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ABSTRACT The paper describes a mid-term daily peak load forecasting method using recurrent artificial
neural network (RANN). Generally, the artificial neural network (ANN) algorithm is used to forecast short-
term load pattern and many ANN structures have been developed and commercialized so far. Otherwise,
learning and estimation for long-term and mid-term load forecasting are hard tasks due to lack of training
data and increase of accumulated errors in long period estimation. The paper proposes a mid-term load
forecasting structure in order to overcome these problems by input data replacement for special days and a
recurrent-type NN application. Also, the proposed RANN gives good performances on estimating sudden
and nonlinear demand increase during heat waves. The results of case studies using load data of South Korea
are presented to show performances and effectiveness of the proposed RANN.

INDEX TERMS Intelligent system, mid-term load forecasting, nonlinear load response, recurrent artificial
neural network.

I. INTRODUCTION
Accurate load forecasting becomes essential for an effective
power system management and planning overhauls of the
generators in a situation that the power consumption steeply
increases and electric power reserve rate becomes insuffi-
cient. The load forecasting issues are to solve a complex
nonlinear relationship related to previous load demand, social
variation, and weather variation. Therefore, it still remains
a challenging task to accurately forecast loads in order to
supply high quality electric energy to customers in a secure
and economic manner [1].

The purpose of load forecasting is generally divided into
three categories: short-term, mid-term, and long-term load
forecasting. Short-term load forecasting focuses on load vari-
ation from one hour to one week. Mid-term load forecast-
ing interests in load estimation from one week to a month
and long-term load forecasting can be extended to from one
month to several years. The reason why the load forecasting
is divided into several categories is that the estimation result
from each method can be used in different operation objects.
The short-term load forecasting is useful to control and sched-
ule power generation for all generators in the system and also
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needed to estimate load flows and make decisions to prevent
overloading on power facilities. The load forecasting for the
mid-term and long-term is important to determine consequen-
tial power generation, the capacity of load consumption, and
expansion of power facilities such as generators, transmission
lines, and substations [2].

On the other hand, artificial neural network (ANN) has
been much attracted in forecasting electric power demand.
The ANN has become popular in load forecasting because it
has ability to learn complex and nonlinear relationships that
cannot be captured with the conventional techniques. Most
papers regarding load forecasting with ANN focus on load
forecasting for several hours or a few days ahead [3]–[12].
Also, some papers deal with similarity based load forecasting
in order to reduce training and estimation errors [4], [13].
In effect, the daily peak load correlates intimately with loads
from the last few days and the further the date is from the
estimation day, the less correlation between loads becomes.
Therefore, the ANN method is generally suitable for short-
term load forecasting.

There have been several researches regarding applica-
tion of the ANN to mid-term load forecasting [14]–[16].
However, learning and estimation for mid-term load forecast-
ing are hard tasks due to lack of training data and increase
of accumulated errors on long period estimation. This means
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that input data with strong correlation with the load on the
forecasted day cannot be easily obtained because the daily
peak load is closely related to loads from the last few days.

In the paper, the recurrent type ANN (RANN) is proposed
to estimate mid-term load demand in order to overcome these
problems with limited input data such as recorded load and
temperatures. In order to get large input data and enhance
convergence of the ANN algorithm, load values of special
days and weeks are replaced with artificially processed nor-
mal data. The proposed algorithm recurrently uses the output
data as input data and weekly pattern is also used as input data
in order to prevent increase of accumulated errors on a long
period estimation. In the paper, the proposed RANN has been
implemented by writing code with MATLAB R© software.
Then, the results of case studies using load data of South
Korea are presented to show performances and effective-
ness of the proposed RANN in comparison with the results
of commercial software (KPX short-term load forecaster,
KSLF) [17]–[19]. Moreover, the proposed RANN having an
ability to train nonlinear pattern gives good performances on
estimating sudden demand increase during heat waves.

The paper is organized as follows: Section II presents a
selection of input data in order to overcome lack of training
data and a forecasting structure with the RANN. Then, sim-
ulation results of case studies with practical load are given in
Section III. Finally, the conclusions are given in Section IV.

II. SELECTION OF INPUT DATA
In all kinds of load forecasting problems, selecting proper
input data is very important issue. Some papers proposed a
method to find similar days based on Euclidean norm and
used the similar days as input data of load forecasting algo-
rithm [4], [13]. Also, some papers suggested the use of load
patterns of the nearest three days as inputs because they have
large correlation with the load of the forecasting day [17].
However, as those approaches are well-suited for short-term
load forecasting, they can reduce consistency of input and
have difficulty with making a consistent structure for load
forecasting in mid-term forecasting.

A. REPLACEMENT OFR SPECIAL DAYS AND WEEKS
In order to get large input data and enhance convergence of
the ANN algorithm, load values of special days and weeks
are needed to be replaced with artificially processed normal
data. This process can improve the quality of ANN algorithm
training ordinary load patterns and reduces training errors of
the ANN dramatically. As mentioned above, the purpose of
the paper is to forecast the ordinary mid-term load demand,
which is essential for effective power system management
and planning overhauls of the generators. The paper does
not need to deal with the load forecasting of the special
days and weeks within the target range in mid-term load
forecasting. Actually, they are different issues with solving
load forecasting problem. In practical application, they can
be accurately estimated based on the algorithms in [17]–[19],
which have already been commercialized.

In the paper, the load demands of special day and week are
replaced by Eqs. (1) and (2), respectively.

L ′D =
LD−1 + LD+1

2
(1) L ′D

...

L ′D+6

 =


 LD−7
...

LD−1

+
 LD+7

...

LD+13


 /2 (2)

where L without a superscript, ′, means real data and L ′means
replaced data. D is a base day for the replacement.

FIGURE 1. Example of load replacement of special day.

With Eqs. (1) and (2), the load demands of the special day
and week become ordinary load demands. Figures 1 and 2
show examples of the load data before and after load data
replacement. As shown in the figures, the inconsistent data is
replaced with the consistent data. This process improves the
quality of the ANN algorithm training general load pattern
and extends forecasting terms further ahead.

B. INPUT DATA AND ESTIMATION PROCESS
The focus of the paper is to forecast daily peak loads for four
weeks. As mentioned in introduction, loads that are highly
correlated with the target day are typically within seven days.
This means that we cannot obtain the high correlated data
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FIGURE 2. Example of load replacement of special week.

FIGURE 3. Structure for mid-term load forecasting.

from recorded data except the first week among four weeks.
Therefore, it is not easy to predict load data beyond a week.
Therefore, the key is that the error should not increase even if
the day to be predicted is further away from the day forecast
is done.

Selected input data based on various case studies is illus-
trated in Fig. 3. Note that the input data cannot be system-
atically defined in neural network application especially for
load forecasting. First constant ‘1’ is entered together. It is
a kind of bias input helping set the offset for learning [20].
The effectiveness of the bias input will be explained in next

section with an example. Also, week index [1, 2, . . . , 7] is
used to learn weekly repeatability. Load data on the same day
a year ago must be used for the ANN to learn yearly pattern.
Load data of the last seven days with high correlation must
be entered. Since minimum temperature as well as maximum
temperature during a day are important factors in demand
response, both should be used to improve learning accuracy.
Finally, the number of inputs is twelve and the thirty hidden
neurons are determined by various tests.

As shown in Fig. 3, the first layer receives the twelve inputs
and distributes them to the hidden layer, which has thirty
hidden neurons, via weight matrix W. The data reaching
at the hidden layer is the input variable for the sigmoidal
function in Eq. (3). Then, the outputs of each of the hidden
neurons are in turn fed via weight matrixV to the output layer.

S(x) =
1

1+ exp(−x)
(3)

where x and s(x) are input and output of the hidden neuron,
respectively.

As shown in Fig. 3, the proposed structure needs load data
for the last seven days to estimate daily loads. Therefore,
the paper proposes a process how to secure input data as
illustrated in Fig. 4. If the first day for prediction is the D-day,
the forecasting data can become an input data recurrently as
shown in Fig. 4. The input data is shifted sequentially as the
forecast date passes. Finally, input data for seven days after
D+8 day is obtained by only the predicted data.

FIGURE 4. Process of input and output data.

C. EXAMPLE: EFFECTIVENESS OF INPUT ‘1’ IN FFNN
In this section, the effectiveness of input ‘1’ in the FFNN is
discussed. Assume that the FFNN is designed to identify the
function f (x) = (x − 1)2 + 1 and there is a single input, x.
Because this function has only one variable, x, the FFNN
seems to only need x as an input. The FFNN trains the
function in the range of x from 0 to 2 with/without input ‘1’ in
order to confirm the usefulness of the input ‘1’. In both cases,
the number of hidden neurons is equally three. In other words,
two inputs, which are x and 1, are used in the first case and
the other case uses only one input, x. After enough iteration,
which is ten thousand times, the identifications for both are
compared.
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FIGURE 5. FFNN structure for example.

Figure 5 shows the simple structure of the FFNN for the
example. Also, since the hidden neurons are three, the identi-
fied value can be defined as f̂ (x) = v1h1+v2h2+v3h3, where
h1, h2, and h3 are outputs of each hidden neuron and v1, v2,
and v3 are weights between hidden and output layers.

FIGURE 6. Identification result with input 1.

FIGURE 7. Identification result without input 1.

Figure 6 and 7 show the identification results with/without
the input ‘1’. In order to show that the FFNN can be suitable
for identification only for the training range, the extended
input range from −1 to 3 is entered to the FFNN. In the
figures, we can see how the f̂ (x) is computed with the sum
of the three values v1h1, v2h2, and v3h3. By comparing those
figures, we can find the input ‘1’ can help the movement of
the reference point of the identified function to train the exact
function well.

On the other hand, the two values (v1h1 and v2h2) have
same curves in the second case and v3h3 shows differ-
ent result. In the second case, the FFNN could not train
the function at all. Note that this does not prove that the
input ‘1’ is absolutely necessary in all cases of training and
estimating with the FFNN. However, many researches have
used the input ‘1’ to improve training and estimating per-
formances [20]–[25]. Also, when the proposed RANN uses
input ‘1’, the training results have improved slightly.

III. CASE STUDIES
In order to verify the performance of the proposed RANN,
three case studies are carried out. First, after describing the
learning performance, it will be presented that the proposed
RANN can estimate the detail patterns of the load for four
seasons. By applying to estimate load data for two years,
it will also be presented that the proposed RANN is effective
for estimating diverse load patterns. Also, despite predicting
monthly load, the paper verifies that errors do not increase
noticeably.

Then, the performance will be compared with the results
of the commercial software (KSLF) used in South Korea. The
KSLF has been developed to suit the load forecasting of South
Korea and it has been constantly upgraded. The purpose of the
KSLF is short-term load forecasting for ten days. Therefore,
the forecasting results for ten days are compared for equity.

Finally, the nonlinearity of the load patterns increases in
summer season. Especially, the load patterns are very sen-
sitive to temperature changes during tropical night period.
At the end of the section, the excellence in learning and
predicting the nonlinear patterns during tropical night period
is presented.

A. PERFORMANCE OF MID-TERM LOAD FORECASTING
Before discussing the forecasting performance of the pro-
posed RANN, the learning performance will be checked first.
Actual load data of South Korea is used for the study. Note
that the year corresponding to the load data cannot be speci-
fied in the paper. Specifying the year may not be important
because the paper focuses on improving and verifying the
accuracy for forecasting mid-term loads by the proposed
RANN. Therefore, the first year of data used in the paper is
defined as D year in the paper.

In general, large data for three or more years is used to let
the ANN train load patterns for several years and keep estima-
tion error level low or stable. In some respects, it may seem
somewhat insufficient that the proposed RANN trains only
one year’s load data. However, when the ANN trained load
data for many years, the forecasting results became worse.
Namely, the results have a tendency to underestimate loads as
the training period increases. It is because while temperature
changed within a stable range over the years, total annual load
of South Korea increased gradually. Therefore, the paper uses
one year’s data for training and this problem will be briefly
discussed at the end of this section.
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FIGURE 8. Training result for D year by the proposed RANN.

Figure 8 shows the training performance of the proposed
RANN. The RANN trains enough load data of D year until
the error is converged. In order to measure the error, mean
absolute percentage error (MAPE) is calculated. The average
MAPEwas 1.1% for all training results during two years. It is
sufficiently small value to estimate the future load.

FIGURE 9. Estimation result of power demand for January in D+1 year.

The forecasting performances are illustrated in
Figs. 9 to 14. Note that the performances are verified by com-
paring estimated power loads with the real values for every
month of D+1 and D+2 years. Figures representing four
seasons during those two years are selected in the paper. Also,
the overall analysis of the forecasting error is listed in Table 1.
Figures 9 and 10 show the estimation results of power demand
for January and February for winter in D+1 year, respec-
tively. As shown in Figs. 9 and 10, the proposed RANN can
better predict different pattern characteristics of each week.

Also, Figure 11 and 12 show the estimation results of
power demand for May and November in D+1 year, respec-
tively. They correspond to spring and autumn respectively.

Figure 13 and 14 illustrate the estimation results of power
demand for March and July in D+2 year, respectively.

FIGURE 10. Estimation result power demand for February in D+1 year.

FIGURE 11. Estimation result power demand for May in D+1 year.

FIGURE 12. Estimation result power demand for November in D+1 year.

They correspond to spring and summer respectively. Based
on all the results above, the proposed RANN can predict each
week’s different pattern accurately even though errors occur
in some parts.
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FIGURE 13. Estimation result power demand for March in D+2 year.

FIGURE 14. Estimation result power demand for July in D+2 year.

TABLE 1. Summary for learning and estimating errors for two years.

The summary for learning and estimating errors for two
years are given in Table 1. Even though the estimating
errors are high for some months, overall estimation errors are

sufficiently low. Especially, the predictive performances for
loads on weekend are excellent when analyzing all simulation
results in figures.

FIGURE 15. Estimation result after training five years’ data.

FIGURE 16. Estimation result after training three years’ data.

Now, after the proposed RANN trains load data for the
past three and five years, it estimates the power demand for
November in D+1 year like Fig. 12. Figure 15 shows the
training result when five years’ load data is trained by the
proposed RANN. The training was repeated enough times
until the error has converged and the training MAPEs for
two cases are 1.53% and 1.81%, respectively, whereas the
estimation MAPEs increase as the training year increases.
The results are 3.85% and 16.08% and the performances
are shown in Figs. 16 and 17. Even though the proposed
RANN trains more data and training errors are not seriously
large, the performances do not improve. This is because
the load demand of South Korea is gradually increased and
overall values of learning data is relatively lower than that of
present data. As a result, the proposed RANN has a tendency
to underestimate the load as the training period increases.
Meanwhile, in other country or site having stable or different
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FIGURE 17. Estimation result after training five years’ data.

FIGURE 18. Error distribution of estimation for six weeks from
January 1st in D+1 year.

load pattern, learning a lot of data with same structure may
guarantee better results than this case. However, the key point
of the paper is that the paper proposes a new structure of the
RANN to forecast mid-term load and the results guarantee
the proposed structure is suitable for the mid-term load fore-
casting even with limited input data.

B. FEATURE OF ERROR ACCUMUATION
As the forecast progresses in the paper, estimated data is
continuously calculated and entered back into the input layer
for estimating next load. Therefore, errors from the previous
estimation process can be accumulated and estimation data
can be less accurate as the recurrence process is repeated.
In order to prevent this problem, the proposed RANN is
designed to learn repetitive patterns better.

Figures 18 and 19 show the error distributions for all esti-
mation data if the proposed algorithm is applied to estimate
six weeks’ load data. Note that the reason for predicting the
load data for two more weeks is to verify whether errors
continue to be accumulated and grow. As shown in figures,
there is no tendency for error accumulation. Therefore, it is

FIGURE 19. Error distribution of estimation for six weeks from March 1st
in D+2 year.

verified that the proposedRANN is suitable formid-term load
forecasting.

C. COMPARSION WITH COMMERCIAL SOFTWARE
In this section, the performances of the proposed RANN are
compared with those of commercial software (KSLF), which
is used for estimating short-term load of South Korea.

The KSLF is based on exponentially weighted moving
average for estimating weekday load and uses temperature
sensitivity with N-dimension to be suitable South Korean
context [17]. Especially, the weekend loads are forecasted
based on fuzzification method of linear regressing analysis.
In other words, the KSLF applies appropriate methods on
weekdays and weekends respectively.

TABLE 2. Comparison between KSLF and proposed RANN.

Therefore, the performances of the KSLF and the proposed
RANN are compared on weekdays and weekends separately
and the estimation period is limited to ten days. As mentioned
before, the KSLF is developed for estimating power demands
up to ten days. The MAPEs by applying both methods to
power demands in D+2 year are given in Table 2. For week-
days’ loads, the MAPE of the proposed RANN is slightly
higher but significantly lower for weekend’s loads. Even
though the proposed RANN is developed for mid-term load
forecasting, the performance of the proposed RANN is as
excellent as the KSLF.

D. PERFORMANCE OF NONLINEAR LOAD
PATTERN FORECASTING
South Korea has four distinct seasons. Therefore, nonlin-
ear characteristics exist in load patterns of South Korea.
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FIGURE 20. Maximum and minimum temperatures during heatwaves in
D+1 year.

FIGURE 21. Training result for power demand during heat waves.

The nonlinearity becomes especially stronger during heat
waves. Heat waves continue for three weeks in D+1 year and
the maximum and minimum temperatures in the same period
are illustrated in Fig. 20. The actual and forecasting loads
for same days with Fig. 20 are shown in Fig. 21. As shown
in Fig. 21, the proposed RANN trains the nonlinear load
patterns during heat waves accurately. This means that the
proposed RANN can estimate exactly same patterns if similar
input data is entered.

Actually, in the D+2 year, heat waves occurred in July,
which is one month earlier than last year. The heat wave
lasted almost three weeks and the power demand sud-
denly increased. The proposed RANN can estimate suddenly
increased loads accurately as shown in Fig. 14.

IV. CONCLUSION
The paper described a method of mid-term daily peak load
forecasting using recurrent artificial neural network (RANN).
The focus of the paper was to forecast daily peak loads for
four weeks with limited input data such as recorded load and
temperatures. In general, it is not easy to predict power load

up to a month using current load data. The key is to reduce
the increase in error as the date to be forecasted moves away
from the present day. The input data was selected in order
to improve the training and estimating performances and the
paper proposed a RANN structure in which the forecasting
data was recurrently used as input data.

In order to verify the performance of the proposed method,
the proposed RANN was implemented by writing code with
MATLAB R© software and the three case studies were carried
out. First, the proposed RANN was applied to estimate load
data for two years. Then, the performance was compared
with the results of the commercial software (KSLF) used in
South Korea. Finally, the proposed RANN was also applied
to estimate the nonlinear load patterns during heat waves. The
results of case studies using load data of South Korea verified
performances and effectiveness of the proposed RANN.

If other meaningful data (for example, data related to econ-
omy or other weather data) can be obtained, the proposed
RANN can be designed more precisely. However, the pro-
posed method showed excellent performances even with lim-
ited data.
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