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ABSTRACT We present a method to compute the descriptor of components of point clouds, therefore,
a novel component-oriented partial matching of point clouds is achieved based on the component descriptor.
We observe that 3D components can be constructed by stacking 2D shapes using certain criteria so that
the centers of the 2D shapes form a curve called a skeletal curve that is the trajectory of the 2D shapes.
In addition, the scaling factors of the 2D shapes also impact the shape of the 3D components. Motivated
by these observations, the computation of the component descriptor that is termed 2to3SSC (from 2D to
3D: 2D Shape and Skeletal Curve) is formulated as a 2D shape and skeletal curve extraction problem,
and the component-oriented partial matching of the point clouds is based on the dissimilarity measure
of 2to3SSCs of the components. Furthermore, for the 2D shape matching, which is crucial to the matching
of the components, we present a novel 2D shape descriptor called VDTL (Vertical Distances to the Tangent
Line). The proposed method outperforms previously proposed methods because it simultaneously encodes
the local and global features of the components as opposed to only encoding the local or partial features as in
previous studies. Finally, the effectiveness and performance of 2to3SSCs are compared with those of state-
of-the-art feature description and matching methods for different point cloud datasets. Further, the benefits
and the applicability of the proposed method are demonstrated; favorable results are obtained for real-world
point clouds of Terracotta fragments.

INDEX TERMS Computer graphics, point clouds, partial matching, 2D shape matching.

I. INTRODUCTION
Feature extraction, description, and matching are the core
and prerequisite of most point cloud processing techniques,
such as point cloud registration [1], line drawings generated
from point clouds [2], 3D object retrieval [3], 3D object
partitioning [4], and 3D object reconstruction [5].

It is therefore not surprising that numerous studies have
reported on techniques for addressing the problem of feature
extraction, description, and matching of point clouds [3], [6].
However, the main differences among these techniques are
the geometric scale at which the analysis is performed and the
matching rules (or similarity measures) for the corresponding
feature descriptors. Thus, the features referenced in previous
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studies can be roughly classified into three categories related
to the geometric scale: micro-features, meso-features, and
macro-features, as shown in Fig. 1.

Geometric operators at a fine scale (referred to as
micro-features in this paper) concentrate on extracting small
structures and capturing details that describe the gradients
of the point clouds, as shown in Fig.1 (b). The extracted
features are scattered points or line segments. These meth-
ods are often applied to (i) the generation of line draw-
ings in non-photorealistic rendering (NPR) [7] since the
line drawings convey the shape of the models; (ii) the
reassembly of fragments based on the matching of feature
points [8] or feature lines [5]; (iii) as a pre-requisite step for
generating the meso-feature descriptors [6]. Micro-features
extraction approaches typically estimate geometric invari-
ants coupled with multiscale frameworks (the size of a
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FIGURE 1. For the two goblets (the components are marked as A, B, C, and D) in (a), the feature points and feature lines
(micro-features) in (b) are extracted using the methods described in [2] and PCA method; the matching pairs of the
meso-features in (c) are represented by SHOT [29], FPFH [28] and BRoPH [6] respectively; the L1- medial skeletons in (d) are
computed using the method described in [45], and the 2to3SSCs in (e) are computed by the method proposed in this study.
The matching pairs of components that are obtained by the similarity measurement of 2to3SSCs are marked in the same
colors in (a).

neighborhood is often used as the scale parameter, which
differs from the term ‘‘scale’’ used in this paper) and they
commonly consist of two phases: first, the differential geo-
metric invariants or integrated invariants of each point in
the point clouds are determined; second, the feature points
are distinguished by analyzing the invariant gradients in the
neighborhood of each point using clustering methods [9],
statistical approaches [10], and local surface- or curve-fitting
methods [11].

Geometric operators at the meso-scale (referred to as
meso-features in this paper) describe the partial shape of
a 3D model from a specific viewing angle. The goal of
these approaches is to extract local representations of point
clouds rather than describing the local gradients of the point
clouds [6]. Thus these features are considered meso-features.
The approaches for the meso-feature description and their
matching via feature descriptors to find true point correspon-
dences typically consist of continuously rotating the point
clouds and projecting the local surfaces onto a 2D plane; sub-
sequently, the feature description is performed by generating
feature descriptors from a series of 2D image patches. These
approaches are mostly performed for 3D surface matching [6]
that is achieved by using dissimilarity measures of the gener-
ated feature descriptors, as shown in Fig.1 (c).

Geometric operators at the macro scale (referred to as
macro-features in this paper) describe the global shape of
a 3D model and a skeleton is commonly used, as shown
in Fig. 1 (d). A skeleton is a geometry-based shape representa-
tion and consists of the centers of the maximal spheres inside

the shape surface, wherein the radii of the maximal spheres
represent the thickness of the shape [12]. Skeleton-based
shape matching and 3D object retrieval have been reported
in a number of studies with the objective to measure the dis-
similarity of two shapes based on the geometric dissimilarity
and topological dissimilarity of the skeletons [3].

In most previous studies, feature points and feature lines
(micro-features) only describe the gradients of the surfaces of
the point clouds (Fig. 1 (b)), which provide little information
on the entire shape of the components or point clouds. For
meso-features, it was assumed that the spatial and geometric
information of the point cloud can be encoded in feature
descriptors; therefore, these approaches work only for fea-
ture descriptor matching to find the true matching pairs of
points (Fig. 1 (c)) and the comparison of the meso-features
does not validate the similarity of two components or point
clouds. The skeleton-based shape matching (macro-features)
for point clouds mainly focuses on the structure of each
part of the point clouds so that point clouds with different
composition and structure are distinguished but two different
point clouds with the same skeletons cannot be distinguished,
for example, the two goblets shown in Fig. 1 (d). However,
three-dimensional (3D) objects with manually-labeled tags
are commonly used in machine learning methods but the
generation of tags is time-consuming, making it difficult
to use for some practical applications. Reference [13] pre-
sented a framework which automatically finds part analogies
among 3D objects, however, the analogous parts may not be
similar as a whole. Hence, to the best of our knowledge,
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FIGURE 2. Two different lamp models whose components are marked in different colors. The red dashed lines are the 2D
shapes that are stacked to construct the component, the blue curves are the skeletal curves, and the blue solid dots are the
equidistant sample points on the skeletal curves.

the more challenging partial matching of point clouds, in
which the goal is the component-oriented partial matching
of point clouds, has not been reported in previous studies,
whereas the partial matching in 2D cases has gained increased
attention[14].

In this study, rather than considering feature points, feature
lines, surface patches, or skeletons, we survey the analytical
techniques that focus on the component parts of point clouds,
which are referred to as components. The analysis of the
feature is also performed at the macro-scale because this
describes the entire shape of the components by simultane-
ously encoding the local and global features of the compo-
nents as opposed to only encoding the local or partial features
as in previous studies, as shown in Fig. 1 (e).

Our method is inspired by the observation that most 3D
shapes can be created by stacking the 2D shapes using certain
criteria. For example, as shown in Fig. 2 (a), the components
in the different colors are created by simply stacking different
2D shapes. In Fig. 2 (b), the components in different colors
are all created by stacking circles; however, the components
are different. The rod component in yellow is created by
stacking circles of the same size; the tapered component
in cyan and the half-sphere components in green consist of
circles that are gradually scaled down but their shapes are
also different. In addition, each 2D shape that is stacked to
construct the 3D component has a unique center and the
centers of all 2D shapes form a 3D curve, which represents
the trajectory of the 2D shapes. We call this curve a skeletal
curve in this paper, as shown in Fig. 2.

Hence, we formulate our approach as a 2D shape and
skeletal curve extraction problem, in which the 2D shape and
the skeletal curve are used to construct the 3D component
descriptor 2to3SSC (as shown in Fig. 1(e)) such that stacking
the 2D shapes along the skeletal curve directly yields the

component. Consequently, the 3D component matching is
performed by the dissimilarity measure of the 2to3SSCs. The
proposed component description for the partial matching of
point clouds can be used in many subsequent processing
techniques, such as 3D object retrieval, 3D object recognition,
and 3D object classification.

Our main contributions are as follows: (i) we propose the
novel descriptor 2to3SSC for the components of point clouds
that is generated based on the perception of 3D shapes origi-
nating from 2D shapes. The computation of the descriptor is
conceptually simple and easy to implement; (ii) we propose
a new 2D shape descriptor VDTL (Vertical Distances to the
Tangent Line) which plays an important role in component
matching; (iii) from a practical aspect, this method represents
a novel component-oriented partial matching of point clouds
with wide applicability.

II. PREVIOUS WORK
We review the related literature on feature extraction, descrip-
tion, and matching. As shown in the following parts of this
section, the existing methods are unable to directly cope with
components of point clouds.

A. MICRO-FEATURES
Most micro-feature extraction methods cope with differen-
tial invariants or integral invariants and their computations
have been reported in a large number of publications. For a
recent survey of normal and curvature estimation, we refer the
reader to [15] and for the computation of integral invariants,
the reader is referred to [16] for more details.

The micro-feature extraction methods can be classified
into four categories. One category is related to local fea-
ture detection operators to extract feature points. The com-
mon techniques include covariance analysis [17], multi-scale
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analysis of the neighborhoods [18], curvedness analysis [19],
and tensor voting methods [20].

Another category of micro-feature extraction methods is
based on the observation that features are located near poten-
tial feature lines. For example, reference [11] used the robust
moving least squares (RMLS) method to locally fit surfaces.
Reference [21] estimated the principal curvatures and normal
directions of the underlying surface and then iteratively com-
puted covariance matrices with varying neighborhoods.

Another category considers that the features are
located near intersections between the potential piecewise
smooth surfaces. For example, reference [10] combined
a region-growing strategy with a probability to determine
whether a point was a feature point. Reference [9] used
Gauss map clustering in local neighborhoods to discard
non-feature points and reference [2] used a Poisson region-
growing (PRG) method to distinguish the feature points from
non-feature points. Based on such observation, there are
many methods to extract micro-features by segmenting the
3D model into different surfaces as well [22].

The last category of micro-feature extraction methods is
focused on the direct extraction of line segments, which
is generally performed on specific datasets, for example,
building models that contain many straight lines [23], and
reference [24] directly detected the feature curves.

By examining the application goals, we can classify the
micro-feature matching into: (i) matching of features that
are similar to each other, which assumes that the features
have nearly the same differential or integral invariants and
(ii) complementary matching, in which the features share
a common contact surface. In most micro-feature matching
methods, distance-based methods are utilized for the match-
ing; references [1], [5] and the references therein provide
more details.

B. MESO-FEATURES
The goal of a meso-feature descriptor is to extract the local
representation at a certain point, such as a micro-feature
point. Among all existing feature descriptors, histogram-
based methods are most frequently investigated. Commonly
encoded information in the descriptors includes normal dif-
ferences, point density, and depth. Point signature was pro-
posed to describe the structural neighborhood of a point
instead of just using the 3D coordinates of the point [25]. The
most classic 3D local feature descriptor is a spin image (SI)
that has been considered as a benchmark for the evaluation
of 3D local feature descriptors [26]. It uses the normal of the
point as a local reference frame (LRF) and then describes its
neighboring points with the in-plane and out-plane distances
of the neighboring points. Reference [27] combined a spin
image (SI) and normal-based signatures to develop a new
descriptor and computed the similarities between the input
3D range images by matching the descriptors with a pyramid
kernel function. The fast point feature histogram (FPFH) is
calculated as the weighted sum of the simplified point feature
histogram (SPFH) that is a measure of the normal difference

between the point and its neighbors [28]. The signature of
histograms of orientations (SHOT) divides the neighbors into
different volumes using the LRF and then the normal angles
between the feature point and all points falling in each volume
are accumulated into corresponding sub-histograms, which
are concatenated to create the SHOT [29].

Rather than describing in floating representation as men-
tioned above, which is generally computationally com-
plex and memory-consuming, many feature descriptors are
described in a binary format. 3D-BRIEF [30], 3D-ORB [31],
and 3D LBP [32] are first encoded in a binary pattern, and
are generated by extending BRIEF, ORB, and the LBP to 3D
dimensions. B-SHOT is also generated by applying a binary
quantization to SHOT [33].

Reference [34] used projection techniques and encoded the
spatial and geometric information in the projected 2D image
patches. Reference [35] also used projection techniques con-
sisting of a rotational contour signature (RCS) method for
the descriptions of the 3D local shape. Similar, triple orthog-
onal local depth images (TOLDI) and the binary rotational
projection histogram (BRoPH) are computed by concate-
nating depth images generated from three orthogonal view
planes in the LRF; however, TOLDI is a histogram-based
descriptor [36], whereas BRoPH encodes information using
an improved version of the LBP [6].

C. MACRO-FEATURES
A skeleton is a thin centered structure which jointly
describes the topology and the geometry of 3D objects [37],
thus it became a powerful tool for shape analysis and
matching [12], [13], [38]. Recent approximation methods
of 3D medial axes mostly fall into two categories: voxel-
based methods based on a shape represented by a union of
voxels and sampling-based methods, which consider point
samples at the shape boundary and are often based on the
Voronoi diagram of these samples. Since our method is little
related to skeleton extraction methods, we only list some
recent references.

Reference [39] extracted skeletons using an extended Reeb
graph that was originally used for triangle meshes and a
discrete Reeb graph. References [40] and [41] used a voxel
shape and identifies a subset of the voxels that shared similar
properties with the medial axis, such as being thin, centered,
and preserving both the shape’s topology and shape compo-
nents. Some other voxel-based methods are guided by a non-
Euclidean distance metric that can be locally evaluated, for
example, the<3,4,5> distance [42]. Reference [12] observed
that the medial axis of a voxel shape could be easily and
faithfully approximated by the interior Voronoi diagram of
the boundary vertices.

The sampling-based methods are more efficient and scal-
able than the voxel-based methods. References [43] and [44]
located the points of maximal balls given the nor-
mals at the sample points. Reference [45] introduced an
L1-medial skeleton as a curve representation for 3D point
clouds.
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D. MACHINE LEARNING-BASED METHODS
The increasingly popular machine learning-based methods
are often applied for 3D object segmentation and classifica-
tion [46]. Unsupervised techniques utilize shape similarities
and geometric features to discern objects in point clouds
but provide no significant output control [47], [48]. Existing
scene graphs are exploited in [49] but they are sparse and not
always useful.

Supervised methods use shapes with manually-labeled
regions to train a model and new point clouds with simi-
lar semantic regions can then be segmented. Recent meth-
ods have exploited deep neural networks with diverse
styles, such as using multiple discriminative auto-encoders
to form a shape descriptor [50], projective convolutional
networks [51], synchronized spectral convolutional neural
networks (CNN) [52], and octree-based CNN [53]. However,
collecting user-prescribed labels is the main bottleneck for
supervised methods because it is time-consuming.

Weakly or semi-supervised strategies represent a com-
promise between supervised and unsupervised meth-
ods [54], [55]. A recent study [56] proposed a novel method
for segmenting 3D objects, which strongly correlate with
user-prescribed tags.

E. 2D SHAPE MATCHING METHODS
Since the 2D shape descriptor is not the main focus of our
work, only a few recent references are discussed in this
section.

Most previous studies on 2D shapematching have assumed
that the shape can be represented by a closed contour that
is usually defined by a sequence of sample points. Thus,
shape matching can be achieved by determining the one-
to-one point correspondences between the points of two
contours. Curvatures are a popular local invariant feature
descriptor [57] and are less descriptive for the representa-
tion of the features. It is common to use the shape context
(SC) [58] that encodes the local distribution of the contour
points in the histograms. Many variants were reported to per-
form better than many other descriptors. For example, in the
inner-distance shape context (IDSC), the Euclidean distance
and relative angles are replaced by the ‘‘inner distances’’
and ‘‘inner angles’’ [59], and an independent-IDSC feature
descriptor was proposed for plant identification [60]. A self-
containing shape descriptor for open and closed contours was
proposed for part-to-part partial shape matching [61]. The
triangular centroid distances (TCD) descriptor that encodes
the triangular centroid distances for shape representation was
proposed for 2D non-rigid partial shape matching [14].

III. OVERVIEW
The original processing target of our method is an unorga-
nized point cloud. However, the descriptor presented in this
paper deals with the components of point clouds, thus the
preliminary step first segments the point cloud into compo-
nent parts (Fig. 2) using the method described in [4] since

segmentation is not the focus of this study. Thus, the compo-
nents are the actual inputs to our method, which computes the
component descriptor 2to3SSC.

In some cases, the skeletal curve of a component is
the skeleton of the component, as shown in component A
in Fig. 2 (b). However, in many cases, the skeletal curve is not
the skeleton of the component; examples are the components
B and C in Fig.2 (b). Therefore, we first compute the skeletal
curve of the component by segmenting the components, and
then the skeletal curves are extracted.

Given the skeletal curve of each component, we then
extract the 2D shapes that are stacked to construct the 3D
components. The extraction of the 2D shapes is based on the
observation that the planes where the 2D shapes are located
are orthogonal to the local skeletal curve segments, such as
the ones shown in Fig.2. By continuously traversing the 3D
component along the skeletal curve, all of the 2D shapes can
be extracted.

Based on the observation that most 3D components can
be created by stacking the 2D shapes, the 2D shapes and
the skeletal curve of the components that are obtained in the
preceding two steps describe the shape of the 3D component.
Additionally, we found that the scales of the 2D shapes also
impact the shape of the 3D component, as shown in Fig. 2.
Thus, the 2D shapes and the skeletal curve, along with the
scaling factors of 2D shapes, build the component descriptor
2to3SSCs.

Given the 2to3SSC descriptors of two components,
the component matching is performed based on the similarity
measure of the 2to3SSCs, in which three different constraints
are considered.

Therefore, the proposed method is summarized as follows:
Step 1: 2to3SSC descriptor generation. (Section 4)
Step 1.1: Component segmentation.
Step 1.2: Skeletal curve generation.
Step 1.3: 2D shape extraction.
Step 1.4: Component descriptor 2to3SSC construction.
Step 2: Component matching. (Section 5)
Step 2.1: 2D shape matching.
Step 2.2: Skeletal curve matching.
Step 2.3: Scaling factors matching.

IV. 2TO3SSC DESCRIPTOR GENERATION
In the preliminary step, the given point cloud is segmented
into components. Therefore, our approach starts with the
components rather than the entire point clouds. In this section,
we concentrate on the generation of the 2to3SSC descriptor
for the components.

A. COMPONENT SEGMENTATION
When the skeletal curve of a component is the skeleton of
the component, we use the skeleton computation method
described in [45] to extract the skeletal curve of a component.
If this is not the case, we compute the skeletal curve of the
component.
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FIGURE 3. The illustration of skeletal curve generation and 2D shape extraction.

We found that the method of computing the L1-medial
skeleton [45] cannot cope with some components
(e.g., components A and B in Fig.2 (a) and components B
and C in Fig.2 (b)) because it uses the local ball neighbor-
hoods as the local neighborhood for the L1-medial skele-
ton computing, the ball that covers the local supporting
neighborhoods may cover the entire component. Thus we
present a variant version of the L1-medial skeleton method,
which first segments the components and then compute the
skeletal curve.

First, we detect the feature points in the component by
using the PRG method described in [2] and the PCA (Prin-
cipal Component Analysis) method. According to the region
information, the feature points sharing the same surface are
considered border points of the component. Next, the k
nearest neighbors (kNN) of the border points form a new
segment of the component. The points are regarded as new
border points if at least one of its kNN is not part of the
current segment and another new segment is formed by
the kNN of these border points. The partition process is
repeated with new border points and their neighbors until no
new border point can be selected. Consequently, the com-
ponent can be segmented into various segments, as shown
in Fig.3 (a).

B. SKELETAL CURVE GENERATION
For each segment of the component, we compute the
L1-medial point pic that is the unique global center of
the point sets of the segment. For that purpose, let
pi = (xi, yi, zi) (i = 1, 2, . . . ,N ) denote the sample points
of the segment SkC , here i is the index of the sample
points, k is the index of the segments, xi, yi and zi are
the coordinates of points pi on SkC , C is the index of the
given component, and N is the number of the points of
SkC . The unique global center pkc of SkC is calculated using
Equation (1) [62].

pkC = argmin
x


∑
pi∈S iC

‖pi − x‖

 (1)

Given the center points pkc , we use the curve reconstruc-
tion method in [2] to obtain the skeletal curve, as shown
in Fig.3 (b).

C. 2D SHAPE EXTRACTION
Given the componentC and its skeletal curve, we then extract
the 2D shapes that are stacked to construct the 3D compo-
nents. Based on the observation that the 2D shapes are on the
plane that is orthogonal to the local skeletal curve segments,
we begin by creating such a plane.

For that purpose, let pi = (xi, yi, zi) (i = 1, 2, . . . ,N )
denote the sample points of the component C , here, i is the
index of the sample points, xi, yi and zi are the coordinates
of pi, and N is the number of the points of C . sj are the
equidistant sample points on the skeletal curve, which divides
the skeletal curve into line segments of the same length and
determines the location of the extracted 2D shapes. Here, j is
the index of the sample points.

The illustration of the 2D shape extraction is shown in
Fig.3(c-e). First, for each line segment AB of the skeletal
curve (A and B are two adjacent sampling points on skeletal
curve), we compute its vertical plane PAB by using a vector
dot product, where the coordinates of the points on the skele-
tal curves are known, as shown in Fig. 3(c). Then, we project
the points pi that are in the nearest segments onto the tangent
plane PAB, yielding points p′i =

(
x ′i , y

′
i

)
that constitute the

2D shapes, as shown in Fig. 3(d). However, post-processing
must be applied to refine the 2D shapes that may contain
outliers and noisy points due to the non-uniform sampling
of the point clouds. Therefore, as the last step, we also use
the curve reconstruction method described in [2] to obtain the
refined 2D shapes. We trace the skeletal curve by traversing
all the line segments to extract all the 2D shapes, as shown
in Fig.3 (e).

D. COMPONENT DESCRIPTOR 2TO3SSC
The skeletal curve and the 2D shapes describe the shape
of the component. Therefore they are considered the two
elements of the component descriptor 2to3SSC. Additionally,
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FIGURE 4. The illustration of 2to3SSC of the component A of
the lamp model #1.

the scales of the 2D shapes also have a large impact on the
shape of the component (for example, the components B and
C in Fig.2 (b)). Because scaling is a rigid transformation,
we compute the longest line lSi connecting any two points
of the 2D shape to represent the scale of the 2D shape; here i
is the index of the 2D shapes.

Hence, the 2D shapes, the skeletal curve, and the vector ElC
containing the length of lSi of all the 2D shapes construct the
component descriptor 2to3SSC, as shown in Fig. 4; N is the
number of the 2D shapes.

V. COMPONENT MATCHING
In this section, we will introduce how to measure the sim-
ilarity between two 2to3SSC descriptors, which can val-
idate the similarity of the components. Let 2to3SSC(A)
and 2to3SSC(B) denote the 2to3SSC descriptors that are
extracted from the components A and B respectively. The
similarity between them is measured by three constraints: 2D
shape matching, skeletal curve matching, and scaling factor
matching.

A. CONSTRAINT 1: 2D SHAPE MATCHING
If two components match, the 2D shapes that are stacked
to construct the components must be matching. There-
fore, it is necessary to match the 2D shapes, and for this
purpose, we propose a novel descriptor, namely VDTL.
Let pi = (xi, yi) (i = 1, 2, . . . ,N ) denote the sequence of
equidistant sample points on the outer contour of a 2D shape
S; here, i is the index of the sample points, xi and yi are the
coordinates of the point pi, and N is the number of the points
on the contour.

First, we segment the contours into curve segments. There
are two levels of iteration in the segmentation step. The outer
iteration is called the benchmark point selection iteration and
the inner iteration is called the region-growing iteration.

1) BENCHMARK POINT SELECTION
A point with the largest curvature that is not part of any curve
segment is taken as the benchmark point. For the computation
of the curvature of the points, we use the method described
in [63].

2) REGION GROWING
Each region-growing process begins at the selected bench-
mark point q and the nearby neighbors qi+1 and qi−1 in oppo-
site directions are assigned to the curve cq that is generated

FIGURE 5. The illustration of the computation of VDTL.

from q if qi+1 and qi−1 are not part of any curve segments.
We then treat qi+1 and qi−1 as seed points, namely ql and
qr and then perform region growing from these seed points
to nearby candidates in the local neighborhood. The points
ql+1 and qr+1 that are the nearby neighbors of ql and qr are
considered the new endpoints of cq that have to satisfy the
condition: {∥∥q′l+1 − q∥∥2 > ∥∥q′l − q∥∥2∥∥q′r+1 − q∥∥2 > ∥∥q′r − q∥∥2 (2)

where q′l+1, q
′
l , q
′

r+1, q
′
r are obtained by projecting ql+1, ql ,

qr+1, qr onto the line lq defined by q and its tangent vector.
Equation (2) ensures that the projected points on lq do not
overlap. Region growing stops when there is no additional
ql+1 and qr+1 satisfies the above criterion. The procedure is
repeated with ql , qr (the endpoints of the curve segments)
and ql+1, qr+1 until the region growing stops, as shown
in Fig. 5(a).

When the growth iteration fails to detect any new points,
the growth of the current curve segment is terminated. Sub-
sequently, a new benchmark point (with the largest curvature
among the remaining points) is selected to generate another
curve segment. When there are no new benchmark points,
the algorithm is terminated. Finally, the shape S is divided
into different curve segments, as shown in Fig.5 (b); the points
marked with an asterisk are the benchmark points and the
curve segments are shown in different colors.

Next, we compute the descriptor of each contour point pi of
the shape S. For each point pi, we can compute a 1D feature
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FIGURE 6. Four types of points on 2D curves.

TABLE 1. α, θ+ and θ∗ of points in Fig. 6.

vector containing 6 different values:

[α,∇ iL ,∇
i
R, γ, θ

+, θ∗] (3)

where, α denotes the location of pi, where 0 and 1 denote if
pi above or below the line lq respectively; ∇ iL and ∇ iR are the
left and right gradients of pi, as computed by the following
equation:

∇
i
L =

k∑
j=1

hpi − hpi−j∥∥∥p′i − p′i−j∥∥∥2 ·
1
√
2π

exp

∥∥∥p′i − p′i−j∥∥∥2
l

∇
i
R =

k∑
j=1

hpi − hpi+j∥∥∥p′i − p′i+j∥∥∥2 ·
1
√
2π

exp

∥∥∥p′i − p′i+j∥∥∥2
l

(4)

where hx =
∥∥x − x ′∥∥2, and x ′ is yielded by projecting x

onto lq; k is the number of neighbors; j is the index; l is the
length of the straight line yielded by projecting the points of
cq onto lq; ∇ iL and ∇ iR describe the gradients of the points.
We normalize hpi by dividing by l, resulting in γ = hpi

/
l;

θ+ and θ∗ are the positive and negative signs of ∇ iL plus ∇ iR
and ∇ iL multiplied by ∇ iR; this classifies the points into four
classes. Fig. 6 and Table 1 provide an illustration.

Given the feature vector of each point, we can obtain the
descriptor of shape S, which is expressed as follows:

VDTL (S)

= (VDTL (C1) ,VDTL (C2) , . . . ,VDTL (Cn))

=


αpi∈C1 ∇

pi∈C1
L ∇

pi∈C1
R γpi∈C1 θ+pi∈C1

θ∗pi∈C1

αpj∈C2 ∇
pj∈C2
L ∇

pj∈C2
R γpj∈C2 θ+pj∈C2

θ∗pj∈C2
...

αpm∈Cn ∇
pm∈Cn
L ∇

pm∈Cn
R γpm∈Cn θ+pm∈Cn θ∗pm∈Cn


(5)

VDTL is an N × 6 matrix, with row i being the descriptor of
each sample point pi of shape S.

From this definition, we can easily prove that the VDTL
shape descriptor has intrinsic invariance to translation, rota-
tion, and scaling of the shape S. When the shape S is rotated,
the curvature and tangent vector of the points on S do not
change since they are the intrinsic invariants of the point.
Furthermore, to ensure that our shape descriptor is scale-
invariant, we normalize ∇ iL , ∇

i
R, and hpi by dividing by l.

The shape matching based on VDTLs is very simple:
VDTL (S1) and VDTL (S2) denote the VDTL descriptors that
are extracted from shapes S1 and S2, respectively. Therefore,
the shape matching based on VDTLs can be performed by:

Dist(S1, S2)=
1
6

6∑
j=1

(
1
N

(
N∑
i=1

VDTL ji (S1)−
N∑
i=1

VDTL ji (S2)

))
(6)

where i is the row index and j is the column index. The smaller
the distance, the more similar the two shapes are.

Since the 2D shapes are refined by using the curve recon-
struction method described in [2] that is highly robust to
noise, the VDTL is still effective although it depends on the
computing of curvatures that is sensitive to noise. The search-
ing of the matching pairs based on VDTL is very simple
since there is no need to set any thresholds, that is to say
all of the parameters are computed adaptively. Furthermore,
the major advantage of the proposed method is its computing
efficiency in searching the matching 2D shapes because it
can distinguish two shapes first according to the number of
the curve segments and then computes Dist(S1, S2) for two
shapes having the same number of curve segments.

B. CONSTRAINT 2: SKELETAL CURVE MATCHING
The skeletal curve is a 3D curve and its matching can be
achieved by any 3D curve matching methods. We use the
method proposed in [5] in our experiments.

C. CONSTRAINT 3: SCALING FACTOR MATCHING
For the scaling factormatching of each 2D shape, we compute
the scaling gradients among its neighboring 2D shapes using
Equation (7):

∇
lSi
L =

k∑
j=1

lSi − lSi−j
j · t

·
1
√
2π

exp
j
N

∇
lSi
R =

k∑
j=1

lSi − lSi−j
j · t

·
1
√
2π

exp
j
N

(7)

where k is the number of neighbors, j is the index, t is the
distance between two adjacent equidistant sample points on
the skeletal curve, N is the number of the sample points on
the skeletal curve. The Dist(lC1 , lC2 ) measures the difference
degree of the scaling factors lCi of the two components Ci.
The smaller the distance, the more similar the two lCi are.

Dist(lC1 , lC2 ) =
∣∣∣∑∇

lSi∈C1
L −

∑
∇
lSi∈C2
L

∣∣∣
+

∣∣∣∑∇
lSi∈C1
R −

∑
∇
lSi∈C2
R

∣∣∣ (8)
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Two given components match if the above three constraints
are met.

VI. RESULTS AND DISCUSSION
We implement the proposed method on a variety of point-
sampled models. Our experiments consist of five parts. First,
the performance of the 2to3SSC generation is tested thor-
oughly with regards to the sensitivity to the key parame-
ter k (kNN), the robustness to the non-uniform distribution
of points, the robustness to noise, and the robustness to
the presence of holes. Furthermore, the timing information
is assessed for different configurations. Second, the effec-
tiveness of the VDTL descriptor is evaluated using the
MPEG-7 dataset. Since 2D shape matching is a part of
component matching, the details of the similarity errors are
discussed in the component matching results. Third, we test
the descriptiveness of the 2to3SSC using the well-known
3D McGill Shape Benchmark (MSB) dataset and discuss
the similarity errors, robustness to noise, and the matching
efficiency. Fourth, we compare our method and state-of-
the-art feature description and matching methods to demon-
strate the advantage of our method over traditional feature
descriptors using models from the SHREC10 dataset. Finally,
the proposed method is applied to a real-world dataset (i.e.,
the Terracotta fragment models that are raw scans without
any noises removal) to highlight the utility of the proposed
method.

Our experiments were implemented on an Intel Core
i7-5500U CPU with 2.40 GHz and 8 GB RAM. The
code used to implement the proposed method was not
optimized. All input point clouds to our algorithm were
unorganized and non-oriented and had varying degrees
of noise and non-uniform acquisition density. We empir-
ically set k = 30 as the default setting for all results,
except for the example in Fig. 7, where we demon-
strate the influence of different k values. The limita-
tions of the proposed method are summarized in the last
subsection.

A. THE PERFORMANCE OF 2TO3SSC GENERATION
In this part, we focus on the performance of the 2to3SSC
generation concerning the robustness to various factors and
the efficiency; therefore, we use the six components of lamp
model #1 and #2 (in Fig. 2) as the test models for the sake of
readability.

1) THE PARAMETERS OF 2TO3SSC
The 2to3SSC descriptor has two key parameters: (i) the num-
ber of segments, which is determined by the scale of the
neighborhood (a smaller k generates more segments) in the
component segmentation step and affects the extraction of
skeletal curves; and (ii) the number of 2D shapes in the 2D
shape extraction step, which is the same as the number of
sample points on the skeletal curve. These two parameters
present the ‘‘completeness’’ and ‘‘details’’ of the 2to3SSC
descriptors. In order to simplify the parameter settings, we

set the number of 2D shapes that is user-defined as the
number of segments. Therefore, only the neighborhood scale
impact the results. Hence, the sensitivity to the neighbor-
hood scale is assessed at different neighborhood scales, i.e.,
k = 10, 20, and k increasing from 20 to 60 in increments
of 20. Fig. 7 shows the results of using different scales of
neighborhoods for the components of lamp model #1 and
#2; all exhibit varying degrees of non-uniform acquisition
density and the detailed information is listed in Table 2. The
results of using different neighborhood scales indicate that the
2to3SSC generation proved insensitive to the neighborhood
scale, except if the neighborhood is very large (larger than
60) or very small (smaller than 20). This is because a larger
or smaller neighborhood results in incomplete segments that
fail to outline the local shape of the component.

In terms of the descriptiveness of the 2to3SSC, more 2D
shapes provide more details about the components, as shown
in Fig. 7, therefore, the similarity errors of 2to3SSC are
lower for a larger number of 2D shapes; the details are
listed in Table 5. However, according to the matching infor-
mation listed in Table 5, we observed that the similarity
errors of 2to3SSC decreased slightly as the number of 2D
shapes increased, whereas the computational cost for match-
ing increased significantly. Thus, we set k = 30 (the cor-
responding number of segments are listed in Table 3) as a
default to avoid unnecessary details and ensure computational
efficiency. The results using k = 30 are shown in Fig. 8.

2) THE ROBUSTNESS TO NON-UNIFORM
DISTRIBUTION OF POINTS
We define the average distance dp of a data point p with
the k nearest neighboring points Np as the local sampling
density [17]:

dp =
1∣∣Np∣∣ ∑pj∈Np

∣∣p− pj∣∣ (9)

Table 3 lists the minimum and average dp of the tested
models and Fig. 7 and Fig. 8 show the handling of point
clouds that exhibit strong local imbalances in the sampling
pattern. In order to test the robustness to non-uniform distri-
bution of points, we also tested our approach on simplified
models (at simplification rate of approximately 15%), which
have the same surfaces but different sampling densities. The
detailed information is given in Table 3. Here again, the pro-
posedmethod delivers favorable results as shown in Fig. 9 and
the number of segments of some models decreases when the
models are simplified, such as component A of Lamp #1 and
component A of Lamp #2.

3) THE ROBUSTNESS TO NOISE
In order to evaluate the robustness to noise, we add Gaussian
noise with variances of 0.03A_dp, 0.06A_dp and 0.09A_dp to
the models, A_dp is the average dp that are listed in Table 3.
The results of skeletal curve generation and 2D shape extrac-
tion at different levels of Gaussian noises are presented
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FIGURE 7. Skeletal curves and 2D shapes that are extracted by the proposed method using different neighborhood scales.

FIGURE 8. The results of skeletal curve and 2D shapes extraction from the original models using k = 30.

in Fig. 10, and the detailed information is listed in Table 4.
It can be seen from Fig. 10 that the results of the skeletal
curve generation and 2D shape extraction are not significantly
affected at low noise levels since the segments are well delin-
eated and the L1 median is not sensitive to the presence of
noise. At only high noise levels, we observe that some parts
of the skeletal curves are incorrect, resulting in unexpected
2D shapes. This is because the noisy points influence the
segments generation, thus the segments fail to outline the
shape.

4) THE ROBUSTNESS TO HOLES
When segmenting point clouds, the appearance of holes is
common. The location and size of the holes affect the results
of the skeletal curve generation and the extraction of the
2D shapes. If the holes are on the top or bottom surfaces
of the components, such as component B in lamp model
#1 and components A and C in lamp model #2, they do
not impact the results. However, if the holes are on the side
surfaces, the size of the holes is a key influencing factor. For
example, the results of the skeletal curve generation of the
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FIGURE 9. The results of skeletal curve and 2D shapes extraction from the simplified models using k = 30.

FIGURE 10. The results of skeletal curve and 2D shapes extraction at varying noise levels.

component A of lamp model #1 and B of lamp model #2 are
not influenced by the holes because the size of the holes
is small. However, the holes on the side surfaces inevitably
result in incomplete 2D shapes, which leads to an increase
in matching errors but the wrong matching results can be
avoided by increasing the similarity thresholds (which is

discussed in the component matching results). If the size
of the holes on the side surfaces increases, the holes need
to be filled first, for example, the component C of lamp
model #1. Otherwise, the generated skeletal curves may be
incorrect; this is considered a drawback of the 2to3SSC
descriptor.
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FIGURE 11. Examples of 2D shape matching in the MPEG-7 dataset with the proposed VDTL descriptor. The points
marked with an asterisk are the benchmark points, the blue lines are the tangent lines of the benchmark points, and the
contours of the shapes are divided into different curve segments with different colors.

TABLE 2. The number of segments and the execution time using
different kNNs.

5) EFFICIENCY
In this section, the efficiency of the 2to3SSC method in
terms of the execution time for the generation is assessed for
different configurations. Table 2 displays the execution time
of each step and total execution time using different k values
for the tested models. It is evident that a significant portion
of the running time is devoted to component segmentation.
However, there is no relationship between the execution time
of the component segmentation and the k values since the
time spent on this step can be divided into two parts: the

number of region-growing operations and searching of the
k NN. A larger k results in a lower number of region-growing
operations but the searching of the k NN requires more time
and vice versa. However, the execution time for skeletal curve
generation and 2D shape extraction decreases as k increases
because the number of segments and 2D shapes decreases as
k increases.
From another perspective, it is apparent that the execution

time is directly related to the point cloud size of the models.
As shown in Table 3, a decrease in the point cloud size results
in a decrease in the total execution time. However, an increase
in the noise level results in an increase in computational costs
(as shown in Table 4), which is attributed to the fact that a
noisy point cloud increases the data volume of the model and,
therefore, the kNN searching requires more time.

B. THE EFFECTIVENESS OF VDTLS
The effectiveness of the VDTLs is tested using the
MPEG-7 shape dataset [64], which has been extensively used
to evaluate 2D shape descriptor performance. Since the 2D
shapes matching in 2to3SSC focuses on the complete match-
ing for 2D shapes with no deformation, we only present such
matching results.

Six groups of 2D shape matching results are shown
in Fig.11, the shapes in the datasets have been randomly
rotated, translated and scaled down. For each shape on the
left, the shape (on the right) with the smallest Dist(S1, S2) is
considered the best match. It can be seen from Fig. 11 that
the VDTL is effective for 2D shapes matching and robust
to the rigid transformations. The point size and the total
time for matching are shown in the figure as well. It can be
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TABLE 3. The sampling and execution time of the original models and simplified models using k = 30.

TABLE 4. The total execution time for different noise levels using k = 30.
The times are in seconds.

observed that, the time spent for matching are increased with
the increase of the point size. The detailed similarity errors are
discussed in the next subsection with respect to the present of
noises and holes.

C. COMPONENT MATCHING RESULTS
In this section, we first select three typical components to
test the performance of the component matching for the sake
of readability. And then we present the results on the entire
models.

1) SIMILARITY ERRORS
The lamp model dataset contains different styles of lamps;
some components are highly similar whereas some are
entirely different. Therefore, this dataset is very suitable
for testing the descriptiveness of 2to3SSC. The matching
results for the three components of lamp model #2 are shown
in Fig. 12. The first column of Fig. 12 shows the given compo-
nents and the other columns are the matching components in
the lamp model dataset (with the matched part highlighted)
in order of increasing similarity errors. For a quantitative
evaluation, we use the total Dist(Si ∈ Component#1, Sj ∈
Component#2) to measure the similarities of 2D shapes,
the ratio for non-matching characters to the total characters in
OLAPs [5] to measure the similarities of the skeletal curves,
and Dist(lC1 , lC2 ) to measure the similarities of the scaling
factors of the two series of 2D shapes that are stacked to
construct the components.

We observe that the proposed method effectively deter-
mines the matching components and all of the three men-
tioned constraints contribute to the component matching.
Specifically, the skeletal curves of the components in the

first row of Fig. 12 are different so that the second values
(similarity errors of skeletal curves) are all higher than the
given thresholds (listed in Table 6); the scaling factors of the
components from the fourth column to the sixth column in
the 2nd row and 3rd row are different, thus the third values are
all larger than the thresholds. However, the values in magenta
are relatively larger but not larger than the given thresholds
since small holes on side surfaces lead to a slightly increase
in similarity errors of 2D shapes and scaling factors.

2) ROBUSTNESS TO NOISE
In this section, we tested the robustness to Gaussian noise.
The skeletal curve and 2D shapes extracted from noisy mod-
els with 0.03A_dp, 0.06A_dp (shown in Fig. 10) are imple-
mented to search matching components. The search results
are the same as the results in Fig. 12 and the similarity
errors are listed in Table 5. We observe that the matching
results are not affected at low noise levels because the skeletal
curve and 2D shape extraction are robust to noise and both the
skeletal curve and 2D shapes are reconstructed using the L1
curve reconstruction method, which is also robust to noise.
Although larger noise levels result in larger similarity errors,
the different components can still be distinguished.

3) EFFICIENCY
In this section, we analyzed the efficiency of 2to3SSC in
terms of the time required to match the components. Because
the skeletal curve matching, the 2D shape matching, and the
scaling factor matching can be achieved by other methods,
here we only analyze the total time required for matching
with respect to specific parameters of the 2to3SSCs. The total
matching time for 2to3SSCs and the different k values (which
determine the number of segments, 2D shapes, and sampling
points on the skeletal curves) are listed in Table 5. It is evident
that the number of 2D shapes affects the matching time, i.e.
a larger number of 2D shapes (smaller k value) increases the
matching accuracy but also increases the computational cost.
This is a trade-off between accuracy and efficiency.

4) RESULTS
In this section, we highlight the interesting results to demon-
strate the applicability of the proposed method. The adaptive
computations of the parameters for similarity measurements
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TABLE 5. The similarity errors and execution time of the best matches using different kNN, and the similarity errors for different levels of noise using k =
30. The number of 2D shapes and the number of sampling points on skeletal curves are listed in Table 2 and Table 3. The execution times are in seconds.

FIGURE 12. Results of component matching for lamp model #2 with 2to3SSC. The second to sixth columns depict the
matching components in the lamp model dataset in order of increasing similarity errors. The matching pairs of the
components are in the same color, but the components in grey are not matched. The kNN is set as k = 30. The total
similarity errors are beside each matching component. The three values listed under each matching object are the
similarity errors of 2D shapes, skeletal curves and the scaling factors, respectively. The error values in magenta are
relatively larger but they are still not larger than the given thresholds, whereas the error values in red are larger than the
given thresholds.

TABLE 6. parameters of matching methods.

are given in Table 6, where ω1 measures the Dist(Si ∈
Component #1, Sj ∈ Component #2) for 2D shape matching,
ω2 measures the ratio for non-matching characters to the total
characters in the OLAPs [5] for skeletal curve matching,
ω3 measures the Dist(lC1 , lC2 ) for scaling factor matching,
and ω4 measures the percentage ratio for matching the 2D
shapes to the total number of 2D shapes because the presence
of holes may increase the similarity errors between the 2D
shapes to greater than ω1 and ω3 respectively.
For these classes in the dataset, we first select one model

as the query and the matching components are searched from

the remaining models in the class. Then the query model is
put back, and the procedure is repeated with another selected
model from the class, etc., until all of the models in the same
class have been selected as queries.

The matching results for the lamp class are shown
in Fig. 13. We observe that there are 32 components (in
blue), which are constructed by stacking circles of the same
size; 7 components (in orange) are constructed by stacking
rectangles of the same size along straight lines, 3 components
are constructed (in cyan) by stacking circles but they are
different from the other 3 components (in green) that are also
constructed by stacking circles since the scale of the circles
is different. All of the lamps have at least one component that
matches the others, except for the lamp model in the red rect-
angle. It is also observed in Fig. 13 that lots of lamp posts are
constructed by stacking circles with no scaling transforma-
tion and the only difference is the shape of the skeletal curves.
Thus, if we only consider the matching of the 2D shapes
(Constraint 1) and the scaling factors (Constraint 3), all of the
cylindrical components that are created by stacking the circles
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FIGURE 13. Component matching results of the lamp class; the matching pairs of components that are searched by the similarity
measure of 2to3SSC are shown in the same color, but the components in gray are not matched.

FIGURE 14. Four guitars that have the same components are searched by the similarity measure of 2to3SSCs.

of the same size are matched. However, they are dissimilar
from a human visual perspective. Therefore, we concluded
that all of the constraints mentioned in section 5 are important
for shape matching of the components or the point clouds.

Fig. 14 and Fig. 15 show the interesting matching results
of the guitar class and the vase class, respectively. It can
be seen in Fig. 14 that the four guitars have the same four
components. However, the differences are the sizes of the
components, which results in different styles and beauty.
Fig. 15 shows that the first four vases are the same but the
positions of the components A in yellow imply different
statuses of the vases, and the component A is unfixed (note
that this is different from a non-rigid transformation), and the
last vase has two components A that are shown in yellow.

5) SUMMARY
All of the tested point clouds are sampled non-uniformly
and some special cases are marked with black dashed-line
rectangles in Fig. 13 - Fig. 14. The results demonstrate
the robustness of the 2to3SSC method to the non-uniform
sampling of points. However, Fig. 16 shows the matching
results of two vase models. The components in green are
highly similar and the components in yellow are onlymatched
by 2D shape matching and scale factor matching. However,
the other four components in orange, cyan, purple, and pink
cannot be matched because no 2D shape is detected due to
the poor sampling of the points. This is a condition that our
proposed method does not handle well. Fig. 13 - Fig. 16 show
various models with different skeletal curves, 2D shapes, and
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FIGURE 15. Five vases that have the same components, the matching pairs of components that are searched by the similarity measure
of 2to3SSCs are in the same color, whereas the last one has two components A that are shown in yellow.

FIGURE 16. Two vase models that are partial matched by the similarity
measure of 2to3SSCs.

scaling factors; the results solidly confirm the effectiveness
of the 2to3SSC. Although a larger noise level results in larger
similarity errors, the different components can still be distin-
guished. Furthermore, the matching results in Fig. 14 demon-
strate that the component matching can be utilized for a style
analysis for the same type of objects and Fig.15 demonstrates
that the component matching can detect different states or
actions of the same object.

D. COMPARISONS
Fig. 1 shows that the micro-features and the skeleton-
based macro-features provide insufficient information on
the shape of the two goblets. Specifically, it is evident that
the feature lines (Fig. 1(b)) are all matched (at least for
some components); however, the similarity of the compo-
nents in the point clouds cannot be determined. As shown
in Fig. 1 (d), the skeletons are matched as well but the
point clouds are different. The reason for the unsatisfactory
results of the micro-features and macro-features is that they
only encode local or partial features of the point clouds;
this is insufficient to obtain a similarity measure of the
components, not to mention the matching of the entire
point clouds.

If only meso-features are used, the similarity of the point
clouds cannot be determined as shown in Fig. 1 and Fig. 17.
However, in some cases, the meso-features can be utilized
for similarity measures and registration of point clouds but
some post-procedures must be applied, such as random sam-
ple consensus (RANSAC) or geometric consistency (GC)
tests. In order to compare the effectiveness of using the
meso-features and 2to3SSC for obtaining a similarity mea-
sure of the point clouds, we combined three typical meso-
features (SHOT [29], FPFH [28] and BRoPH [6] with either
RANSAC or GC in PCL (Point Cloud Library) to measure the
similarity of the given point clouds. The FPFH is computed
for all of the points, whereas the SHOT and BRoPH are
computed for key points that are detected using uniform
sampling in PCL. The point correspondences are searched
using KD-Tree. The results are shown in Fig. 17, where all
of the parameters are fine-tuned. Although the combination
of the meso-features and RANSAC or GC can measure the
similarity of the point clouds (as shown in Fig. 17 (a)),
there are certain disadvantages. For example, as shown in the
Goblet models in Fig. 17 (b), FPFHwith RANSAC fails since
it uses the distances between corresponding points to measure
the similarity of the aligned two models, which is ineffective,
whereas SHOT with GC and BRoPH with RANSAC pro-
vided satisfactory results. However, for the two Tap models
of different sizes (Fig. 17 (c)), all applied methods failed to
provide the similarity of the given models because RANSAC
is sensitive to scales, and GC is ineffective on the smooth
surfaces, on which the point correspondences obtained by the
meso-features are massive due to the similarity of the fea-
ture points. We also observed that for models with common
components, as shown in Fig. 17 (d), the three meso-features
with RANSACorGC cannot detect thematching components
directly; therefore we segmented the cups into components
and then used the three meso-features with RANSAC or
GC to measure the similarity of the components; this also
failed since the cup sizes are different and the cups have
smooth surfaces. Hence, we concluded that the results of the
similarity measure using meso-features highly depend on the
performance of the post-procedures, such as RANSAC and
GC tests.

The proposed method, however, outperforms the other
methods because it encodes both the local features (2D
shapes) and global features (skeletal curve and scaling
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FIGURE 17. The comparison of different meso-features and 2to3SSC. For each model, the scale of the points are beside each model;
for each group of models, the number below the models is the number of the point correspondences; the results in the blue
rectangles are correct whereas the other results are incorrect.

factors) rather than only encoding local features or partial
features. Consequently, the proposed method handles the
matching of the components and provides favorable results,
as shown in the last column of Fig. 17 in which the matched
components have the same color. Furthermore, it should be
noted that the cups have both inner and outer surfaces and
the results show that the inner surface does not influence the
skeletal curve generation and the 2D shape extraction because
the L1-median based line reconstruction has excellent perfor-
mance. However, themethod fails to handle the inner surfaces
if the distances between the local inner and outer surface are
non-uniform.

E. APPLICATIONS
Our method focuses on the component-oriented partial
matching of point clouds, which is accomplished by search-
ing for similar parts in the original models based on 2to3SSC.
Compared to traditional feature matching of point clouds
(feature points, feature lines, surface patches, and skele-
tons), the proposed descriptor encodes more shape infor-
mation; therefore, it has broad application value. In this
section, we present an application of the proposed method,

i.e., a novel point cloud classificationmethod based on typical
element recognition.

The example is the cultural element detection in the point
clouds of Terracotta fragments. The point clouds of the frag-
ments were scanned by students using a CreaformVIU handy
scanner. The scan resolution was 3.91 mm, which favors
speed but results in relatively low precision. The point clouds
exhibit strong local imbalances in the sampling pattern and
contain realistic noise that was the results of the scanning
process.

A typical cultural element in Terracotta is the approximate
hemisphere called ‘‘Jia Ding’’ in Chinese, which is marked in
green in Fig. 18, and another typical cultural element is called
‘‘Jia Dai’’, which is marked in cyan in Fig.18. The Terracotta
fragments have the following characteristics: (i) the frag-
ments with Jia Ding and Jia Dai belong to a Terracotta warrior
but not a horse or others; (ii) the fragments with Jia Ding and
Jia Dai belong to an armor located on the upper body but not
on the four limbs or the robe. Thus the detection of the Jia
Ding and Jia Dai elements can help with the classification
of the fragments and further facilitate the reassembly of the
fragments because (i) the classification results reduce the
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FIGURE 18. The Terracotta fragment models and the classification results that are achieved by the proposed
component matching.

search range for the adjacent fragments and (ii) the layout
of the Jia Ding and Jia Dai on the armor is mostly regular.

The fragments we tested and the detection results of the
Jia Ding and Jia Dai elements are shown in Fig.18; the point
size and the number of Jia Ding and Jia Dai are listed beside
each fragment. Subsequently, the fragments are classified into
three classes: the first class contains the fragments with only
Jia Ding elements, the second class contains the fragments
with only Jia Dai elements, and the third class contains frag-
ments with both Jia Ding and Jia Dai elements. Here again,
the proposed method delivers favorable results for the real
scanned data. The total time required to classify the 9 frag-
ments is about 35 minutes since the point size of the fragment
ranges from ten thousand to forty thousand. The recognition
results of the Jia Ding and Jia Dai elements can also be
used for the auto-generation of labels, which is a necessary
part of supervised learning because manual labeling is time-
consuming. These examples demonstrate the effectiveness of
2to3SSC and highlight the utility of the component-oriented
partial matching of point clouds.

F. LIMITATIONS
As the experiments have shown, failures may occur if our
method cannot detect the 2D shape correctly in rare cases
(as shown in Fig. 16). Similar, if the components are not
constructed by stacking 2D shapes, which may happen in rare
cases, the proposed method fails to describe the entire shape.
Also similar to other techniques, the feature description of
point clouds is an ill-posed problem, especially when there
are missing data. Thus, if the distribution of the point data is
highly non-uniform or large holes exist, the proposed method
may produce erroneous outputs. One solution to partially
alleviate the problem of the holes is to fill the holes first and
then apply the proposed method. For models that have both

inner and outer surfaces, the method may fail if the distances
between the local inner surface and outer surface are non-
uniform.

VII. CONCLUSION
While partial matching of 2D shapes has received significant
attention in the field of computer graphics, the more chal-
lenging partial matching of point clouds, in which the goal is
the description and matching of the components in the point
clouds, has not been previously reported to the best of our
knowledge. Motivated by the perception of 3D components
originating from 2D shapes, we have presented a method
that computes the component descriptor 2to3SSC of point
clouds. Based on the dissimilarity measure of the 2to3SSC,
the component-oriented partial matching of point clouds can
be achieved. The development of the 2to3SSC and the novel
component-oriented partial matching of point clouds are two
key contributions.

An interesting direction for future research is the use of
deep learning to simplify the steps to compute the component
descriptors.
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