
of the most promising stochastic real-parameter optimiza-
tion algorithms. DE searches for a global optimum solution
through three main stages: mutation with difference vectors,
cross, and selection. Thereinto, mutation operator is the main
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Enhanced interaction operator

Begin
for i=1to NP1 do
for j=1tom do
if rand(0, 1) < HMCR then
X, ; =X, ;, where k~ U[1, 2,..., NP]
if rand(0, 1) < PAR then
X, ; =X ; » Where best is the index of global
best individual
else
X, = Xy + ANy = X,5) + F (x5 —X,)
end if
else
X = rand (0,1)X(X,,,, = X,,) + X,
end if
end for

end for
End.

FIGURE 4. Enhanced interaction operator.

component of DE. In this paper, DE/best/2/bin model is used
as follows:

Xij = Xpest + Axr1 — xr2) + F(xr3 - xr4) (19)

where x,1, x;2, X3, and x,4 are mutually exclusive individ-
ual randomly chosen from subpopulationl and they are also
different from the base vector x;. The vector xp,.; is the best
individual of the entire population.

3) THE ENHANCED INTERACTION OPERATOR

Compared with original HS, GHS adds a social dimension to
the HS which stems from PSO. While differential mutation
can be regarded as self-cognition. Consequently, the effective
combination of GHS and differential mutation can achieve
a much better balance of exploration and exploitation than
MS. Intuitively, this modification can enable EMS to solve
continuous optimization problems and discrete optimization
problems effectively. Then the primary steps of enhanced
interaction operator are illustrated in Figure 4.

D. EMS FRAMEWORK FOR SUKP

After the special design of each component, the framework
of EMS for solving SUKP is illustrated in Figure 5. It can
be seen that the evolutionary process consists of three main
stages if initialization stage is excluded. First stage, gen-
erating new individuals among subpopulationl by employ-
ing enhanced interaction operator. Second stage, updating
individuals of subpopulation2 by performing flight straightly
operator. Third stage, using S-GROA to repair infeasible
solutions and then optimize all feasible solutions.

E. COMPUTATIONAL COMPLEXITY OF THE EMS
ALGORITHM

Computational complexity is an important factor in evaluat-
ing the running time of algorithms. Usually, it can be esti-
mated in the light of the structure and implementation of the
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The framework of EMS for SUKP

Begin
Step 1: Sorting.

Sort all items in descending order on the basis of PD; (
0<i<m), and item numbers are stored in an array H[1...m].
Step 2: initialization.

Randomly initialize a population P of NP moths.

Divide the whole population into subpopulation] and
subpopulation2.

Perform repair and optimization with S-GROA.

Step 3: while (termination condition is not satisfied) do

Use enhanced interaction operator to update
subpopulationl.

Use fly straightly operator to update subpopulation2.

Use S-GROA to repair infeasible solutions and optimize
feasible solutions.

Evaluate the fitness of the population.

Recombine the two newly-generated subpopulations.

Sort the population by fitness.

Divide the whole population into two subpopulations.
end while
Step 4: Return the best individual found so far.

End.

FIGURE 5. The framework of EMS for SUKP.

algorithm. As can be seen from Figures 3-5, the time cost of
each iteration is mainly due to population size, the dimension
of SUKP instances. Specifically, computational complexity
depends mainly on Steps 1-3 of Figure 5. Note that Quicksort
algorithm is selected in Step 1. The worst and the average
time costs are O(m?) and O(mlogm), respectively. In Step 2,
the initialization of N moth individuals with m decision vari-
able has time complexity O(N x m) = O(mz). In Step 3,
enhanced interaction operator and straight flight operator cost
the same time O(N /2 x m) = O(m?). The process of S-
GROA and evaluation of the fitness of the population cost
time O(mxn) = O(m?) and O(N ), respectively. Similarly, the
sorting process of the population via Quicksort has the worst
time complexity and average time complexity of O(N?) and
O(NlogN), respectively. Therefore, the total time complexity
can be calculated as O(mlogm) + O(m?) + O(m?*) + O(m?)
+0(m?) 4+ O(N) + O(NlogN) = O(m?).

V. COMPUTATIONAL EXPERIMENTS

In this section, three types of 30 SUKP instances commonly
used in literature are first provided. Then parameter settings
and experimental environment are outlined. Followed by a lot
of computational experiments to compare the proposed EMS
with several state-of-the-art algorithms. Finally, the impact
of two key components of EIO on the performance of EMS
is investigated.

A. SUKP INSTANCES

These instances were first generated by He et al. in [7].
All instances are represented as m_n_o_f, where m and
n represent the number of items and number of elements,
respectively. The parameters o and § are called the density
of elements and the ratio of knapsack capacity to the total
weight of all elements, respectively. According to the size of
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TABLE 1. The parameters for 30 SUKP instances.

No. Instance m n a s Capacity ~ Best*
1 FO1 100 85 0.1 0.75 12015 13283
2 F02 100 85 0.15 0385 12405 12274
3 F03 200 185 0.1 0.75 22809 13405
4 F04 200 185 0.15 0385 25828 14044
5 FO5 300 285 0.1 0.75 36126 11335
6 F06 300 285 0.15 0385 40801 12245
7 FO7 400 385 0.1 0.75 50856 11484
8 FO8 400 385 0.15 0385 56538 10710
9 F09 500 485 0.1 0.75 60351 11722
10 F10 500 4385 0.15 0385 67506 10022
11 S01 100 100 0.1 0.75 11223 14044
12 S02 100 100 0.15 0.85 15194 13508
13 S03 200 200 0.1 0.75 25630 12522
14 S04 200 200 0.15 0385 29583 12317
15 S05 300 300 0.1 0.75 38289 12736
16 S06 300 300 0.15 0385 45914 11425
17 S07 400 400 0.1 0.75 49822 11531
18 S08 400 400 0.15 0385 57856 10927
19 S09 500 500 0.1 0.75 63902 10888
20 S10 500 500 0.15 0385 73927 10194
21 TO1 85 100 0.1 0.75 12180 12045
22 T02 85 100 0.15 035 14982 12369
23 TO03 185 200 0.1 0.75 25405 13696
24 T04 185 200 0.15 035 28159 11298
25 TO05 285 300 0.1 0.75 38922 11568
26 T06 285 300 0.15 0385 44806 11517
27 T07 385 400 0.1 0.75 49815 10483
28 TO08 385 400 0.15 035 57687 10338
29 T09 485 500 0.1 0.75 62516 11094
30 T10 485 500 0.15 0385 71655 10104

m and n, three types of SUKP instances are provided. The first
group contains 10 SUKP instances with m > n, named as
FO1-F10, respectively. The second group contains 10 SUKP
instances with m = n, named as S01-S10, respectively. The
third group contains 10 SUKP instances with m < n, named
as TO1-T10, respectively. The parameters and the best-known
solution (Best*) are presented in Table 1.

B. PARAMETER SETTINGS AND EXPERIMENTAL
ENVIRONMENT
To evaluate the comprehensive performance of the proposed
EMS algorithm, seven state-of-the-art metaheuristic algo-
rithms in the literatures are used as the basic comparison
algorithms, including the binary artificial bee colony algo-
rithm (BABC) [7], binary weighted superposition attraction
algorithm (bWSA) [8], the hybrid of genetic algorithm and
particle swarm optimization (gPSO* and gPSO) [9], firefly
algorithm (FA) [33], [34], monarch butterfly optimization
(MBO) [35], [36], and original MS [14]. These reference
algorithms are among the best performing metaheuristic algo-
rithms currently obtained through literature. The experimen-
tal results used in this paper for BABC, bWSA, gPSO*, and
gPSO are adopted from the relevant literature.

The parameters of FA, MBO, MS, and the proposed EMS
are empirically set (see Table 2). We define the maximum
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TABLE 2. The parameter settings of four algorithms on SUKP.

Algorithm  Parameter Value
FA Alpha 0.2
Beta 1.0
Gamma 1.0
MBO Migration ratio 3/12
Migration period 1.4
Butterfly adjusting rate 1/12
Max step 1.0
MS Max step Spax 1.0
Acceleration factor ¢ 0.618
B 1.5
EMS Acceleration factor ¢ 0.618
HMCR 0.9
PAR 0.9
Amplification factor A 0.7
Amplification factor F 0.7

number of iterations as the stopping condition according to
the original paper [7], whose value is equal to max{m, n}.
The population size of these four algorithms is set to be
N = 20. All experimental results of FA, MBO, MS, and EMS
are evaluated over 100 independent runs.

To make a fair comparison, all the proposed algorithms
(FA, MBO, MS, and EMS) are programmed in C and com-
piled using the GNU GCC compiler. All the experiments
are performed on a computer with Intel(R) Core (TM) i7-
7500 CPU (2.90 GHz and 8.00 GB RAM).

C. COMPUTATIONAL RESULTS AND COMPARISONS

The computational results on 30 SUKP instances based on
the above experimental design are summarized in Tables 3-7.
In Tables 3-5, the first column shows the name of SUKP
instance and the current best-known solution is recorded
in parentheses under the corresponding instance. For each
algorithm, three basic evaluation criteria, including the best
objective value (Best), the average objective value (Mean),
and the worst objective value (Worst) over 100 independent
runs, are selected to assess the overall performance of all the
reference algorithms. The best results of the eight algorithms
are shown in bold if they are equal to or greater than the best-
known solution reported in the literature.

It is important to note that the computational time is not
considered as the comparison criteria in the present study.
The prime reason is that, the running time of different com-
parison algorithms depends on the programming language,
computing platform, and even the compiler. Therefore, it is
difficult to make a fair comparison of the computational time.
In addition, the worst value of BABC cannot be obtained from
the literature [7] and “—* is used to express it.

The computational results on the first group SUKP
instances with m > n are recorded in Table 3. Experimental
results (the last three rows in Table 3) demonstrate that the
proposed algorithm EMS reaches the best solutions for five
instances. In addition, EMS obtains the best mean values for
four instances and the worst values for five instances. The
number of the best values, the mean values, and the worst
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TABLE 3. The experimental results on FO1-F10 SUKP instances.

TABLE 4. The experimental results on S01-S10 SUKP instances.

BABCbWSAgPSO’ gPSOFA MBO MS EMS

BABCbWSAgPSO” gPSO FA MBO MS EMS

FO1 Best 13251 13044 13167 13283 13283 13283 13283 13283
(13283) Mean 13028 12915 12937 13050 13041 12941 13062 13152
Worst - 12244 12217 13044 12778 12622 12692 12786

F02 Best 12238 12238 12210 12274 12348 12274 12479 12274
(12274) Mean 12155 11527 11777 12084 12129 12103 12167 12149
Worst - 10408 11052 11631 11860 11907 12062 11537

FO03 Best 13241 13250 13302 13405 13282 13381 13521 13521
(13405) Mean 13064 12657 12766 13286 12544 12886 13193 13278
Worst - 11951 11974 12862 11959 12328 12694 12865

F04 Best 13829 13858 13993 14044 13801 13880 13880 14044
(14044) Mean 13359 12585 12949 13492 12602 13326 13403 13692
Worst - 11836 11940 12785 11921 12305 12428 12536

FO5 Best 10428 10991 10600 11335 10191 10786 11127 11388
(11335) Mean 9994 10366 10090 10669 9092 10210 10302 10881
Worst - 9802 9629 9900 9495 9346 9526 10265

F06 Best 12012 12093 11935 12245 11468 11695 12273 12245
(12245) Mean 10902 10901 10750 11607 10417 10366 11964 11958
Worst - 9912 9517 10536 9852 9178 10228 11229

F07 Best 10766 11321 10698 11484 9740 11142 11435 11484
(11484) Mean 10065 10785 9946 10915 9226 10463 10411 10430
Worst - 9798 9209 10158 8879 9771 9499 10045

FO8 Best 9649 10435 10168 10710 9305 9686 10099 10091
(10710) Mean 9135 9587 9417 9864 8663 9156 8917 9117
Worst - 8695 8395 9173 8271 8408 8102 8778

F09 Best 10784 11540 11258 11722 11099 11546 11031 11716
(11722) Mean 10452 10921 10565 11184 10473 10736 10716 11552
Worst - 10293 9817 10614 10081 10033 9536 11385

F10 Best 9090 9681 9756 10022 8710 9243 9037 9511
(10022) Mean 8857 9013 8779 9299 8326 8667 8685 9256

S01 Best 13860 14044 13963 14044 13814 14044 14044 14044
(14044) Mean 13734 13492 13739 13854 13472 13612 13649 13735
Worst - 12625 13266 13664 13054 13023 13194 13492

S02 Best 13508 13407 13498 13508 13498 13508 13498 13508
(13508) Mean 13352 12487 12937 13347 13408 13269 13374 13427
Worst - 10987 11818 12613 12752 12393 13074 13407

S03 Best 11846 12271 11972 12522 11406 11955 12350 12522
(12522) Mean 11194 11430 11232 11898 10833 11056 11508 11876
Worst - 10622 10541 11048 10421 10357 10703 11135

S04 Best 11521 11804 12167 12317 11207 11569 11926 11846
(12317) Mean 10945 11062 11026 11584 10354 10850 11064 11365
Worst - 10042 10109 10510 9741 9737 10191 10206

S05 Best 12186 12644 12736 12736 11398 12369 12598 12626
(12736) Mean 11945 12227 11934 11934 10993 11604 11541 12540
Worst - 11365 11175 11175 10665 10616 10802 11820

S06 Best 10382 11113 10724 11425 9874 10152 10557 10770
(11425) Mean 9859 10216 9906 10568 9339 9304 9821 10264
Worst - 9520 8740 9648 8855 8751 9145 9953

S07 Best 10626 11199 11048 11531 10241 10906 10727 11171
(11531) Mean 10101 10624 10399 10958 9827 10237 10343 10803
Worst - 9818 9752 10205 9505 9676 9678 10514

S08 Best 9541 10915 10264 10927 9357 9370 10915 9793
(10927) Mean 9032 9580 9195 9845 8562 8677 9860 9692
Worst - 8717 8600 9033 8248 8185 8644 9268

S09 Best 10755 10827 10647 10888 10057 10633 10355 10628
(10888) Mean 10328 10482 10205 10681 9766 10139 9919 10466
Worst - 10147 9744 10222 9560 9486 9492 10139

S10 Best 9318 10082 9839 10194 9140 9926 9444 9765
(10194) Mean 9180 9478 9106 9703 8630 9391 8937 9399

Worst - 8479 8251 8556 8114 8160 8126 8744 Worst - 8705 8512 8892 8348 8879 8061 8918
Total(Best) 0 0 0 6 1 1 4 5 Total(Best) 1 1 0 10 0 2 1 3
Total(Mean) 0 0 0 4 0 0 2 4 Total(Mean) 0 0 0 7 0 0 1 2
Total(Worst) - 0 0 4 0 0 1 5 Total(Worst) - 0 0 3 0 0 0 7

values among the first group SUKP instances obtained by the
reference algorithm gPSO is 6, 4, and 4, respectively. It can be
concluded that the performance of EMS is competitive with
gPSO and superior to the other six algorithms.

The computational results on the second group SUKP
instances with m = n are summarized in Table 4. Unfor-
tunately, BABC, bWSA, gPSO*, FA, MBO, MS, and EMS
algorithms get the best known solutions only for 1, 1, 0, 0, 2,
1, and 3 instances, respectively. However, gPSO maintains the
best known solution for all 10 instances (S01-S10). It should
be stated that EMS attains the best results for 7 instances in
terms of the worst value.

The computational results on the third group SUKP
instances with m < n are reported in Table 5. Table 5 shows
that the proposed algorithm EMS is efficient and EMS has
the ability to compete with gPSO. Specifically, the EMS
algorithm matches the best known solutions for 6 out
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of 10 instances, while the reference algorithms BABC,
bWSA, gPSO*, MBO, and MS achieve the best known solu-
tions only for 1 instance. Nevertheless, gPSO still retains the
best-known solutions for 8 instances.

To evaluate the proximity between the best solution
obtained by the algorithm and the best-known solution,
the relative percentage deviation (RPD) is defined as follows.

RPD = (Best* — Best)/Best™ x 100 (20)

where Best* represents the best known solution that can be
available through current literature [9]. Since SUKP is a
maximum optimization problem, if Best > Best*, RPD <
0, which indicates the algorithm improves the best known
solution. The results are reported in Table 6.

From Table 6, it can be observed that EMS matches the
best known solutions for 14 instances (RPD = 0.0, out of 30
instances). Especially, our proposed EMS algorithm updates
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TABLE 5. The experimental results on T01-T10 SUKP instances.

TABLE 6. Comparisons of the RPD values for 30 SUKP instances.

BABCbWSAgPSO’ gPSO FA MBO MS EMS

TOI  Best 11664 11947 11710 12045 11755 11748 11735 12045
(12045) Mean 11182 11233 11237 11486 11226 11207 11287 11416
Worst - 10627 10657 11202 10797 10581 10892 11090

T02 Best 12369 12369 12369 12369 12369 12369 12369 12369
(12369) Mean 12081 11342 11684 11994 12361 12229 12350 12368
Worst - 9774 11121 11274 12085 11858 12054 12299

TO03 Best 13047 13505 13298 13696 11487 13008 13647 13696
(13696) Mean 12522 12689 12514 13204 10880 12189 13000 13381
Worst - 11820 11919 12339 10393 11644 12159 12969

T04 Best 10602 10831 10856 11298 11365 10745 11298 11298
(11298) Mean 10150 10228 10208 10801 10596 10095 10525 10652
Worst - 9467 9727 10195 10003 9297 9594 9907

TO0S Best 11158 11538 11310 11568 11557 11090 11391 11568
(11568) Mean 10775 11105 10761 10761 10983 10686 10816 11020
Worst - 10600 10278 10278 10641 9851 10363 10484

T06 Best 10528 11377 11226 11517 11160 10783 11353 11517
(11517)  Mean 9897 10452 10309 10899 10261 9977 10155 10775
Worst - 9519 9626 10281 9570 9269 8873 9861

TO7 Best 10085 10414 9871 10483 9392 9770 9739 10325
(10483) Mean 9537 9778 9552 10013 8895 9322 9240 10001
Worst - 9378 8786 9519 8633 8891 8514 9164

TO8 Best 9456 10077 9389 10338 8980 9175 10058 10506
(10338) Mean 9090 9203 8881 9524 8529 8604 9006 9669
Worst - 8600 8316 8816 8183 8052 8096 9072

T09 Best 10823 10835 10595 11094 10207 10661 10539 10855
(11094) Mean 10483 10607 10145 10687 9783 10249 10190 10662
Worst - 10024 9583 10201 9482 9759 9492 10394

TI0  Best 9333 9603 9807 10104 9141 9163 9284 9589
(10104)  Mean 9085 9141 8917 9383 8513 8758 8840 9078

Worst - 8562 8435 8834 8248 8289 8298 8821
Total(Best) 1 1 1 8 2 1 1 6
Total(Mean) 0 1 0 5 0 0 0 4
Total(Worst) - 0 0 5 1 0 0 4

the best known solutions for 3 instances (RPD< 0, new upper
bounds). However, there are still 13 instances that EMS fails
to find the best known result, which shows the performance of
MS can be further improved. It can also be observed that FA
and MS improve the best known results for 2 and 3 instances,
respectively, which demonstrates these two algorithms are
acceptable compared with BABC, bWSA, gPSO*, and MBO.

The ranking information of eight algorithms based on the
best values is summarized in Table 7 with the aim of eval-
uating the optimization performance. As can be seen from
Table 7, the average ranking value of gPSO is 1.84 and still
maintains its excellent performance. In addition, EMS and
bWSA are the second and the third best algorithm, respec-
tively.

In conclusion, the above experimental results reveal that
the proposed EMS algorithm is highly competitive compared
to the state-of-the-art SUKP algorithms in the literature.
For all 30 SUKP instances, EMS updates the best known
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NO BABC bWSA gPSO" ¢gPSO FA MBO MS EMS
FOl 024 180 087 0.00 000 000 000 0.00
FO2 029 029 052 000 -0.60 000 -1.67 0.00
FO3 122 116 077 0.00 092 0.18 -0.87 -0.87
FO4 153 132 036 000 173 117 117 0.00
FO5 800 3.03 648 000 1009 484 184 -0.47
FO6 190 124 253 000 635 449 -023 0.00
FO7 625 142 684 000 1519 298 043 0.00
FO8 991 257 506 000 13.12 956 570 5.78
FO9 800 155 396 000 531 150 589 0.05
FI0 930 340 265 000 13.09 777 983 5.10
SO1 131 000 058 000 1.64 000 0.00 0.00
S02  0.00 075 000 0.00 0.7 000 0.07 0.0
S03 540 200 000 000 891 453 137 0.0
S04 646 416 122 000 9.01 6.07 3.17 3.82
SO5 432 072 000 0.00 1051 288 1.08 0.86
S06 913 273 6.4 000 1358 11.14 7.60 5.73
S07 785 288 419 000 11.19 542 697 3.12
S08 12.68 0.11 6.07 0.00 1437 1425 0.11 10.38
S09 122 056 221 000 7.63 234 490 239
S10 859 1.10 348 0.00 1034 263 736 421
TOl 316 081 278 0.00 241 247 257 0.00
TO2 000 000 0.00 0.00 0.00 000 000 0.00
TO3 474 139 291 000 1613 502 036 0.00
To4 616 413 391 000 -059 489 000 0.00
TOS 354 026 223 000 0.10 413 153 0.00
TO6 859 122 253 0.00 3.0 637 142 0.00
TO7 380 0.66 584 000 1041 680 7.10 151
TO8 853 252 9.8 000 1314 1125 271 -1.63
TO9 244 233 450 000 800 390 500 2.15
TIO 763 496 294 0.00 9.53 931 812 5.0
Mean 507 170  3.03 0 715 453 278 1.57
Greater 0 0 0 0 2 0 3 3
Equal 2 2 4 30 2 5 4 14
Less 28 28 26 0 26 25 23 13

solutions for 3 instances (10%) and reaches the best known
solutions for 14 instances (46.67%).

In order to illustrate the overall performance of the pro-
posed EMS and estimate the differences between EMS and
MS, FA, and MBO, the Wilcoxon’s rank sum tests with the
5% significance level are conducted. The p-value and h-value
of for 30 SUKP instances is recorded in Table 8. Note that the
results of significant difference between EMS algorithm and
comparison algorithm are shown in bold.

As can be seen from Table 8, the p-value obtained by
pairwise comparison between EMS and MS, FA, and MBO
is less than 5% for 27, 26, and 30 instances, respectively.
The mean p-value is less than 5% for EMS-FA and EMS-
MBO or practically 5% for EMS-MS. It indicates that EMS
is significantly different from the other three algorithms.

With the aim of analyzing the stability of the compared
approaches, the box plots of six of the most representative
instances, i.e., F09, F10, S09, S10, T09, and T10 are pre-
sented in Figures 6-8. The stability of each algorithm can be
reflected by the span of the box. As can be seen from Figure 6,
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TABLE 7. Ranks of eight algorithms based on the best values.

FA MBO MS EMS
3 3 3
4 1

NO BABC bWSA gPSO™ gPSO
FO1 6 8 7 3

F02 4

F03 3
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FIGURE 6. Boxplot of the best values for F0O9 and F10 in 100 runs.

for FO9, EMS has decided advantage over its opponents, since
the box span for EMS is much smaller than that of other three
algorithms. EMS also achieves much smaller spans on other
five instances.

To further demonstrate the effectiveness of the proposed
EMS algorithm and especially to investigate the convergence
speed, the evolutionary process of the iteration number and
average best objective function value as a function are plotted
in Figures 9-11.

It can be observed from Figures 9-11, the initial value of
EMS is greater than that of other three algorithms and then
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TABLE 8. Rank sum tests for EMS with FA, MBO, and MS on 30 SUKP
instances.

NO EMS-MS EMS-FA EMS-MBO
p-value  h-value p-value h-value p-value h-value
FOl  1.31E-04 1 6.18E-08 1 5.33E-15 1
FO2  3.11E-01 0 1.93E-01 0 9.17E-05 1
FO3  8.68E-04 1 0.00E-00 1 0.00E-00 1
F04  2.51E-07 1 0.00E-00 1 4.64E-13 1
FO5  0.00E-00 1 0.00E-00 1 0.00E-00 1
F06  6.86E-01 0 0.00E-00 1 0.00E-00 1
FO7  4.84E-01 0 0.00E-00 1 4.60E-02 1
FO8  2.66E-08 1 0.00E-00 1 7.20E-03 1
F09  0.00E-00 1 0.00E-00 1 0.00E-00 1
F10  0.00E-00 1 0.00E-00 1 0.00E-00 1
S01  8.06E-06 1 0.00E-00 1 9.62E-06 1
S02  1.80E-08 1 3.80E-03 1 1.78E-15 1
S03  9.36E-10 1 0.00E-00 1 0.00E-00 1
S04 4.18E-08 1 0.00E-00 1 0.00E-00 1
S05  0.00E-00 1 0.00E-00 1 0.00E-00 1
S06  0.00E-00 1 0.00E-00 1 0.00E-00 1
S07  0.00E-00 1 0.00E-00 1 0.00E-00 1
S08  1.34E-02 1 0.00E-00 1 0.00E-00 1
S09  0.00E-00 1 0.00E-00 1 0.00E-00 1
S10 0.00E-00 1 0.00E-00 1 5.13E-01 1
TOl  2.26E-10 1 1.31E-14 1 1.15E-14 1
TO2  1.50E-03 1 5.36E-02 0 0.00E-00 1
TO3  2.51E-14 1 0.00E-00 1 0.00E-00 1
T04  1.47E-02 1 1.30E-01 0 0.00E-00 1
TOS  1.08E-10 1 7.49E-02 0 0.00E-00 1
TO6  2.22E-16 1 0.00E-00 1 0.00E-00 1
TO7  0.00E-00 1 0.00E-00 1 0.00E-00 1
TO8  0.00E-00 1 0.00E-00 1 0.00E-00 1
T09  0.00E-00 1 0.00E-00 1 0.00E-00 1
T10  0.00E-00 1 0.00E-00 1 0.00E-00 1
Mean 5.04E-02 1.52E-02 1.89E-02
Difference 27 26 30
Similarity 3 4 0
x10*
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FIGURE 7. Boxplot of the best values for S09 and S10 in 100 runs.

EMS reaches the global optimum with a fast convergence
speed. Although MBO outperforms EMS slightly in perfor-
mance in the early period of evolutionary on S10, EMS and
MBO have identical final solutions. Overall, Figures 9-11
clearly indicates that EMS has distinct advantage over FA,
MBO, and MS on six high-dimensional instances.
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Considering  the  experimental  results  shown
in Figures 6-11, it can be concluded that EMS is an effec-
tive algorithm for solving SUKP problem, regardless of the
quality of solution, the stability and the convergence rate.

D. THE EFFECT OF GLOBAL HARMONY SEARCH AND
DIFFERENTIAL MUTATION ON THE

PERFORMANCE OF EMS

In this section, the impact of two important components
of EIO on the performance of EMS algorithm is analyzed.
Therefore, EMS that Eq. (18) removes from enhanced inter-
action operator is renamed H-MS. Meanwhile, EMS that
Egs. (15) - (16) is excluded from enhanced interaction oper-
ator is called D-MS. Note that the difference between odd
number instances and even numbering instances in each
group is the value of @ and B, and there is no essential
difference. Therefore, fifteen odd numbering instances with
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TABLE 9. The effect of GHS and DM on the performance of EMS.

MS H-MS D-MS EMS

Best Mean Best Mean Best Mean Best Mean
FO1 13283 13283 13062 13283 13161 13283 13246 13283 13152
FO3 13405 13521 13193 13521 13085 13322 12738 13521 13278
FO05 1133511127 10302 11529 10978 10702 9858 11388 10881
FO7 11484 11435 10411 11042 10344 11109 10516 11484 10430
F09 11722 11031 10716 11410 11088 10817 10546 11716 11552
S01 14044 14044 13649 14044 13784 14044 13586 14044 13735
S03 12522 12350 11508 12522 11877 11951 10815 12522 11876
S05 12736 12598 11541 12644 12343 12075 11627 12626 12540
S07 11531 10727 10343 11087 10735 10814 10362 11171 10803
S09 10888 10355 9919 10589 10343 10273 10081 10628 10466
TO1 12045 11735 11287 12045 11436 11755 11367 12045 11416
TO3 13696 13647 13000 13647 13389 13355 12965 13696 13381
TOS 11568 11391 10816 11568 11058 10955 10413 11568 11020
TO07 10483 9739 9240 10374 9998 9701 9131 10325 10001
T09 11094 10539 10190 10817 10546 10633 10250 10855 10662

NO Best*

Total(Best) 3 9 2 12
Total(Mean) 0 6 2 7
a = 0.1 and B = 0.75 are selected to conduct compar-

ative experiment. The results are summarized in Table 9,
where column 1 and column 2 represent the instance name
and the best-known solution, respectively. The last two rows
respectively give the number of the best result in terms of
the best solution value and the average solution value over
100 independent runs. The best values obtained by MS,
H-MS, D-MS, and EMS are indicated in bold.

From Table 9, it can be observed that the number of the best
values obtained by MS, H-MS, D-MS, and EMS is 3,9, 2, and
12, respectively. Additionally, the number of the mean values
obtained by MS, H-MS, D-MS, and EMS is 0, 6, 2, and 7,
respectively. Thus, it can be seen that EMS performs the best
among these four algorithms, which demonstrates enhanced
interaction operator improves the performance of EMS by
increasing information sharing between different solutions.
Especially, H-MS outperforms D-MS, which reveals that the
performance of EMS is more affected by global harmony
search than differential mutation. Through careful analysis,
it is not difficult to find that individual j in Eq. (15) selected
randomly from the whole population. As a result, individuals
in subpopulation] inherit preeminent information on a greater
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search space. From Eq. (16), the jth element of individual
i inherits from the global optimal solution with a certain
probability, which makes it more likely to transfer excellent
gene to the next generation. In addition, D-MS is slightly
inferior to MS, which shows the performance of EMS is not
significantly improved with differential mutation alone.

VI. CONCLUSION

In this paper, we introduced an enhanced moth search algo-
rithm (EMS) for solving the set-union knapsack problem.
In EMS, an enhanced interaction operator is specifically
designed by integrating differential mutation into global har-
mony search method with the aim of increasing information
sharing and population diversity.

The experimental results on three types of 30 SUKP
instances commonly used in the literature indicate the pro-
posed algorithm EMS is superior to or at least quite compet-
itive with state-of-the-art algorithms in the literature. Most
importantly, the related algorithm in this paper update the
best known solution for six instances and then give new best
solutions for these instances, including FO2 (MS, 12479),
FO03 (MS and EMS, 13521), FO5 (H-MS, 11529), FO6 (MS,
12273), T04 (FA, 11365), and TO8 (EMS, 10506).

The impact of global harmony search and differential
mutation on the performance of EMS is investigated. The
comparative results show that both parts play an important
role on the performance of the algorithm. However, global
harmony search is more effective than differential mutation.

Additionally, although EMS is an effective alternative
method for solving SUKP problems, the accuracy of some
instances need to be further improved and the performance of
EMS does not show obvious advantages, especially compared
with gPSO algorithm. Therefore, it is necessary to make a
profound study on the evolution mechanism of MS algorithm
and propose more efficient improvement strategies.

As future work, several potential research topics are out-
lined as follows. First, to further improve MS, it is necessary
to an in-depth study of alternative strategies for maintaining
population diversity and sharing excellent information such
as information feedback mechanism [37]. Second, it would
be interesting to investigate other swarm intelligence, such
as earthworm optimization algorithm (EWA) [38], fruit fly
optimization algorithm (FOA) [39], invasive weed optimiza-
tion algorithm (IWO) [40], cuckoo search (CS) [41], krill
herd (KH) [42], for solving SUKP. Finally, it is certainly
worth extending MS to other more complex combinatorial
optimization problems including the knapsack problem with
setup (KPS) [43], the 0-1 multidimensional knapsack prob-
lem (MKP) [44], unbounded knapsack problem (UKP) [45],
constrained knapsack problems in dynamic environments
(DKPs) [46].
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