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ABSTRACT As an important and novel model with multitudinous practical applications, the set-union
knapsack problem (SUKP) is a challenging issue in combinatorial optimization. In this paper, we present
an enhanced moth search algorithm (EMS) for solving SUKP, which introduces an enhanced interaction
operator (EIO) by integrating differential mutation into the global harmony search and then Lévy flight is
replaced by EIO. Comparative experimental results, which were conducted on three types of 30 popular
SUKP benchmark instances, demonstrate that EMS algorithm is superior to or competitive with the other
state-of-the-art metaheuristic algorithm. In particular, EMS reaches the best-known solutions for the great
majority of test instances and improves the best-known solutions for six instances. Two critical ingredients
of EIO is investigated to confirm their impact on the performance of EMS. The results show that both
components have an important role in improving the performance of EMS.

INDEX TERMS Differential mutation, global harmony search, moth search algorithm, set-union knapsack
problem.

I. INTRODUCTION
The classical knapsack problem (KP) [1] is still one of the
most challenging problems in combinatorial optimization.
Since KP is an NP-hard problem and has many practical
applications in reality, new varieties are emerging in recent
years.

In this paper we consider an extension of KP, namely, the
set-union knapsack problem (SUKP) [2], [3], which is a pop-
ular binary optimization problem with constraints. Although
SUKP was proposed long ago, it has recently attracted more
and more researchers to study this issue deeply, because it
has been proved that there are many important applications
in specific fields, such as public key prototype [4], data
stream compression [5], and financial decision making [3].
In addition, SUKP is more complicated and challenging than
the classical 0-1 KP. The classical 0-1 KP is characterized by
one item with a profit and a weight. Nevertheless, there are
a set of items and a set of elements in SUKP, in which each
item has a profit and each element has a weight. Particularly,
a set of items is required to pack into the knapsack in SUKP.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Li .

In view of its important application in practice and its
theoretical research value, SUKP has attracted much atten-
tion in the community. According to the existing literature,
the method of solving SUKP problem can be categorized
into three groups based on their natures: (1) exact algorithm
(2) approximate algorithm, and (3) heuristic approach. Here,
we are mainly concerned with the most representative
research work. The representative exact approach is dynamic
programming (DP) algorithm. SUKP has been first intro-
duced in the literature by Goldschmidt et al. with DP [2].
However, the high time complexity makes it difficult to apply
in the real-world applications. Later, an approximation algo-
rithm A-SUKP for the SUKP was presented by Arulselvan
and some important proofs were provided [3]. Afterwards,
Taylor designed several approximation strategies for SUKP
and related problems [6]. Nevertheless, a satisfactory approx-
imate solution cannot be obtained by this kind of method
when facing large-scale SUKP instances.

In order to escape from the trouble when facing high-
dimensional SUKP instances with exact algorithms and
approximate algorithms, various heuristic methods have
been proposed to solve SUKP. Recently a binary artificial
bee colony algorithm (BABC) for SUKP was given by
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He et al. [7]. Meanwhile, SUKP has also been addressed
by Baykasoglu et al. [8], Ozsoydan and Baykasoglu [9].
The authors presented an effective binary swarm intelligence
technique which is based on genetic algorithm (GA) [10]
and particle swarm optimization (PSO) [11]. Lately,
Baykasoglu et al. addressed SUKP by using binary weighted
superposition attraction algorithm (WSA) [8]. Indeed, in the
light of NP-hard characteristic, it is significant to investigate
SUKP intensively, especially applying more novel meta-
heuristic algorithm.

Three metaheuristic algorithms based on the behavior of
moths in nature have been proposed. The main inspiration
of moth-flame optimization (MFO) [12] is transverse ori-
entation navigation method of moth. Inspired by the orien-
tation of moths towards moonlight, moth swarm algorithm
(MSA) [13] is proposed. In MSA, moth swarm consists of
three groups ofmoths according to their mission during flight,
namely, pathfinders, prospectors, and onlookers. As recently
introduced by Wang [14], moth search (MS) takes inspi-
ration from the phototaxis and Lévy flights of the moths
in nature. Similar to MSA, moth swarm in MS is divided
into two subpopulations based on the flight mode to light
source. Owing to its relative novelty, the related literature
includes studies of MS are few. Feng et al. employed a binary
MS algorithm (BMS) to solve discounted {0-1} knapsack
problem (DKP) [15]. Although BMS can effectively solve
DKP, whether MS can perform well in other complicated
combinatorial optimization problems like SUKP, still needs
to be studied.

This is the motivation for this work, in which an enhanced
interaction operator (EIO) is specially designed to replace the
Lévy flight operator in original MS and then an enhanced
moth search algorithm (EMS) is proposed. The basic frame
of EIO is embedding the mutation operator (MO) of differ-
ential evolution (DE) [16], [17] in global harmony search
algorithm (GHS) [18] to make full use of their advantages.
Concretely speaking, the effective combination of GHS and
MO can enhance the ability of information interaction among
individuals.

The main contributions of this work can be summarized as
follows.
• For the first time, we investigate an enhanced MS algo-
rithm for solving the SUKP. We replace Lévy flight
operator with the combination of GHS and differential
mutation operator that is capable of ensuring an effec-
tive diversification and intensification within the search
space.

• We provide experimental results on 30 commonly used
SUKP instances and compare the results of EMS with
those of state-of-the-art SUKP algorithms in the liter-
ature. It should be noted especially that we update the
best-known results for 6 SUKP instances.

The remainder of this paper is organized as follows.
Section II formally defines SUKP problem. Section III gives
a brief overview of the original MS algorithm. Section IV
provides the detailed introduction of EMS to solve SUKP.

Section V makes the comparison and analysis of the exper-
imental results. Section VI draws conclusion of the present
work and gives perspectives for future studies.

II. SET-UNION KNAPSACK PROBLEM
SUKP is essentially an extension of the 0-1 knapsack problem
(0-1 KP) [19] by assigning some elements to each item.
Formally, this problem can be defined as follows.

Given a SUKP instance with a setU = {1, 2, 3, . . . , n} of n
elements and a set S = {1, 2, 3, . . . ,m} of m items. Moreover,
each item i ∈ S (i = 1, 2, . . . , m) corresponds to a subset Ui

of elements, and Ui 6= ∅ ∧ Ui ⊂ U ∧
m⋃
i=1

Ui = U . Each

item has non-negative profit pi (i = 1, 2, . . . , m) and each of
the elements has non-negative weight wj (j = 1, 2, . . . , n).
For an arbitrary subset A ⊆ S, total weight and total profit of
subset A is defined asW (A) =

∑
j∈
⋃
i∈A

Ui wj and P(A) =
∑
i∈A

pi,

respectively. Then the SUKP is to select a subset of items
S∗ such that W (S∗) ≤ C where C is the capacity limit of
knapsack, while maximizing the total profit P(S∗).

Then the mathematical model of SUKP can be formulated
as follows:

Max P(A) =
∑
i∈A

pi (1)

s.t. W (A) =
∑

j∈
⋃
i∈A

Ui
wj ≤ C, A ⊆ S (2)

In order to solve SUKP easily by using metaheuristic
algorithm, an integer programming model is proposed by
He et al. [7]. The new mathematical model can be defined
as follows:

Max f (Y ) =
∑m

i=1
yipi (3)

s.t. W (AY ) =
∑

j∈
⋃
i∈AY

Ui
wj ≤ C (4)

Here, any candidate solution Y can be represented by an
m-dimensional binary vector Y = (y1, y2, y3, . . . , ym), Ay =
{i |yi ∈ Y, yi = 1, 1 ≤ i ≤ m} ⊆ S such that yi = 1 if
and only if i ∈ AY. Particularly, feasible solution Y satisfies
Eq. (4), and infeasible solution otherwise.

III. MOTH SEARCH ALGORITHM
TheMSwas originally developed to solve continuous numer-
ical optimization problem [14]. MS is a swarm-based nature-
inspired metaheuristic algorithm. However, MS differs from
other state-of-the-art methods including genetic algorithm
(GA) [10], differential evolution algorithm (DE) [16], [17],
particle swarm optimization (PSO) [11], and harmony search
(HS) algorithm [20], [21]. In MS, there are two sub-
populations, namely, subpopulation1 and subpopulation2.
Therefore, MS searches the problem space by moving the
moth individuals via Lévy flights in subpopulation1 and fly
straightly in subpopulation2, respectively. The procedure of
MS is illustrated in Figure 1.
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FIGURE 1. Moth search algorithm.

According to Figure 1, the main formulas of Lévy flights
(Eqs. (5) - (7)) and fly straightly (Eqs. (8) - (9)) are described
as follows.

x t+1i = x ti + αL(s) (5)

α = Smax/t2 (6)

L(s) =
(β − 1)0(β − 1) sin(π (β−1)2 )

πsβ
(7)

where x t+1i and x ti are respectively the position of moth i at
generation t+1 and t . α refers to the scale factor based on
the relevant problem. Smax is the max walk step and its value
takes 1.0 in this paper. L(s) represents the step drawn from
Lévy flights and 0(x) is the gamma function. Parameter β is
set to 1.5 for our experiments.

x t+1i = λ× (x ti + ϕ × (x tbest − x
t
i )) (8)

x t+1i = λ× (x ti + 1
/
ϕ × (x tbest − x

t
i )) (9)

where scale factor λ is set to a random number drawn by
the standard uniform distribution and ϕ is an acceleration
factor that its value equals golden ration. x tbest is the best
individual at generation t . Note that moth individual i updates
the position with Eq. (8) or Eq. (9) with equal probability.
These two update processes are shown in Figure 2. In Fig-
ure 2, old, best, new1, and new2 indicate the original, best,
updated position by Eq. (8), and updated position by Eq. (9)
for individual i, respectively. As can be seen in Figure 2,
the control coefficient ϕ in Eq. (8) and 1/ϕ in Eq. (9) can well
balance the individual to search in the two relative directions
of the global best position.

IV. ENHANCED MS ALGORITHM FOR SUKP
To describe the enhanced moth search algorithm for the
SUKP, we start with the solution representation. Then the

FIGURE 2. The two new individual generations of rectilinear flight.

constraint handling method is explained. Followed by a
detailed introduction to EMS algorithm. Finally, we outline
the framework of EMS for solving SUKP.

A. SOLUTION REPRESENTATION
As mentioned earlier, given a SUKP instance with a set S =
{1, 2, 3, . . . , m} of m items, any candidate solution Y can be
expressed as an m-dimensional binary vector Y= (y1, y2, y3,
. . . , ym) such that yj = 1 if the item j is selected, and yj = 0
otherwise.

Since MS algorithm was originally proposed to solve
numerical optimization problems, two operators perform the
optimization process in a continuous search space. Never-
theless, SUKP belongs to constrained discrete optimization
problem. In this work, we specifically employ two vectors X
and Y to represent each moth individual, namely, moth = <
X, Y >.

Let�C be the set of allm-dimensional real-valued vectors,
i.e.,

�C
= {X |X ∈ [−a, a]m} (10)

Let�D be the set of all m-dimensional binary vectors, i.e.,

�D
= {Y |Y ∈ {0, 1}m} (11)

where a = 5 in this work. The evolution of MS in continuous
space is still dependent on real-valued vector X. Meanwhile,
the mapping of X to Y is implemented by using transfer
function [22], [23]. In the present work, a simple and effective
transfer function [24] g : Rm→ {0, 1}m is defined as follows:

yi =

{
1, if xi ≥ 0
0, else

(12)

Finally, the objective function f(Y) is defined as follows to
evaluate the quality of any candidate solution.

f (Y ) =
m∑
i=1

yipi (13)

B. CONSTRAINT HANDLING
Obviously, �D consists of two parts: Feasible solutions and
infeasible solutions. Therefore, the strategy of dealing with
infeasible solutions effectively is one of the most important
issues in solving SUKP. A repairing and optimization algo-
rithm (named S-GROA) is specially proposed by He et al. [7]

173776 VOLUME 7, 2019



Y. Feng et al.: Enhanced Moth Search Algorithm for the Set-Union Knapsack Problems

FIGURE 3. S-GROA algorithm for SUKP.

for this purpose and is employed in this work. The prepro-
cessing phase of S-GROA can be summarized as follows:

1) Compute the frequency dj of the element j(j = 1, 2, 3,
. . . , n) in the subsets U1, U2, U3, . . . , Um.

2) Calculate the unit weight Ri of the item i (i = 1, 2, 3,
. . . , m).

Ri =
∑

j∈Ui
(wj/dj) (14)

3) Record the profit density of each item in S according
to PDi.

PDi = pi/Ri (i = 1, 2, 3, . . . ,m) (15)

4) Sort all the items in a non-ascending order based onPDi
(i = 1, 2, 3, . . . , m) and then the index value recorded
in an array H[1. . .m].

5) Define a term AY = {Ui |yi ∈ Y ∧ yi = 1, 1 ≤ i ≤ m}
for any binary vector Y = [y1, y2, . . . , ym] ∈{0, 1}m.

The pseudocode of S-GROA is outlined in Figure 3.
From Figure 3, one observes that S-GROA algorithm is

composed of two phases. The first phase repairs only infea-
sible solutions by eliminating some of the violating items.
After all the solutions have become feasible, the second phase
optimize the remaining items by packing suitable items into
knapsack with the aim of further utilizing the remaining
capacity.

C. ENHANCED MS ALGORITHM
As one of the main operators of MS, Lévy flight [25],
[26] should play a vital role in the optimization ability of
the algorithm. However, previous works indicate that Lévy
flights operator has relatively weak influence compared to fly
straightly operator [15].

As a swarm intelligence algorithm [27], [28], the per-
formance of the MS depends heavily on the interaction or
information interchange among these individuals. However,
the moths in subpopulation1 only fly around the global best
individual in the form of Lévy flights. Clearly, there is a lack
of sufficient information inheritance and interchange among
the moths.

In this paper, an enhanced interaction operator (EIO) based
on GHS [18] and mutation operator of DE [16], [17] was
specially designed. The main consideration in this new oper-
ator is making full use of information sharing among indi-
viduals so that the exploration capability of the EMS can
be improved. Additionally, Lévy flights have the character-
istics of random flights, which do not fully reflect the mode
of social cooperation. However, for differential mutation
(DE/best/1bin), the best individual and any two individuals
are selected to generate the mutation individual based on the
social cooperation strategy. Meanwhile, GHS is a simple and
effective heuristic global search algorithm than the original
HS. Embedding the mutation operator of DE into GHS not
only enhances the convergence of EMS, but also prevents the
algorithm from falling into local optimum.

Consequently, Lévy flight operator was replaced by an
enhanced interaction operator, and an enhanced MS algo-
rithm (EMS) was proposed.

1) THE GLOBAL-BEST HARMONY SEARCH
In brief, harmony search (HS) [21], [29] is an efficient opti-
mization metaheuristic inspired by the music improvisation
process. In the last years, HS has attracted many researchers
because of its excellent performance in solving various prob-
lems [30], [31].

Here, we adopt an efficient global-best harmony search
(GHS) [18], where memory consideration, pitch adjustment,
and random selection are calculated as follows:

xki = xkj (j ∼ U (1, . . . ,HMS)) if rand ≤ HMCR (16)

xki = x jbest if rand ≤ HMCR ∧ rand ≤ PAR ∧ j ∼ U (1,N )

(17)

xki = LBk + rand × (UBk − LBk ) if rand > HMCR (18)

where HMCR, PAR, HMS, and N are harmony memory con-
sidering rate, pitch adjusting rate, harmony memory size, and
problem dimension, respectively. xki , x

k
j are respectively the k

th element of individual i, individual j. The jth of global best
individual represents by x jbest . Rand is a function generating a
random number uniformly distributed in (0, 1). LBk and UBk

are the lower and upper limits for the kth.

2) THE DIFFERENTIAL EVOLUTION
Differential evolution (DE) [17], [32] is undoubtedly one
of the most promising stochastic real-parameter optimiza-
tion algorithms. DE searches for a global optimum solution
through three main stages: mutation with difference vectors,
cross, and selection. Thereinto, mutation operator is the main
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FIGURE 4. Enhanced interaction operator.

component of DE. In this paper, DE/best/2/bin model is used
as follows:

xi = xbest + λ(xr1 − xr2)+ F(xr3 − xr4) (19)

where xr1, xr2, xr3, and xr4 are mutually exclusive individ-
ual randomly chosen from subpopulation1 and they are also
different from the base vector xi. The vector xbest is the best
individual of the entire population.

3) THE ENHANCED INTERACTION OPERATOR
Compared with original HS, GHS adds a social dimension to
the HS which stems from PSO. While differential mutation
can be regarded as self-cognition. Consequently, the effective
combination of GHS and differential mutation can achieve
a much better balance of exploration and exploitation than
MS. Intuitively, this modification can enable EMS to solve
continuous optimization problems and discrete optimization
problems effectively. Then the primary steps of enhanced
interaction operator are illustrated in Figure 4.

D. EMS FRAMEWORK FOR SUKP
After the special design of each component, the framework
of EMS for solving SUKP is illustrated in Figure 5. It can
be seen that the evolutionary process consists of three main
stages if initialization stage is excluded. First stage, gen-
erating new individuals among subpopulation1 by employ-
ing enhanced interaction operator. Second stage, updating
individuals of subpopulation2 by performing flight straightly
operator. Third stage, using S-GROA to repair infeasible
solutions and then optimize all feasible solutions.

E. COMPUTATIONAL COMPLEXITY OF THE EMS
ALGORITHM
Computational complexity is an important factor in evaluat-
ing the running time of algorithms. Usually, it can be esti-
mated in the light of the structure and implementation of the

FIGURE 5. The framework of EMS for SUKP.

algorithm. As can be seen from Figures 3-5, the time cost of
each iteration is mainly due to population size, the dimension
of SUKP instances. Specifically, computational complexity
depends mainly on Steps 1-3 of Figure 5. Note that Quicksort
algorithm is selected in Step 1. The worst and the average
time costs are O(m2) and O(mlogm), respectively. In Step 2,
the initialization of N moth individuals with m decision vari-
able has time complexity O(N × m) = O(m2). In Step 3,
enhanced interaction operator and straight flight operator cost
the same time O(N/2 × m) = O(m2). The process of S-
GROA and evaluation of the fitness of the population cost
timeO(m×n) = O(m2) andO(N ), respectively. Similarly, the
sorting process of the population via Quicksort has the worst
time complexity and average time complexity of O(N 2) and
O(N logN ), respectively. Therefore, the total time complexity
can be calculated as O(mlogm) + O(m2) + O(m2) + O(m2)
+O(m2)+ O(N )+ O(N logN ) = O(m2).

V. COMPUTATIONAL EXPERIMENTS
In this section, three types of 30 SUKP instances commonly
used in literature are first provided. Then parameter settings
and experimental environment are outlined. Followed by a lot
of computational experiments to compare the proposed EMS
with several state-of-the-art algorithms. Finally, the impact
of two key components of EIO on the performance of EMS
is investigated.

A. SUKP INSTANCES
These instances were first generated by He et al. in [7].
All instances are represented as m_n_α_β, where m and
n represent the number of items and number of elements,
respectively. The parameters α and β are called the density
of elements and the ratio of knapsack capacity to the total
weight of all elements, respectively. According to the size of
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TABLE 1. The parameters for 30 SUKP instances.

m and n, three types of SUKP instances are provided. The first
group contains 10 SUKP instances with m > n, named as
F01-F10, respectively. The second group contains 10 SUKP
instances with m = n, named as S01-S10, respectively. The
third group contains 10 SUKP instances with m < n, named
as T01-T10, respectively. The parameters and the best-known
solution (Best∗) are presented in Table 1.

B. PARAMETER SETTINGS AND EXPERIMENTAL
ENVIRONMENT
To evaluate the comprehensive performance of the proposed
EMS algorithm, seven state-of-the-art metaheuristic algo-
rithms in the literatures are used as the basic comparison
algorithms, including the binary artificial bee colony algo-
rithm (BABC) [7], binary weighted superposition attraction
algorithm (bWSA) [8], the hybrid of genetic algorithm and
particle swarm optimization (gPSO∗ and gPSO) [9], firefly
algorithm (FA) [33], [34], monarch butterfly optimization
(MBO) [35], [36], and original MS [14]. These reference
algorithms are among the best performingmetaheuristic algo-
rithms currently obtained through literature. The experimen-
tal results used in this paper for BABC, bWSA, gPSO∗, and
gPSO are adopted from the relevant literature.

The parameters of FA, MBO, MS, and the proposed EMS
are empirically set (see Table 2). We define the maximum

TABLE 2. The parameter settings of four algorithms on SUKP.

number of iterations as the stopping condition according to
the original paper [7], whose value is equal to max{m, n}.
The population size of these four algorithms is set to be
N = 20. All experimental results of FA,MBO,MS, and EMS
are evaluated over 100 independent runs.

To make a fair comparison, all the proposed algorithms
(FA, MBO, MS, and EMS) are programmed in C and com-
piled using the GNU GCC compiler. All the experiments
are performed on a computer with Intel(R) Core (TM) i7-
7500 CPU (2.90 GHz and 8.00 GB RAM).

C. COMPUTATIONAL RESULTS AND COMPARISONS
The computational results on 30 SUKP instances based on
the above experimental design are summarized in Tables 3-7.
In Tables 3-5, the first column shows the name of SUKP
instance and the current best-known solution is recorded
in parentheses under the corresponding instance. For each
algorithm, three basic evaluation criteria, including the best
objective value (Best), the average objective value (Mean),
and the worst objective value (Worst) over 100 independent
runs, are selected to assess the overall performance of all the
reference algorithms. The best results of the eight algorithms
are shown in bold if they are equal to or greater than the best-
known solution reported in the literature.

It is important to note that the computational time is not
considered as the comparison criteria in the present study.
The prime reason is that, the running time of different com-
parison algorithms depends on the programming language,
computing platform, and even the compiler. Therefore, it is
difficult to make a fair comparison of the computational time.
In addition, the worst value of BABC cannot be obtained from
the literature [7] and ‘‘−’’ is used to express it.

The computational results on the first group SUKP
instances with m > n are recorded in Table 3. Experimental
results (the last three rows in Table 3) demonstrate that the
proposed algorithm EMS reaches the best solutions for five
instances. In addition, EMS obtains the best mean values for
four instances and the worst values for five instances. The
number of the best values, the mean values, and the worst
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TABLE 3. The experimental results on F01-F10 SUKP instances.

values among the first group SUKP instances obtained by the
reference algorithm gPSO is 6, 4, and 4, respectively. It can be
concluded that the performance of EMS is competitive with
gPSO and superior to the other six algorithms.

The computational results on the second group SUKP
instances with m = n are summarized in Table 4. Unfor-
tunately, BABC, bWSA, gPSO∗, FA, MBO, MS, and EMS
algorithms get the best known solutions only for 1, 1, 0, 0, 2,
1, and 3 instances, respectively. However, gPSOmaintains the
best known solution for all 10 instances (S01-S10). It should
be stated that EMS attains the best results for 7 instances in
terms of the worst value.

The computational results on the third group SUKP
instances with m < n are reported in Table 5. Table 5 shows
that the proposed algorithm EMS is efficient and EMS has
the ability to compete with gPSO. Specifically, the EMS
algorithm matches the best known solutions for 6 out

TABLE 4. The experimental results on S01-S10 SUKP instances.

of 10 instances, while the reference algorithms BABC,
bWSA, gPSO∗, MBO, and MS achieve the best known solu-
tions only for 1 instance. Nevertheless, gPSO still retains the
best-known solutions for 8 instances.

To evaluate the proximity between the best solution
obtained by the algorithm and the best-known solution,
the relative percentage deviation (RPD) is defined as follows.

RPD = (Best∗ − Best)/Best∗ × 100 (20)

where Best∗ represents the best known solution that can be
available through current literature [9]. Since SUKP is a
maximum optimization problem, if Best > Best∗, RPD <

0, which indicates the algorithm improves the best known
solution. The results are reported in Table 6.

From Table 6, it can be observed that EMS matches the
best known solutions for 14 instances (RPD = 0.0, out of 30
instances). Especially, our proposed EMS algorithm updates
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TABLE 5. The experimental results on T01-T10 SUKP instances.

the best known solutions for 3 instances (RPD< 0, new upper
bounds). However, there are still 13 instances that EMS fails
to find the best known result, which shows the performance of
MS can be further improved. It can also be observed that FA
and MS improve the best known results for 2 and 3 instances,
respectively, which demonstrates these two algorithms are
acceptable compared with BABC, bWSA, gPSO∗, andMBO.

The ranking information of eight algorithms based on the
best values is summarized in Table 7 with the aim of eval-
uating the optimization performance. As can be seen from
Table 7, the average ranking value of gPSO is 1.84 and still
maintains its excellent performance. In addition, EMS and
bWSA are the second and the third best algorithm, respec-
tively.

In conclusion, the above experimental results reveal that
the proposed EMS algorithm is highly competitive compared
to the state-of-the-art SUKP algorithms in the literature.
For all 30 SUKP instances, EMS updates the best known

TABLE 6. Comparisons of the RPD values for 30 SUKP instances.

solutions for 3 instances (10%) and reaches the best known
solutions for 14 instances (46.67%).

In order to illustrate the overall performance of the pro-
posed EMS and estimate the differences between EMS and
MS, FA, and MBO, the Wilcoxon’s rank sum tests with the
5% significance level are conducted. The p-value and h-value
of for 30 SUKP instances is recorded in Table 8. Note that the
results of significant difference between EMS algorithm and
comparison algorithm are shown in bold.

As can be seen from Table 8, the p-value obtained by
pairwise comparison between EMS and MS, FA, and MBO
is less than 5% for 27, 26, and 30 instances, respectively.
The mean p-value is less than 5% for EMS-FA and EMS-
MBO or practically 5% for EMS-MS. It indicates that EMS
is significantly different from the other three algorithms.

With the aim of analyzing the stability of the compared
approaches, the box plots of six of the most representative
instances, i.e., F09, F10, S09, S10, T09, and T10 are pre-
sented in Figures 6-8. The stability of each algorithm can be
reflected by the span of the box. As can be seen from Figure 6,
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TABLE 7. Ranks of eight algorithms based on the best values.

FIGURE 6. Boxplot of the best values for F09 and F10 in 100 runs.

for F09, EMS has decided advantage over its opponents, since
the box span for EMS is much smaller than that of other three
algorithms. EMS also achieves much smaller spans on other
five instances.

To further demonstrate the effectiveness of the proposed
EMS algorithm and especially to investigate the convergence
speed, the evolutionary process of the iteration number and
average best objective function value as a function are plotted
in Figures 9-11.

It can be observed from Figures 9-11, the initial value of
EMS is greater than that of other three algorithms and then

TABLE 8. Rank sum tests for EMS with FA, MBO, and MS on 30 SUKP
instances.

FIGURE 7. Boxplot of the best values for S09 and S10 in 100 runs.

EMS reaches the global optimum with a fast convergence
speed. Although MBO outperforms EMS slightly in perfor-
mance in the early period of evolutionary on S10, EMS and
MBO have identical final solutions. Overall, Figures 9-11
clearly indicates that EMS has distinct advantage over FA,
MBO, and MS on six high-dimensional instances.
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FIGURE 8. Boxplot of the best values for T09 and T10 in 100 runs.

FIGURE 9. The convergence graph for F09 and F10.

FIGURE 10. The convergence graph for S09 and S10.

Considering the experimental results shown
in Figures 6-11, it can be concluded that EMS is an effec-
tive algorithm for solving SUKP problem, regardless of the
quality of solution, the stability and the convergence rate.

D. THE EFFECT OF GLOBAL HARMONY SEARCH AND
DIFFERENTIAL MUTATION ON THE
PERFORMANCE OF EMS
In this section, the impact of two important components
of EIO on the performance of EMS algorithm is analyzed.
Therefore, EMS that Eq. (18) removes from enhanced inter-
action operator is renamed H-MS. Meanwhile, EMS that
Eqs. (15) - (16) is excluded from enhanced interaction oper-
ator is called D-MS. Note that the difference between odd
number instances and even numbering instances in each
group is the value of α and β, and there is no essential
difference. Therefore, fifteen odd numbering instances with

FIGURE 11. The convergence graph for T09 and T10.

TABLE 9. The effect of GHS and DM on the performance of EMS.

α = 0.1 and β = 0.75 are selected to conduct compar-
ative experiment. The results are summarized in Table 9,
where column 1 and column 2 represent the instance name
and the best-known solution, respectively. The last two rows
respectively give the number of the best result in terms of
the best solution value and the average solution value over
100 independent runs. The best values obtained by MS,
H-MS, D-MS, and EMS are indicated in bold.

FromTable 9, it can be observed that the number of the best
values obtained byMS, H-MS, D-MS, and EMS is 3, 9, 2, and
12, respectively. Additionally, the number of the mean values
obtained by MS, H-MS, D-MS, and EMS is 0, 6, 2, and 7,
respectively. Thus, it can be seen that EMS performs the best
among these four algorithms, which demonstrates enhanced
interaction operator improves the performance of EMS by
increasing information sharing between different solutions.
Especially, H-MS outperforms D-MS, which reveals that the
performance of EMS is more affected by global harmony
search than differential mutation. Through careful analysis,
it is not difficult to find that individual j in Eq. (15) selected
randomly from the whole population. As a result, individuals
in subpopulation1 inherit preeminent information on a greater
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search space. From Eq. (16), the jth element of individual
i inherits from the global optimal solution with a certain
probability, which makes it more likely to transfer excellent
gene to the next generation. In addition, D-MS is slightly
inferior to MS, which shows the performance of EMS is not
significantly improved with differential mutation alone.

VI. CONCLUSION
In this paper, we introduced an enhanced moth search algo-
rithm (EMS) for solving the set-union knapsack problem.
In EMS, an enhanced interaction operator is specifically
designed by integrating differential mutation into global har-
mony search method with the aim of increasing information
sharing and population diversity.

The experimental results on three types of 30 SUKP
instances commonly used in the literature indicate the pro-
posed algorithm EMS is superior to or at least quite compet-
itive with state-of-the-art algorithms in the literature. Most
importantly, the related algorithm in this paper update the
best known solution for six instances and then give new best
solutions for these instances, including F02 (MS, 12479),
F03 (MS and EMS, 13521), F05 (H-MS, 11529), F06 (MS,
12273), T04 (FA, 11365), and T08 (EMS, 10506).

The impact of global harmony search and differential
mutation on the performance of EMS is investigated. The
comparative results show that both parts play an important
role on the performance of the algorithm. However, global
harmony search is more effective than differential mutation.

Additionally, although EMS is an effective alternative
method for solving SUKP problems, the accuracy of some
instances need to be further improved and the performance of
EMS does not show obvious advantages, especially compared
with gPSO algorithm. Therefore, it is necessary to make a
profound study on the evolution mechanism of MS algorithm
and propose more efficient improvement strategies.

As future work, several potential research topics are out-
lined as follows. First, to further improve MS, it is necessary
to an in-depth study of alternative strategies for maintaining
population diversity and sharing excellent information such
as information feedback mechanism [37]. Second, it would
be interesting to investigate other swarm intelligence, such
as earthworm optimization algorithm (EWA) [38], fruit fly
optimization algorithm (FOA) [39], invasive weed optimiza-
tion algorithm (IWO) [40], cuckoo search (CS) [41], krill
herd (KH) [42], for solving SUKP. Finally, it is certainly
worth extending MS to other more complex combinatorial
optimization problems including the knapsack problem with
setup (KPS) [43], the 0-1 multidimensional knapsack prob-
lem (MKP) [44], unbounded knapsack problem (UKP) [45],
constrained knapsack problems in dynamic environments
(DKPs) [46].
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