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ABSTRACT How to predict spatiotemporal activity from geo-tagged social media is an urgent problem.
Existing methods don’t make full use of spatiotemporal information and text sequence features. In view of
above problem, we design a Fast Lightweight Spatiotemporal Activity Prediction method(FLSAP) based
on Gated Recurrent Unit(GRU) neural network. While GRU structure can extract text sequence features,
the model takes up a lot of space due to the numerous parameters. At the same time, due to the long sequence
in the text, the convergence speed of GRU is slow. So, we design a novel GRU neuron, GRU with Tiny and
Skip(GTS), which can quickly generate a lightweight model with higher accuracy. In GTS, we add a scalar
weighted residual connection to stabilize the training. Furthermore, we extend the residual connection to
a gate by reusing the parameter matrices to compress the model size. At last, in order to make the model
converge faster, we add a binary gate, which determine whether to skip the current state update. According
to the experimental results, compared with ReAct [1] in the spatiotemporal activity prediction task, FLSAP
improves the accuracy by 3.3%, reduces the model space by 98.79% and accelerates 74.4% of convergence
speed.

INDEX TERMS Spatiotemporal activity prediction, accuracy, fast, lightweight.

I. INTRODUCTION
Recently, big cities face a big challenge when people try
to find their desired activities. Imagine if a tourist is in a
strange city, how can he/she get information about the popular
activity in his/her neighborhood at the time being quickly and
accurately? Especially in the age of increasing information,
even a local person can hardly answer this question accurately
in a short time. However, geo-tagged social media(GTSM)
has made it possible to solve this problem. Some studies
[2]–[8] have demonstrated that GTSM has great potential in
predicting spatiotemporal activity. GTSM includes not only
timestamp and geographic coordinates, but also text gener-
ated by users using social media. Twitter is a geo-tagged
social media, a large number of users use Twitter to generate
a large number of messages with time and location tags every
day. And these messages are adopted by studies [9]–[15]
as data source. These messages contain information about
main local activity. For instance, if there are many restaurants
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in a region, the chances of tweets related to food in this
area will be much greater than areas with fewer restaurants.
In addition to time and place, text plays a crucial role in the
activity prediction process. So, capturing more information
from the text will provide more help for activity predic-
tion. In addition, GTSM typically relies on mobile smart
terminals. Although the computing power of mobile intelli-
gent terminals is gradually improving, how to quickly get a
model that can accurately predict activity while occupying
as little space as possible is still an urgent problem to be
solved.

There are some researches in spatiotemporal activity pre-
diction. USTAR [16], ReAct [1] and BranchNet [17] embed-
ded all place, time, text and activity into same latent space
to capture their correlations, and predict activity by calcu-
lating the similarity of embedding. However, they extracted
semantic features of text by embedding the mean values of
all word vectors, the text sequence features were missed,
which play an important role in activity prediction. For
example, the meaning of ‘‘is there a restaurant’’ is different
from the meaning of ‘‘there is a restaurant’’, although the
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words contained in the two sentences are the same. Since
the sequence model captures the text sequence features well,
Liao D [18] proposed a novel Context Aware Recurrent
Neural Network(RNN) to integrate the sequential depen-
dency and spatiotemporal activity, Jung S [19] and Jiang
J Y [20] used RNN to extract text sequence features and
have achieved good results. Gated RNN [21]–[24] achieved
state-of-the-art performance in sequential modeling. Gated
Recurrent Unit(GRU) is a kind of Gated RNN, can be a
good choice for capturing the sequence features of text.
However, The large number of GRU parameters resulting in
larger models. Although the computing power of intelligent
terminals is getting stronger and stronger, how to reduce
the space of GRU model is also an problem to be solved.
FastGRNN [25] addressed this limitation by adding a residual
connection that does not constrain the range of the singular
values explicitly and has only two extra scalar parameters.
Residual connections in neural networks have been studied in
some literature [26]–[29]. Furthermore, FastGRNN extended
the residual connection to a gate by reusing the RNNmatrices
to get smaller model but with ideal accuracy. Otherwise,
the processing of long text sequences in GTSM is also a
challenge for GRU. SkipRNN [30] improved the performance
of the GRU when dealing with long sequences, which can
adaptively determine whether the state of the GRU neuron
needs to be updated or copied to the next time step. SkipRNN
can be seen as form of conditional computation. Condi-
tional computation has been shown to increase model per-
formance without significantly increasing in computational
cost [31]–[35].

In this paper, we propose a Fast Lightweight Spatiotempo-
ral Activity Prediction Method(FLSAP). The main contribu-
tion of this work are highlighted as follows:

1) FLSAP uses GRU to extract text sequence features of
text and solve the text dependence of spatiotemporal
activity. Among them, we use multimodal embedding
as background knowledge to generate time embedding,
space embedding and text embedding, which as input
of GRU.

2) We add Tiny mechanism to Standard GRU to get
GT(GRU with Tiny), which uses a scalar weighted
residual connection for each and every coordinate of
the GRU hidden state, significantly reduces the space
occupancy of the model, but without losing the accu-
racy of the model.

3) We further add Skip mechanism to GT, design a novel
GRU neuron, GTS(GRU with Tiny and Skip) for
FLSAP, which can quickly generate a model that be
able to accurately predict spatiotemporal activity. GTS
can be encouraged to upstate state fewer by adding
a penalization term during training process. GTS not
only reduces the amount of computation ofmodel train-
ing, but also speeds up the convergence of the model.

We have evaluated the performance of FLSAP. Compared
with ReAct, we find that FLSAP is able to predict spatiotem-
poral activity faster and more accurately.

II. RELATED WORK
With the development of network and social media, find-
ing more activity information from GTSM can bring more
convenience to our life. The recent studies [16], [36]–[38]
use GTSM to predict user activity. Chong and Lim [39],
Zhou et al. [40] and Zhou et al. [41] reveal the relationship
between human behavior and temporal location by analyzing
GTSM. S Vosoughi et al. [42] learns tweet embeddings by
CNN-LSTM endcoder-decoder from GTSM. All of them
achieve the desired results, rendering the potential of GTSM
for spatiotemporal activity modeling.

Some researches have been done on the detection of hot
spot activities and events in a region. GeoBurst [43] composes
candidate events by detecting all the representative tweets in
all tweets, and then selects truly interesting local events from
the candidate events. Based on Geoburst, Geoburst+ [44] is
capable of updating local event rapidly, thus continuously
monitoring events. TrioVecEvent [45] first uses Bayesian
mixture model to cluster geographic topics, and uses geo-
graphic clusters as candidate events to classify activities.
DeLLe [46] first finds abnormal locations that aggregate
unexpected numbers of tweets, and then ranks these locations
to select the results. Yi Han [47] propose power-low basic
and power-low advanced to detect spatiotemporal activity.
Social Fusion [48] designs an unsupervised approach that can
correlate event signals across multiple social networks. All
the methods mentioned above regard tweets as a collection
of keywords, without considering the order between words.
In addition, the keywords of twitter and main activity in a
region are close rather than equal. So it will be more convinc-
ing to use semantically sequential texts and spatiotemporal
information to predict activity.

As data grows more and more, some useless text data
will appear, resulting in text data sparsity. Gmove [49] has
the function of text enhancer, which calculates keyword cor-
relation by checking its temporal and spatial distribution.
CrossMap [50] can effectively solve the problem of sparse
data by detecting spatiotemporal hotspots in people’s activi-
ties. In addition, BranchNet [17] uses a graphical regularized
cross-modal embedding framework to allow external knowl-
edge to guide the cross-modal embedding process in order to
learn better spatiotemporal activity models. Zhao et al. [51]
proposes a novel feature learning framework that solved the
problem of sparse social media data by formulating predic-
tion tasks for different locations with different spatial reso-
lutions, allowing the heterogeneous relationships among the
tasks to be characterized. By collecting linked data from
Twitter and Foursquare, we can not only improve the qual-
ity of data, but also obtain complete information of spa-
tiotemporal activity categories marked in Foursquare to guide
model training. Splitter [52] excavates fine grained sequen-
tial patterns in semantic trajectories. STREAMCUBE [53]
can explore spatiotemporal activity with different spatial
granularity, Both Chen et al. [54] and ReAct [1] consider
the continuity of time and space in the prediction of spa-
tiotemporal activity. Although they fully develop the value
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FIGURE 1. The overall framework of FLSAP.

of time and space, they do not make full use of text
information.

In order to make better use of text information in predicting
spatiotemporal activity, some studies use RNN to extract text
features. Cui et al. [55] propose a hybrid LSTM model for
rich contextual learning to recognize user activity not only
for the cases where a clear indicator exists in the content,
but also for the ones where the activity information is latent.
As the same, capturing more information from text provide a
great help for Xu et al. [56]. However, due to numerous RNN
parameters and long sequences in data, the disk storage occu-
pied by the above models will increase and the convergence
speed of models will also slow down.

Distinguished from these studies, our goal is to extract
text sequential information from tweets and combine it with
time and space to predict activity categories, quickly generate
model that can accurately predict spatiotemporal activity,
rendering our method different from existing methods.

III. PROBLEM DEFINITION
Spatiotemporal activity prediction uses the latitude, longi-
tude, timestamp and text of the location to be predicted as the
input of the neural network to predict what social activities
are mainly carried out at that moment.

A. INITIAL DATA
T = {T1,T2, . . . ,Ti, . . . ,Tn} is all input data. Each input
data Ti is a tuple 〈li, ti,wi〉. li is a two-dimensional vector
representing latitude and longitude. ti is the timestamp of Ti.
wi is a sentence composed of some words.

B. ACTIVITY CATEGORY
The predicted activity category is the main activity that
the model predicts at a specific time and place through

text sequence embedding, time embedding, and spatial
embedding.

IV. THE FRAMEWORK
The overall framework of FLSAP is shown in FIGURE1.
〈li, ti,wi〉 is the initial location, time and text data.

We embed all the regions, hours and text into same latent
space to generate embedding. 〈El̂i ,Et̂i ,Ewi〉 is the embedding
of 〈li, ti,wi〉, which can be a good representation of the
continuity of the proximity time and the continuity between
adjacent locations.

A. SPATIOTEMPORAL SMOOTHING
Since the location of each piece of data is independent of
each other, we smooth the space embedding in the process
of getting embedding, as shown in equation(1). El represents
the initial embedding at location l, ε is the spatial smoothing
constant, and Sl is the set of locations around point l. Simi-
larly, in equation (2), Et represents the initial embedding at
time t , θ is the time smoothing constant, and St is the set
of neighboring time points before and after the time point t .
After getting embedding, we put these sequential embedding
into GRU model.

El̂ =
El + ε

∑
ln∈Sl Eln

ε|Sl | + 1
(1)

Et̂ =
Et + θ

∑
tn∈St Etn

θ |St | + 1
(2)

B. CAPTURE TEXT SEQUENCE FEATURES
In FIGURE1, text suquence features Ewi = {Ewi1 ,Ewi2 , . . . ,
Ewid , . . . ,Ewij} are captured by GRU. i represents the i-th data
and d represents the embedding of the d-th word of the data.
The structural design of GRU allows the input of previous
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neurons to affect the output of the current neuron, thereby
capturing the sequence features of the text.

C. LIGHTWEIGHT MODEL AND FAST TRAINING
We add Tiny mechanism and Skip mechanism based on the
GRU, design a novel neuron named GTS in FIGURE1. Tiny
mechanism stabilize the training process by using a scalar
weighted residual connection for each coordinate of state ht
of GRU, and further compress the model size by using a low-
rank and a sparse representation of the parameter matrices
W ,U . Skip mechanism determines whether to skip the state
update of the current neuron by adding a binary gate to the
neuron, thus speeding up the convergence of the model.

In next section, we describe the structure and calculation
method of GTS. As aforementioned, we compress the model
size without losing the accuracy of the model as much as
possible, and then add a binary gate to the neuron to skip
unnecessary state updates, thus speeding up the convergence
of the model.

V. FAST LIGHTWEIGHT SPATIOTEMPORAL ACTIVITY
PREDICTION
A. LIGHTWEGHT MODEL WITH TINY MECHANISM
During the prediction process, GRU has a high hardware
requirement due to the large number of parameters and data.
Although the computing power of smart terminals is con-
stantly improving, the small smart terminals are still difficult
to have strong computing power. This makes it difficult to
predict spatiotemporal activity on small smart terminals. How
to reduce the GRU model is still an urgent problem to be
solved. In order to reduce the model without losing prediction
accuracy as much as possible, we did the following work.

1) WEIGHTED RESIDUAL CONNECTION:
GT(GRU with Tiny) uses a weighted residual connection to
stabilize training by generating well-conditioned gradients.
GT’s ht update rule is shown in formula (3), (4) and (5). ϕ and
µ are the trainable parameters parameterized by the sigmoid
function. In theory, when µ ≈ 0, ϕ ≈ 1, GT will obtain ideal
results in processing long sequence. GT inputs xt and ht−1
into a nonlinear function to obtain the gated coordinates zt .

zt = σ (Wxt + Uht−1 + bz) (3)

h̃t = tanh(Wxt + Uht−1 + bh) (4)

ht = (ϕ(1− zt )+ µ) ∗ h̃t + zt ∗ ht−1 (5)

This paragraph shows how GT generates well-conditioned
gradients. Let L(X , y;Γ ) be the loss function for the labeled
data (X , y) and given parameters Γ = (W ,U , b). let
α = ϕ(1−zt )+µ and β = zt . The gradient of L w.r.tW ,U , b
is as formula (6), (7) and (8), where

`
hT L = −c(Γ ) · y · b,

and c(Γ ) =
1

1+ exp(y ∗ exp(−y · bT hT ))
. Let M (U ) =∏T−1

k=t (αU
TDk+1+βI ). Then, the condition number κM (U ) is

defined by formula (9), whereDk = diag(σ ′(Wxk+Uhk−1+
b)) is the Jacobian matrix of the pointwise nonlinearity.

if α = 1 and β = 0, which is same as RNN,
the condition number of M (U ) can be as large as

(maxk
‖ UTDk+1 ‖

$min(‖ UTDk+1 ‖)
)T−t .$min(ψ) represents the mini-

mum singular value ofψ , so condition number of gradient can
be exponential in T , leading to unstable training. Different
from above architechture, if α = 0 and β = 1, κM (U ) is
bounded by a small term. For instance, if β = 1 − α and

α =
1

T ‖ UTDk+1 ‖
, then κM (U ) = O(1). Therefore, residual

connection is able to control the κM (U ) and stabilize training.

∂L
∂W
= α

T∑
t=0

Dt (
T−1∏
k=t

(αUTDk+1 + βI ))(OhT L)xt
T (6)

∂L
∂U
= α

T∑
t=0

Dt (
T−1∏
k=t

(αUTDk+1 + βI ))(OhT L)ht−1
T (7)

∂L
∂b
=
−y ∗ exp(−y · bT hT )
1+ exp(−y · bT hT )

hT (8)

κM (U ) ≤

(1+
α

β
maxk ‖ UTDk+1 ‖)T−t

(1−
α

β
maxk ‖ UTDk+1 ‖)T−t

(9)

To minimize the number of parameters, GT reuses
matrixW and matrixU for the vector-valued gating function.
Therefore, the computational complexity of GT is almost
the same as that of the standard RNN, but its accuracy and
training stability are comparable to GRU. And GT further
compresses the model size by using the parameter matrix W
and the sparse representation of the matrix U .

2) COMPRESS PARAMETER MATRICES
To minimize the number of parameters, GT further com-
presses the model size by using a low-rank and a sparse
representation of the parameter matrices W ,U , as shown in
equation (10).

W = δ1(δ2)T ,U = ϑ1(ϑ2)T (10)

where δ1εRD̂×κw , δ2εRD×κw , ϑ1, ϑ2εRD̂×κu , ||δi||0 ≤ ρw
i,

||ϑ i||0 ≤ ρu
i, i = {1, 2}, among them, κw, ρw, κu, ρuare

hyper parameters. The parameters of GT include 8GT =

{δi, ϑ i, bh, bz, ϕ, µ}. If the loss function of the model is L,
the optimization strategy of the model parameters is as shown
in equation (11).

min
8GT ,||δi||0≤ρw

i,||ϑ i||0≤ρu
i
∂(8GT )=

1
n

n∑
j=1

L(xj, yj;8GT ) (11)

In the model training process, the parameters in equa-
tion (11) are optimized by batch stochastic gradient
descent(b-SGD). This stage mainly learns the low rank rep-
resentation of the parameters and does not sparsely constrain
the parameters. After the above stages are completed, wemap
the parameters of the model to the sparse low rank matrix to
obtain a model with better performance.
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The GT compresses the parameters by quantifying the
parameters ϑ i and δi, so that these parameters occupy only
a small storage space and have a byte index of the sparse
model. However, the compression process of the parameters
is not an equivalent operation but an approximate operation,
the accuracy of the model is reduced to some extent. In addi-
tion, although this method reduces the size of the model,
the training time of the model maybe longer because the non-
linear function requires all hidden states to be floating point.
GT overcomes these two shortcomings by staged the non-
linear functions and treats the functions in a linear manner
in each sub-phase, thus ensuring that all calculations can be
performed by integer operations. GT replaces the nonlinear
function in equation (5) with an approximate linear function,
and then obtains the parameter 8GT through the above train-
ing process. GT synthesizes the floating-point representation
of the quantization parameters so that the model training
can not significantly reduce the model accuracy under the
conditions of integer arithmetic.

B. FAST TRAINING WITH SKIP MECHANISM
GTmakes the model lighter. However, due to the long textual
suquences in data and the parameter compression in GT,
the convergence speed of themodel is not satisfactory.We add
Skip mechanism to GT. GTS(GT with Skip) adaptively deter-
mine whether a state needs to be updated or copied from the
last time step. We add penalty items to the model to make
the network reduce state updates as much as possible, which
allows the model to still train properly when the calculation
conditions are not ideal. This is done by the binary gate
Gtε{0, 1}. The calculation method is as follows.

Gt = Fbinarize(G̃t ) (12)

ht = Gt ∗ ((ϕ(1− zt )+ µ) ∗ h̃t + zt ∗ ht−1)

+ (1− Gt ) ∗ ht−1 (13)

4G̃t = σ (W ∗ ht + b) (14)

G̃t+1 = Gt ∗ 4G̃t + (1− Gt )

∗ (G̃t +min(4G̃t , 1− G̃t )) (15)

The GTS structure is shown in FIGURE2. σ is sigmoid
function. Fbinarize converts a floating point number between
0 and 1 to 0 or 1. When Gt = 1, GT updates the neuron
state according to the original rule. When Gt = 0, GT
replicates the state of the previous neuron. So how to define
Fbinarize becomes a crucial issue. Here we define Fbinarize as
the rounding function round, when G̃tε[0, 0.5), Fbinarize = 0;
when G̃tε[0.5, 1], Fbinarize = 1.
Equations (14) and (15) increase the likelihood of neu-

ronal status updates as the number of consecutively state-
updated neurons increases. When the state of a certain neuron
is updated, the probability of the next neuron state update
becomes G̃t+1 = 4G̃t .
There are several advantages to reducing the number of

updates to neurons. From a computational point of view,
fewer state updates can reduce the amount of computation

FIGURE 2. GTS structure diagram.

and make the computation faster. During model training,
the gradient propagates through fewer update time steps, and
convergence can be achieved more quickly in some tasks
involving long sequences.

In order to make the model run faster on machines with
lower computing power, we add an additional loss function
Ladd to the model. Ladd is defined by equation (16). Where λ
is the learning rate of Ladd and LEN represents the length of
the entire sequence. Therefore, the final loss function is cross
entropy plus Ladd .

Ladd = λ ∗
LEN∑
t=1

Gt (16)

C. ALGORITHM DESCRIPTION
As aforementioned, we smooth the time embedding and space
embedding to obtain the association between adjacent time
and place, and merge the text embedding with the spatiotem-
poral embedding into sequence data as the input of the GRU
to capture the text sequence features of the data. Then we
design a novel GRU neuron named GTS, which speeds up the
convergence of the training while reducing the model space.
Algorithm 1 sketches the procedure of FLSAP.

VI. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETTING
1) DATASET
Link data of Twittera and Foursquareb in Los Angeles and
New York from 2014.08.01 to 2014.11.30. Many users link
their Foursquare account to their Twitter account and leave
check-in information in different geographic locations. There
are 158,835 New York data and 143,567 Los Angeles data.
Datasets in New York and Los Angeles are randomly divided
into training set and test set in a 4:1 ratio.

2) ENVIRONMENT
The experimental program was written in Python 2.7 and
tensorflow 1.12.0. CPU: 6 core, Intel (R) Xeon (R) Gold
5117 CPU @ 2.00GHz; Memory 24GB; GPU: Tesla P100,
Memory 16GB.

ahttps://dev.twitter.com/streaming/overview
bhttps://developer.foursquare.com
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Algorithm 1 Detail of Fast Lightweight Spatiotemporal
Activity Prediction
Input: Initial embedding E = {E1,E2, . . . ,Ei, . . . ,En} of

initial data T = {T1,T2, . . . ,Ti, . . . ,Tn}
Output: Activity category C = {C1,C2, . . . ,Ci, . . . ,Cn}
1: Initialize ε, θ , ϕ, µ, λ; W and U of GTS
2: //generate embedding Ei of initial data Ti
3: for Ti in T do
4: 〈Eli ,Eti ,Ewi〉 ←− 〈li, ti,wi〉 //generate time embed-

ding, space embedding and text embedding
5: El̂ = (El + ε

∑
ln∈Sl Eln )/(ε|Sl | + 1) //spatial smooth-

ing
6: Et̂ = (Et + θ

∑
tn∈St Etn )/(θ |St | + 1) //temporal

smoothing
7: E ⇐ Ei = 〈El̂i ,Et̂i ,Ewi〉 //get embedding Ei
8: end for
9: //optimize parameters of the model and predict activity

category C
10: for Ei in E do
11: //put sequence Ei into GTS
12: for t in GTS do
13: Gt = Fbinarize(G̃t ) //calculate whether ht needs to

be updated
14: ht = Gt ∗ ((ϕ(1− zt )+ µ) ∗ h̃t + zt ∗ ht−1)+

(1−Gt )∗ht−1 //ifGt == 0, ht = ht−1; else, update
ht

15: min∂(8GT ) =
1
n

∑n
j=1 L(xj, yj;8GT ) //optimize

parameters of the model, L is the loss function
16: 4G̃t = σ (W ∗ ht + b)
17: G̃t+1 = Gt ∗ 4G̃t + (1− Gt )

∗(G̃t +min(4G̃t , 1− G̃t )) //calculate the value of
G̃t+1 for next GTS neuron

18: end for
19: C ⇐ Ci //get predicted activity category Ci
20: end for
21: return C

3) PARAMETERS SETTING
In above experiments, Learning Rate=0.0001, Batch
Size=300, ε = θ = 0.1. The neural network is set up as
a three-layer GRU with a fully connected layer, and each
layer of the GRU contains 128 neurons. For the second set
of experiments, ϕ = 0.95, µ = 0.3. For the third set of
experiments, λ = 0.0001.

In order to evaluate the performance of FLSAP in the
spatiotemporal activity prediction task, we set up three exper-
iments as follows.

(1) First experiment compares the accuracy of ReAct,
FLSAP-GE(GRU with discontinuous embedding) and
FLSAP-GCE(GRU with continuous embedding).

(2) Second experiment compares the accuracy and model
size of FLSAP-G(GRU), FLSAP-GT(GRU with Tiny) and
ReAct.

FIGURE 3. Accuracy comparison of Los Angeles data set.

FIGURE 4. Accuracy comparison of New York data set.

(3) Third experiment compares the convergence speed and
loss of FLSAP-GT, FLSAP-GTS(GRU with Tiny and Skip)
and ReAct.

B. METRICS AND ANALYSIS OF RESULTS
We set three metrics to evaluate the results of the experiment.
The metrics are as follows.

(1)Accuracy: Assume thatm in the n data can be accurately
predicted(m ≤ n), Accuracy is as shown in equation (17).
pi represents the softmax output value corresponding to the
true activity of the ith data.

(2)ModelSize: The size of the disk occupied by the model.
(3) 4Convergence: Defined by equation (18). We select s

Accuracy thresholds, epAi is the epoch used by method A to
achieve Accuracyi, epBi is the epoch used by method B to
achieve Accuracyi.

Accuracy =

∑m
i=1 pi
n

(17)

4Convergence =

∑s
i=1

epAi − epBi
epAi
s

(18)

(4) loss: The value of loss function, which is described in
section V .B. Defined by equation (19), where n represents the
total number of categories, yi represents the true classification

result, and ln
ezi∑n
k=1 e

zk
represents the ith output value of

softmax.

loss = −
n∑
i=1

yi ln
ezi∑n
k=1 e

zk
+ Ladd (19)

Results of the first experiment are shown in FIGURE3
and FIGURE4. For Los Angeles data set, the Accuracy
of the ReAct is best at 91.8%, while the performance of
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TABLE 1. Accuracy and ModelSize comparison of Los Angeles data set.

TABLE 2. Accuracy and ModelSize comparison of New York data set.

FLSAP-GCE is 95.2%. Accuracy increased by 3.4%. And
for New York data set, the Accuracy of the ReAct is best
at 91.9%, while the performance of FLSAP-GCE is 95.1%.
Accuracy increased by 3.2%. Accuracy increased by an
average of 3.3%. Compared with ReAct’s activity predic-
tion method, which ranks the similarity of input embed-
ding, GRU can better capture the relationship among time,
place, text and activity category. In addition, the convergence
speed and accuracy of FLSAP-GCE are slightly higher than
FLSAP-GE. Because continuous embedding can extract the
connection between neighboring data. In the next two sets of
experiments, we all used continuous embedding as input.

Results of the second experiment are shown in
TABLE 1 and TABLE 2. There is no loss in the Accuracy of
FLSAP-GT, but the model space is reduced by 98.79% than
ReAct. Comparedwith FLSAP-G, themodel space is reduced
by 67.7%. Because FLSAP-GT compresses the parameters
of the model by adding a residual connection that does not
constrain the range of the singular values, and extended the
residual connection to a gate by reusing the GRU matrices to
match state-of-the-art gated RNN accuracies but with smaller
model. Smaller model can increase loading speed and save
device space. This makes it possible for the prediction of
spatiotemporal activity to run smoothly in a more rigorous
environment.

Results of the third experiment are shown in FIGURE5,
FIGURE6, FIGURE7 and FIGURE8. To achieve the same
Accuracy, FLSAP-GTS takes less steps than ReAct and
FLSAP-GT. For Los Angelas data set, available by calcula-
tion, FLSAP-GTS compared with ReAct, 4Convergence =
76.2%, and compared with FLSAP-GT, 4Convergence =
29.08%. For New York data set, FLSAP-GTS compared
with ReAct, 4Convergence = 72.59%, and compared with
FLSAP-GT, 4Convergence = 18.46%. As can be seen from
FIGURE7 and FIGURE8, for the two data sets, the loss of
FLSAP-GTS is significantly lower than the loss of FLSAP-
GT after the same epoch. That is to say, the Accuracy of
FLSAP-GTS is significantly higher than that of FLSAP-
GT after the same number of epoch, which proves that
FLSAP-GTS performs better in terms of convergence speed.
FLSAP-GTS improved convergence speed. Skip mechanism
allows GRU to skip over redundant parts in long sequences,

FIGURE 5. Epoch comparison of Los Angeles data set.

FIGURE 6. Epoch comparison of New York data set.

FIGURE 7. Loss comparison of Los Angeles data set.

FIGURE 8. Loss comparison of New York data set.

which can reduce the impact of low-quality data on model
accuracy and make the model converge faster.

VII. CONCLUSION AND FUTURE WORK
We presents A Fast Lightweight Spatiotemporal Activity Pre-
diction Method(FLSAP) which can accurately and quickly
predict activity categories through GTSM and a novel GRU
neuron called GTS. FLSAP captures the features of text
sequence with GRU. Tiny mechanism stabilizes training by
adding simple weighted residual connection, and extends the
residual connection to a gate by reusing the RNN matrices to
get smaller model but with ideal accuracy. Skip mechanism
uses a binary gate to determine whether the current neuron
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status is updated. Experiments show that FLSAP outperforms
ReAct in spatiotemporal activity prediction.

In future work, we can take into account the differences
between users when we predict spatio-temporal activity.
In addition, the relationship between points can also provide
more help for the spatiotemporal activitiy prediction.
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