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ABSTRACT In this paper, we propose an efficient image fusion algorithm using multiple salient features
with guided image filter to prevent the problem of low contrast detail. First, we employ the guided image
filter to decompose the input images into a series of smoothed and detailed images at different scales. Second,
the salient features are extracted from the decomposed smoothed images and detailed images using two dif-
ferent algorithms: the spectral residual (SR) algorithm for extracting mainframe information and the graph-
based visual saliency (GBVS) model for extracting gradient saliency information to construct the fusion
rules. In addition, generalized intensity-hue-saturation (GIHS) is adopted to combine the decomposition
coefficients. Finally, the fused image is reconstructed by the fused smoothed and fused detailed images.
The experimental results demonstrate that the proposed algorithm can achieve better performance than other
fusion methods in the domains of MRI-PET and MRI-SPECT fusion.

INDEX TERMS Spectral residual saliency, graph-based visual saliency, MRI-PET fusion, MRI-SPECT
fusion.

I. INTRODUCTION
With the development of medical imaging technology, mod-
ern medical imaging provides multiple diagnostic images
for clinical diagnosis, such as computed tomography (CT),
magnetic resonance imaging (MRI), positron emission
tomography (PET), and single-photon emission computed
tomography (SPECT) images. They focus on various aspects
to provide information. CT and MRI images are anatomical
images with a high spatial resolution that provide body
contours and soft tissue information. PET and SPECT images
are functional images with lower spatial resolution that
contain color information that reflects the body’s metabolic
level. To overcome the limitations of single medical image
information expression and to provide more comprehensive
and complementary information for medical diagnosis and
treatment, multimodal medical image fusion has been pro-
posed. Multimodal medical image fusion obtains a single
fused image in terms of human visual perception to increase
the clinical applicability of medical images for the diagnosis
and assessment of medical problems [1]. Brain diseases have
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a high incidence and present a high risk to people’s lives.
To provide additional auxiliary information for such diseases,
this paper focuses on the fusion of anatomical images and
functional images of brain diseases.

Research on multimodal medical image fusion methods
has yielded promising results; however, various shortcom-
ings are identified. The image fusion method [2] that is
based on principal component analysis (PCA) transformation
is simple and easy; however, the fusion result is prone to
color distortion. The fusion result that is obtained via the
image fusion method that is based on color space trans-
formation [3] has low contrast. The image fusion methods
that are based on the pyramid transform [4], [5] cannot
capture the direction information. The image fusion meth-
ods that are based on the wavelet transform [6], [7] can-
not represent the anisotropic features (such as lines and
contours) accurately, and the fusion result has low con-
trast. The image fusion methods that are based on sparse
representation [8]–[11] are time-consuming in the training
and optimization of the dictionary. The image fusion meth-
ods that are based on neural networks [12], [13] rely on the
process of adjusting parameters in the training of the net-
work. In summary, the image fusion methods that are based

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 173019

https://orcid.org/0000-0002-9033-8245
https://orcid.org/0000-0001-8502-5714
https://orcid.org/0000-0001-6402-1335
https://orcid.org/0000-0003-3292-8551


W. Li et al.: Multi-Modal Sensor Medical Image Fusion Based on Multiple Salient Features

on multiscale transformation (MST) have the advantage of
extracting more salient features on multiple scales compared
with other fusion methods. However, several shortcomings
are identified, which can be roughly summarized into three
categories: (1) higher time complexity; (2) the appearance of
artifacts in the fused image; and (3) low contrast and little
detail information. To overcome these problems and to obtain
a superior fusion result, we propose an efficient image fusion
algorithm that uses multiple salient features with a guided
image filter.

Our method involves two key research hotspots: multi-
scale decomposition and reconstruction of images and con-
struction of fusion rules. In the image decomposition step,
considering that many available methods that are based on
pyramid transformation and waveform transformation cannot
maintain the shift consistency and spend a long time on the
selection of parameters, our model uses GIF to decompose
the source images into smoothed images and detailed images
at various scales with the same resolution as the input images
in the spatial domain. This approach can effectively main-
tain the shift consistency and enhance the edge information
of the fused image with lower time complexity. In the fusion
rule construction step, since the smoothed subband images
that are obtained via the GIF decomposition contain large
amounts of smooth information of the source images, we use
the spatial residual significance detection algorithm, spectral
residual approach (SR), to construct a fusion rule of smoothed
images that can distinguish the important information from
the redundant information. In contrast, the detailed subband
images contain the salient features of the source images.
To preserve the significant information (such as the bright-
ness and color) of the source images, we use the graph-based
visual saliency (GBVS) detection algorithm to construct the
fusion rule of detailed images, which yields fusion results
that more closely accord with the human visual system.
In addition, to more completely preserve the details of the
edges and textures of the images during the fusion process,
we use GIHS in the coefficient recombination part of the
fusion rule construction. In conclusion, our method uses GIF
to decompose the source images into smoothed and detailed
images of multiple scales and constructs fusion rules for
smoothed and detailed subband images by utilizing SR and
GBVS, respectively; finally, the fusion subband images are
added to obtain the fused image.

Compared with the available approaches, the main contri-
butions of the proposed method are as follows:

(1) By using the SR algorithm [14] to extract the salient fea-
tures of the smoothed images with log spectrum, the saliency
information of the source images is effectively derived by the
combination of spectral residual and phase spectrum infor-
mation with little distortion. And then, the Inverse Fourier
Transform is used to construct a final saliency map in the spa-
tial domain containing only information about the dominant
orientations and scales that compose the image [15], [16].
Furthermore, the proposed method realizes superior per-
formance in terms of a nonreference-image quality metric,

namely, the natural image quality evaluator (NIQE), which is
used to evaluate the distortion of the final fused images.

(2) Using methods of salient feature extraction and the
GBVSmodel [17] to extract the salient features of the detailed
images can preserve the global vital information, such as
the brightness, gradient, and color information of the source
images, thereby yielding fusion results that more closely
accord with the human visual system [18]. In the next section
(Section III), we demonstrate that in the salient features that
are extracted from images, including natural and medical
images, higher brightness information is perfectly preserved.

(3) Typically, the color information is neglected in the
procedures of functional medical imaging, such as PET and
SPECT, which is presented in pseudocolor. Color model
transformations, namely, IHS and GIHS, are adopted for the
fusion of single-channel images in gray and multichannel
images in color to preserve the color information that is
transferred from inputs to the final fused image [19]–[21].
In contrast to IHS, GIHS could overcome the color distor-
tion problem that was encountered during the substitution
operation.

The remainder of this paper is organized as follows: The
related work is introduced in Section II. The theory of SR and
the GBVSmodel are introduced in Section III. The algorithm
for medical image fusion is proposed in Section IV. Section V
presents the experimental evaluation. Finally, the conclusions
of this work are presented in Section VI.

II. RELATED WORK
The available methods for multimodal image fusion can
be divided into pixel-level, feature-level and decision-level
fusion methods [22]. Pixel-level image fusion is the pro-
cess of directly combining the source image’s pixels, which
can retain more of the source image’s information, and
most research is now aimed at pixel-level image fusion.
In pixel-level image fusion, methods are roughly classi-
fied into the following categories: (1) image fusion meth-
ods that are based on MST [23], [24]. Methods of this
type are in line with the layering process of the human
visual system’s cognitive outside world and can effectively
extract more useful information on multiple scales. Image
fusion methods that are based on MST consist of three
steps: first, the source images are decomposed into mul-
tiple high-frequency and low-frequency coefficients after
multiscale transformation; then, the corresponding fusion
rules are used to fuse the low-frequency coefficients and
the high-frequency coefficients; the final fused image is
obtained by reconstructing the fused high-frequency coeffi-
cient and low-frequency coefficient. Commonly used MST
decomposition tools include pyramid transformation, wavelet
transformation, geometric analysis and edge-preserving fil-
tering algorithms. The image fusion methods that are based
on pyramid transformation [4], [5], [25] cannot capture the
direction information of the image; the image fusion methods
that are based on wavelet transform [6], [7], [26] can only
capture limited direction information and cannot maintain
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FIGURE 1. SR extraction of the significant features.

spatial translation consistency; the image fusion methods that
are based on geometric analysis [27], [28] effectively solve
the above problems, but still suffer from high time consump-
tion. Edge-preserving filtering algorithms have been widely
used in image fusion in recent years [29], [30], which have
low time consumption and can maintain spatial translational
consistency in the decomposition process. More importantly,
the edge information of the images can be enhanced during
the decomposition process; (2) image fusion methods that
are based on morphological component analysis [31], [32].
Methods of this type consider the components of vari-
ous spatial structures that the image contains. An image is
decomposed into cartoon and texture components via sparse
representation and fusion rules are constructed for cartoon
coefficients and texture coefficients, which can express the
source images more completely and accurately. However,
these methods have a high time cost and it is difficult to
optimize the training dictionary process; (3) image fusion
methods that are based on variational technology [33], [34].
These methods construct an energy functional by using the
relationship between the input images and the fusion result,
and they obtain the fusion result by minimizing the func-
tional. The main advantages of methods of this type are
scalability, flexibility and the ability to incorporate multiple
technologies (such as wavelets and random fields) into the
variational model. However, the time complexity of solving
the extreme value process is high; hence, the fusion process
has poor real-time performance; and (4) image fusion meth-
ods that are based on deep learning [11], [35]. The fusion
methods that are based on deep learning can learn more
image features through the training network, which yields
more abundant fusion results, and they have been widely
used in multifocus image fusion research. Since no ground
truth is available for the fusion of medical images, effectively
labeling images and training on them is challenging in deep
learning for multimodal medical image fusion.

III. MATERIALS
A. SPECTRAL RESIDUAL APPROACH (SR)
Neurobiologists have studied the ability of humans to under-
stand complex scenes in real time. They found that in the
face of complex scenes, the human visual system can quickly
and adaptively screen out the objects of interest and centrally
process them. The target of human interest is the salient area
that we want to study. In recent years, image salient features
have been widely used in many fields, such as automatic
detection [14], image retrieval [36], object recognition [37],

image segmentation [38], and image fusion [29], [39]. SR is
a purely mathematical method for detecting saliency, which
divides the information that is carried by the image into a
variable part and a redundant part. The redundant part repre-
sents the frequency information, which cannot be perceived
by the human visual system. The variable part represents
the significant and important information of the image. The
process of calculating the image saliency feature map via SR
is as follows.

First, Fourier transformation is performed on the source
image I , and the image is converted from the spatial domain
to the frequency domain. Then, the amplitude spectrum A(f )
and the phase spectrum P(f ) of the image are calculated. The
expressions are as follows:

A(f ) = <(F(I )) (1)

P(f ) = =(F(I )) (2)

where F represents the Fourier transform, < represents the
real part of the complex matrix that is obtained via the Fourier
transform, and= represents the imaginary part of the complex
matrix that is obtained via the Fourier transform.

Then, the residual spectrum H (f ) of the image is calcu-
lated. First, the logarithm of A(f ), which is obtained via
formula (1), is calculated to obtain the log spectrum L(f ) of
the image. Then, it is filtered using an average filter hn(f )
with a kernel size of n× n and the value of 1

/
n2 to obtain an

average spectrum. Finally, the average spectrum is subtracted
from L(f ) to obtain R(f ). The expressions are as follows:

L(f ) = log(A(f )) (3)

R(f ) = L(f )− hn(f ) ∗ L(f ) (4)

Finally, the inverse Fourier transform is applied to R(f ) and
P(f ), and we use a Gaussian filter with a scale of δ = 8 to
convolve the results and to generate the final saliency map S.
The expression is as follows:

S = g(x) ∗ F−1[exp(R(f ))+ P(f )]2 (5)

As shown in Fig. 1, we extracted the saliency map of the
image via the SR method. (1) represents the original image,
and (2) represents the salient image that is extracted via the
SR method. According to the salient image, the SR algorithm
can extract the contour information of the image’s salient
target.
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FIGURE 2. GBVS extraction of the significant features.

B. GRAPH-BASED VISUAL SALIENCY (GBVS)
GBVS is a saliency detection method that combines biolog-
ical visual attention mechanisms and mathematical calcula-
tions, and it consists of two steps: forming activation maps
on feature channels and normalizing them in a way that high-
lights their conspicuousness and enables combinations with
other maps [17]. The characteristics and extraction methods
that are adopted by the GBVS model are the same as those
of the ITTI model [40]; however, the characteristic saliency
calculation and the feature saliency maps are combined using
the Markov chain algorithm.

First, the GBVS model uses Gaussian filtering to obtain
the brightness, color and direction feature map M of the
source image, which is consistent with the ITTI model. Then,
we assume that all the pixels in the feature map M are
connected to form a directed graph GA, namely, each vertex
in the graph is connected to n-1 other vertices. Moreover,
the weight of the directed edge of any vertex p to q in GA
is defined as follows:

ωA(p, q) 1
=
d(p||q) · F(px − qx , py − qy) (6)

F(a, b) 1
=
exp{−

a2 + b2

2σ 2 } (7)

d(p||q) 1
=
|M (p)−M (q)| (8)

where d(p||q) represents the dissimilarity of points p and q
in the feature map M ; (px , qy) and (qx , qy) are the spatial
coordinates of nodes p and q, respectively; and σ is a free
parameter.

To calculate the significance of the feature map M ,
we define a Markov chain on GA and normalize the weights
on the edges to the range of [0, 1]. Then, we define the points
as states and the weights on the edges as transition proba-
bilities. Therefore, the equilibrium state of the Markov chain
can reflect the residence time of a random walker at each
vertex [41]. The residence time can reflect the significance of
a position; hence, the steady state of theMarkov chain reflects
the feature saliency state.

When using the GBVSmodel to obtain the feature saliency
map, we normalize each feature map by constructing a
Markov chain and superimpose all the normalized fea-
ture maps. We construct weighted directed graphs on the
directed edges of feature saliency maps according to the
following:

ωN(p, q)1
=
A(p) · F(px − qx , py − qy) (9)

where A(p) is the saliency of the vertex p. Then, we can
obtain a normalized feature saliency map S by calculating the
equilibrium state of the Markov chain.

As shown in Fig. 2, we use the GBVS model to obtain the
salient images of several images.

Here, (1) represents the original image and (2) represents
the salient image that is extracted via the GBVS method.
According to the salient image, the GBVS algorithm can
retain the more appealing visual information from the source
images and can completely retain the region with higher
brightness.

IV. ALGORITHM OF IMAGE FUSION
In Algorithm 1, the proposed method for MRI-PET fusion
and MRI-SPECT fusion consists of three main parts: image
multiscale decomposition, image fusion rule construction and
image reconstruction. A and B are two input images, where
A represents the MRI modal image and B represents the
PET/SPECT modal image. We consider MRI-SPECT image
fusion as an example and present a schematic diagram of the
proposed fusion method framework in Fig. 3.

Algorithm 1. Algorithm ofMRI-PET/SPECT image fusion

A. MULTISCALE IMAGE DECOMPOSITION
GIF [42] is an effective local linear translation-variant fil-
ter model, which has the same edge-preserving smoothing
operator as the bilateral filter but performs better near the
edges. As the computational complexity of the guided filter
is independent of the filter kernel size, it has lower time [43]
complexity with faster computing performance. In addition,
it is assumed in GIF that there is a local linear model in the
guided filter I and filter output O, which enables the filter
output to be more structured and smoother than the input
image P. GIF has many applications in image processing and
computer vision, such as image detail enhancement [43] and
image fusion [44].

In this paper, we built a multiscale image representation of
the input images with GIF. Input image A or B is decomposed
into a series of smoothed images Ci and detailed images
Di(Di = I − Ci) after L smoothing operations (smoothing
radius r = (21, 22, ...2l)) with GIF. Consistent with most
methods that are based on the edge-preserving filter decom-
position [11], [24], [26], this paper sets L to 3.

In image processing using guided filtering, the value of
ε has a strong influence on the filtering results. If ε = 0,
the filter has no effect. If ε > 0, GIF forms a weighted mean
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FIGURE 3. Schematic diagram of the proposed fusion framework.

FIGURE 4. GIF filtering results with different parameters.

filter in the region with small changes in the pixel intensity,
while in the region with large changes in the pixel intensity,
the filtering effect on the image is very weak, which helps
maintain the edges. However, if the value of ε is large, many
details are filtered out.

As shown in Fig. 4, we experimented with the parame-
ter values that are specified in the GIF reference [42] and
when the parameter ε is set to 0.12, the smoothed sub-
band images show a strong edge enhancement effect, but
the detailed subband images contain less significant features;
when ε is set to 0.42, the smoothness is too high and smooth
information is divided among the detailed subband images.
To preserve the detailed textural information while enhancing

the edges, in our experiment, we set the radius r of the GIF
decomposition schema as r = 2, r = 4 and r = 8,
and set the regularization parameter as ε = 0.22 to obtain
multiscale smoothed subband images and detailed sub-band
images. To further evaluate our claim, this paper conducted
10 sets of MRI-SPECT fusion experiments and 10 sets of
MRI-PET fusion experiments. The subjective fusion results
are presented in Fig. 5. When ε = 0.22, the fusion result
is the best, and the edges and the texture information of the
fused image are clearer. According to the objective evaluation
index values in Table 1, when ε = 0.22, the values of the
mutual information (MI), the spatial frequency (SF), NIQE,
the tone mapped image quality index (TMQI) and the edge
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FIGURE 5. The subjective result with different parameters.

TABLE 1. The objective evaluation indicators with different parameters.

intensity (EI) (details on the objective indices are provided
in Section 5) are all optimal; hence, the edge and texture
information that is retained by the fusion result is richer.
Therefore, we set ε = 0.22 in the subsequent experiments.

B. IMAGE FUSION RULES
Fusion rules play a crucial role in the image fusion process.
An effective fusion rule is designed to highlight the important
features in the original imageswhile restricting the inessential
features in the fusion process. In addition, commonly used
fusion rules are typically composed of three parts: activity
level measurement, coefficient grouping and coefficient com-
bination [45].

(1) Activity level measurement: Since the smoothed
images contain large amounts of smooth information of the
source images, whose features are not readily identifiable,
the SR method can be used to screen out the significant fea-
tures via mathematical calculations. Hence, the fused image
can contain more useful information. The activity levels are

calculated as
_

S
i

A = SR(C i
A(x, y)),

_

S
i

B = SR(C i
B(x, y)). In addi-

tion, since the detailed images contain significant details of
the source images, and features such as the brightness and
color are important features of medical images, we use the
GBVS algorithm to calculate the activity levels of the detailed
images as S̆

i
A = GBVS(DiA(x, y)), S̆

i
B = GBVS(DiB(x, y)).

(2) Coefficient grouping: We group the coefficients by
analyzing and comparing the activity levels of the smoothed
and detailed images at various scales. The higher the level
of coefficient activity, the more important the corresponding
images are in the fused images. Furthermore, we use decision
maps to record the results of the comparison of the coefficient
activity levels. The sum of all decision maps is equal to
1 to ensure that there is no loss of original information. The
method of constructing the decision maps is as follows:

_

d
i

A =

1, if max
(
_

S
1

A,
_

S
2

A, · · · ,
_

S
n

A

)
=

_

S
i

A

0, otherwise
(10)

d̆ iA =

{
1, if max

(
S̆1A, S̆

2
A, · · · , S̆

n
A

)
= S̆ iA

0, otherwise
(11)

and

_

d
i

B =

1, if max
(
_

S
1

B,
_

S
2

B, · · · ,
_

S
n

B

)
=

_

S
i

B

0, otherwise
(12)

d̆ iB =

{
1, if max

(
S̆1B, S̆

2
B, · · · , S̆

n
B

)
= S̆ iB

0, otherwise
(13)

(3) Coefficient combination: We use the weighted averag-
ing method to combine the coefficients. With the weighted
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Algorithm 1 Basic Steps of the Fusion Scheme
Input: image A, image B
Output: fused image F
Step 1: Multiscale image decomposition

1. Apply the L-level GIF algorithm to decompose
A and B into smoothed images that contain smooth
rough information and detailed images that contain
edge information at levels

(
C i
A,D

i
A

)
and (C i

B,D
i
B)

with i = 1, · · · ,L.
Step 2: Image fusion rules

1. Apply SR to detect the salient features of

smoothed subband images C i
A,C

i
B to obtain

_

S
i

A,
_

S
i

B,
and compare the significant values of the pixels that
correspond to the same spatial position to obtain

decision maps
_

d
i

A,
_

d
i

B (Eq. (10) and Eq. (12))
2. Apply GBVS to detect the salient features of
detailed subband imagesDiA,D

i
B to obtain S̆

i
A, S̆

i
B, and

compare the significant values of the pixels that
correspond to the same spatial position to obtain
decision maps d̆ iA, d̆

i
B (Eq. (11) and Eq. (13)

3. Use the decision maps as weight maps and use
the weighted average method to fuse the coefficients
of the smoothed layer and the detailed layer in source
image A or B at various scales using Eqs. (14) and
(15)
4. Use GIHS to fuse the coefficients of the
smoothed layers and the detailed layers in A and B:
FC = GIHS

(
FCA ,F

C
B

)
;FD = GIHS

(
FDA ,F

D
B

)
Eq. (16)
Step 3: Image reconstruction: Add the fused subband
images to obtain the final fused image F = FC +FD

(Eq. (19)).

average (WA), the fused coefficient is a linear representation
of the product of multiple input images and corresponding
weights. In this paper, we use the decision maps as weight
maps for the combination of the coefficients in smoothed
and detailed layers of the source image at various scales to
obtain the fused smoothed and fused detailed layers of source
images A and B. FCA and FDA represent the fused smooth layer
and the fused detail layer, respectively, of image A. Similarly,
FCB represents the fused smoothed layer and FDB represents
the fused detailed layer of image B. Therefore, the coefficient
combination calculation method is summarized as follows:

FCA =
∑n

i=1
(d̂ iA ∗ C

i
A); FDA =

∑n

i=1
(ď iA ∗ D

i
A) (14)

FCB =
∑n

i=1
(d̂ iB ∗ C

i
B); FDB =

∑n

i=1
(ď iB ∗ D

i
B) (15)

FCA and FDA are subband images with higher resolution that
contain more luminance information, and FCB and FDB are
pseudocolor images with lower resolution that contain more
color information. To preserve the texture and edge infor-
mation of the gray images and the color information of
the pseudo color images, we use GIHS [46] to recombine

FCA and FCB to obtain FC and to recombine FDA and FDB
to obtain FD. GIHS is a fusion method that is based on
color space transformation, the main strategy of which is
to replace the intensity components of low-resolution color
images with high-resolution gray images, which can preserve
the important features of gray images and color images more
completely. The combination is expressed as follows:

FC=GIHS
(
FCA ,F

C
B

)
; FD=GIHS

(
FDA ,F

D
B

)
; (16)

The process of applying the GIHS recombination coefficient
is as follows:

(1) Use a spatial transformation tool to transform the RGB
color space

(
R′,G′,B′

)
of the pseudo color images into the

IHS color space (I ,H , S), which is calculated as follows: I
v1
v2

=


1
/
3 1

/
3 1

/
3

−
√
2
/
6 −

√
2
/
6 2

√
2
/
6

1
/√

2 −1
/√

2 0


 R′

G′

B′


(17)

H = tan−1(
v2
v1
), S=

√
v21 + v

2
2 (18)

(2) Replace the component I that is obtained via the color
space transformation of the pseudo color image using the
high-resolution gray image Inew;
(3) The replaced IHS color space image is inversely trans-

formed into the RGB color space to obtain a fused image F .

C. IMAGE RECONSTRUCTION
Image reconstruction is used to restore the coefficients of the
source images into the result image. Common reconstruction
methods include the inverse transform, sparse representation
and summation. We use the simplest summation method to
reconstruct the image in our experiment, and the expression
is as follows:

F = FC + FD (19)

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
To evaluate the performance of the proposed algorithm,
40 pairs of source images are collected from Whole Brain
Web Site of the Harvard Medical School [47], which con-
sisted of 10 pairs of MRI-PET images with mild Alzheimer’s
disease, 10 pairs of MRI-PET images with glioma disease,
10 pairs of MRI-SPECT images with cavernous hemangioma
disease and 10 pairs of MRI-SPECT images with glioma
disease. The size of each input image is 256× 256, and each
set of images is coregistered. The experimental environment
is MATLAB 2010 on Windows 7, the processor is an Intel
Core i5-4590 CPU, and the RAM size is 8 GB.We use eleven
fusion methods for the comparative experiments: GIHS [43],
PCA [2], nonsubsampled contourlet transform (NSCT) [48],
image fusion with guided filtering (GFF) [41], multilevel
local extrema (LES) [29], dense SIFT (DSIFT) [49], parallel
saliency features (PSF) [39], LES+PSF [26], Zhu fusion
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FIGURE 6. Subjective evaluation of MRI-SPECT fusion in cavernous hemangioma disease.

FIGURE 7. Subjective evaluation of glioma disease on MRI-SPECT fusion.

method [50], convolutional neural networks (CNN) [51],
and deep CNN (DCNN) [12]. The parameter settings of
the compared methods are specified as follows. The NSCT
method adopts four decomposition levels with 4, 8, 8, and
16 directions from small to larger scale. The default param-
eters of guided filtering are used as image fusion rules in
GFF: 45 and 0.3 for base layers and 7 and 10−6 for detail
layers. LES adopts 5× 5 sliding widow local image extrema.
The decision map for high-pass subbands that is obtained via
phase congruency (PC), local sharpness change (LSCM) and
local energy (LE) with the weights 1, 2, and 2 is introduced
in the Zhu method. Moreover, the parameter settings that
are specified by the authors are adopted for the GIHS, PCA,
DSIFT, PSF, LES+PSF, CNN, and DCNN methods.

B. OBJECTIVE IMAGE QUALITY METRICS
The objective evaluation method uses mathematical formu-
las to calculate and obtain numerical values for the fused
images [52], whichmeasures the degree of distortion between
the fused and input images. We selected eleven indicators for
evaluating the preservation of the edges and textures, the level
of detail contrast, and the loss of important information.

The spatial frequency (SF) [2] is used to measure the
overall activity level of the space in the image. The larger the

SF of the fused image, the richer the information it contains,
and the better the fusion method has performed. It is defined
as follows:

SF =
√
RF2 + CF2 (20)

where RF and CF represent the spatial row frequency and the
spatial column frequency, respectively.
NIQE [53] evaluates the quality of the fused images when

the type of fused image distortion is unknown. The smaller
the NIQE, the higher the fusion performance. It is defined as
follows:

NIQE=

√
(µ1 − µ2)

T
·

(
σ1 + σ2

2

)−1
· (µ1 − µ2) (21)

where µ1 and µ2 represent the means of the natural image
multivariate Gaussianmodel and the fused imagemultivariate
Gaussian model, respectively, and σ1 and σ2 represent the
covariances of the two models.

The tone-mapped image quality Index (TMQI) [54] is an
index for measuring the degree of loss of the fused image
contrast information and luminance information. The larger
the value is, the better the fusion result.

TMQI (IR, IF ) = aT α + (1− a)Mβ (22)
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FIGURE 8. Subjective evaluation of mild Alzheimer’s disease on MRI-PET fusion.

FIGURE 9. Subjective evaluation of glioma disease on MRI-PET fusion.

where T andM represent the structural fidelity and the statis-
tical properties, respectively, of the image and the values of
the constants are a = 0.8012, α = 0.3046, and β = 0.7088.
The edge intensity (EI) [55] is used to detect the edges of

the image and a larger value of EI corresponds to richer edge
information in the image. It can be calculated as follows:

EI =
1

M × N
×

N∑
j=1

M∑
i=1

√
Gx(i, j)2 + Gy(i, j)2 (23)

where Gx and Gy are the results of the Sobel edge detection
operator in thex- and y-directions, respectively, andM and N
denote the numbers of rows and columns.

Mutual information (MI) [56] is used to calculate the infor-
mation correlation between the fused image and the input
source images. The larger the value ofMI, the larger the
amount of source image information that is contained in the
fused image. The calculation expression is as follows:

MI
(
IR,IF

)
=
H (IR)+ H (IF )− H (IR, IF )

H (IR)+ H (IF )
(24)

where H (I ) and H (IR, IF ) represent a pixel probability dis-
tribution histogram of a single image and a joint pixel proba-
bility distribution histogram of two images, respectively.

The edge-dependent fusion quality index (Qe) [57] mea-
sures the edge information:

Qe
(
IR,IF

)
=w.Qwb (I1, IF )+(1−w)×Qwb (I2, IF ) (25)

where Qwb denotes average value between the reference
image and the fused image. The larger the value of Qe,
the better the fused image is.

Entropy (EN) [58] measures the information in the fused
image:

EN (IF ) = −
255∑
x=0

px (IF ) lnpx (IF ) (26)

where pi is the probability distribution of the pixels with value
i over the total number of pixels.

Quality-aware clustering (QAC) [59] is used to predict
features via machine learning. The smaller the QAC value is,
the less distortion in the fused image. QAC consists of two
stages: training and testing. In the stage of training, distortion
models, such as Gaussian noise, blur, JPEG, and JPEG 2000
compression, are trained using machine learning methods.
In the stage of testing, QAC is calculated as the sum of Zl :

QAC(IF ) =
1
L

∑L

l=1
zl (27)
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TABLE 2. Objective evaluation indexes of MRI-SPECT fusion in cavernous haemangioma.

TABLE 3. Objective evaluation indexes of glioma disease on MRI-SPECT fusion.

Qab/f [60] measures the success of edge information trans-
fer from the input images to the fused image. It is computed
as follows:

Qab/f

=

M∑
x=1

N∑
y=1

(
QI1IF (x, y)wI1 (x, y)+ QI2IF (X ,Y )wI2 (x, y)

)
M∑
x=1

N∑
y=1

(
wI1 (x, y)+ wI2 (x, y)

)
(28)

where QI1IF (x, y),QI2IF (x, y) are the preserved values
of the edge and orientation information at location
(x, y) and wI1 (x, y),wI1 (x, y) reflect the importances of
QI1IF (x, y),QI2IF (x, y).
The average gradient (AG) [61] represents the details of the

image contrast and texture features using horizontal gradient

1xIF (i, j) and vertical gradient 1yIF (i, j).

AG(IF )=
1

(M − 1) (N − 1)

×

M−1∑
i=1

N−1∑
j=1

√
(1xIF (i, j))2 +

(
1yIF (i, j)

)2
2

(29)

The spatial-spectral entropy-based quality (SSEQ) [61]
is used to evaluate the quality of a distorted image across
unknown distortion groups. SSEQ utilizes local spatial
entropies and local spectral entropies to predict the image
quality score. The distorted image is predicted using a
12-dimensional feature vector f . SSEQ is calculated by apply-
ing the function libsvm on the feature vector:

SSEQ = libsvm(f ) (30)
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TABLE 4. Objective evaluation indicators of mild Alzheimer’s disease on MRI-PET fusion.

TABLE 5. Objective evaluation indicators of glioma disease on MRI-PET fusion.

C. EXPERIMENTAL RESULTS ON THE DATABASE
1) EXPERIMENTAL RESULTS ON MRI-SPECT FUSION
Fig. 6 and Fig. 7 present the subjective results ofMRI-SPECT
image fusion for patients with cavernous hemangioma and
glioma, respectively. According to Fig. 6 and Fig. 7,
the results of our method show strong detail contrast enhance-
ment effects, and the details of the texturesand edges
are clearer and easier for human eyes to observ, shown
in Fig. 6(n) and 7(n). Although the results of the PCAmethod
and the DSIFT method satisfactorily preserve the textural
details, they exhibit severe color distortion. Although the
results of the LES method retain the colors of the SPECT,
a large amount of MRI information is lost. The results of
the LES+PSF method have lost brightness information. The
results of the PSF methodhave lower detail contrast. Com-
pared with other methods, the GIHS method, the NSCT
method and the GFF method yield superior fusion results;
however, the sharpness is not sufficient. The results of the

Zhu and DCNN methods, which are shown in Fig. 7(k) and
(m), exhibit superior colo retention, and the textures and
edges are clearer. However, due to the increase in brightness,
the results of ourmethod have lower colo contrast in Fig. 7(n),
compared to the results of. Zhu’s method in Fig. 7(k). And,
the superiority of the proposed method is with higher contrast
textural information, compared to the other fusion methods.
The fused result that is obtained via the CNN method, which
is one of the deep learning methods, introduces color distor-
tion, as shown in Fig. 7(l).

Table 2 and Table 3 show the objective results of
MRI-SPECT image fusion for patients with cavernous
hemangioma and glioma, respectively, which are based on
eleven objective image quality metrics. The value of each
index is the average of 10 sets of experimental results, and
according to Table 2, our method has the best results in
terms of SF, NIQE, TMQI, EI, and AG; the best results for
each index are marked in bold. Thus, the method preserves
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TABLE 6. Objective scoring of cavernous haemangioma disease on MRI-SPECT fusion.

TABLE 7. Objective scoring of glioma disease on MRI-SPECT fusion.

more detail information without the reference input image.
The results of the Zhu method are the best in terms of MI
and Qab/f ; hence, this method has the highest correlation
with the two source images. However, it is outperformed
by our method in retaining edge and texture information.
DCNN, which is a deep learning method, realizes the best
performance in terms of theQe and ENmetrics. According to
Table 3, the proposed method realizes the best performance
in terms of metrics SF, NIQE, TMQI, EI, EN and AG. Thus,
the final fused image contains high brightness information
and high contrast gradient information. The fusion results that
were obtained via the Zhu method are the best in terms of
metrics MI and Qe, namely, the Zhu method preserves the
original information from the input images.

2) EXPERIMENTAL RESULTS ON MRI-PET FUSION
Fig. 8 and Fig. 9 present the subjective results of MRI-PET
image fusion for patients with mild Alzheimer’s disease and

glioma, respectively. In Fig. 8 and Fig. 9, the results of the
proposed method have large advantages in the preservation
of the detail information such as edges and textures, and
the detail contrast enhancement effect is strong, which is
convenient for human visual observations; however, the colo
contrast is lower. The PCA method loses edge information.
Although the LES method completely retains the color infor-
mation of PET images, the texture and edge information of
MRI images is largely lost. Although the DSIFT method
preferably preserves details such as the textures and edges
of MRI images, the color information of PET images is lost.
The PSF method has lower color contrast and detail contrast
due to the excessive brightness information. The LES+PSF
method loses color and brightness information. Although the
GIHS, NSCT and GFF methods can completely preserve the
color and detail information of the source images, the detail
contrast is not high, and the result is not sufficiently clear. The
CNN method could not preserve color information from the
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TABLE 8. Objective scoring of mild Alzheimer’s disease on MRI-PET fusion.

TABLE 9. Objective scoring of glioma disease on MRI-PET fusion.

input PET image in pseudo color, as shown in Fig. 8(l). Mean-
while, the CNNmethod introduces color distortion, as shown
in Fig. 9(l). The results of the Zhu method are similar to the
source images, and the texture and edge information can be
preserved more completely; however, the contrast is lower
compared to our method.

Table 4 and Table 5 present the objective results of
MRI-PET image fusion for patients with mild Alzheimer’s
disease and glioma, respectively. Each value in the table
represents the average of 10 sets of fusion results, and the
best results are shown in bold. According to Table 4, our
method has the highest values of indicators NIQE, EI, TMQI,
EN, and AG; hence, the fusion result of our method has the
highest fidelity and contains more information and higher
detail contrast. The DCNN method has the highest value of
theMI index. Additionally, according to Table 5, the proposed
method obtains lowest value of the SSEQ metric, namely,
the proposed method introduces little distortion of the type

that is defined in SSEQ. CNN and DCNN outperform the
other fusion methods on the eleven selected metrics.

3) DISCUSSION
According to the subjective evaluation results and the objec-
tive evaluation results of MRI-SPECT fusion and MRI-PET
fusion, our method yields images with the highest contrast,
which makes the edges and textures clearer and the details
richer; however, the color contrast is lower. Although the
DSIFT method retains the structural information more effec-
tively, substantial color information is lost. The colors of
the LES method are consistent with those of the source
image; however, substantial structural information is lost. The
CNN and DCNN fusion methods introduce color distortion.
The Zhu method preserves the colors more effectively and
retains the structural information more completely; however,
the contrast is lower and the texture and edge retention is
lower compared to the proposed method. The remaining
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TABLE 10. Objective scoring of multi-model sensor medical image fusion (SUM=SUM1+SUM2+SUM3+SUM4).

methods are substantially outperformed by our method in
terms of both the objective and subjective results. In sum-
mary, our method yields satisfactory results in MEI-SPECT
fusion and MRI-PET fusion.

Compared to the input images, one output fused image
that was obtained via the proposed method is enhanced with
high contrast and high brightness. The enhanced fused image
destroys the original pixel distribution. Therefore, the large
difference between one input and one output fused image
results in lower similarity in terms of the pixel probabil-
ity, namely, the proposed method yields a lower MI value.
Tables 6-9 present the scoring results [30] in accordance with
the metrics values in Tables 2-5. Importantly, the last line
in Tables 6-9 corresponds to the total values of the eleven
metrics. According to Tables 6, 8, and 9, the proposedmethod
obtains the highest total values. Besides, Table 7 shows that
fusion method proposed by Zhu obtains the best prize in
terms of glioma disease onMRI-SPECT fusion. Furthermore,
according to Table 10, the proposed method realizes the high-
est performance in the objective evaluations, which constitute
an easy approach for evaluating fusion methods.

VI. CONCLUSION
This paper proposes an effective multimodal medical image
fusion method that is based on SR and GBVS saliency,
which can enhance the detail contrast of fused images while
retaining the important information of the source images.
Using the SR algorithm to extract the salient features of
smoothed images is beneficial for distinguishing the impor-
tant information from the redundant information, which
causes the fused image to retain more useful information.
Employing the GBVS algorithm to extract the salient features
of the detailed images has the advantage of selecting the
detail information from the source images, which renders
the color and brightness information of the fused image
more abundant. In addition, by using the GIHS algorithm
for the combination of decomposition coefficients, more
texture and edge information of the high-resolution images
can be preserved. The experimental results demonstrate that
the method can be effectively applied to MRI-PET fusion
and MRI-SPECT fusion since the fusion results have more
complete structures and color characteristics while the edges
and textures are clearer. However, to date, this method has
only been applied to brain medical images, and whether it is
suitable for medical images of other parts can continue to be
explored in future research.
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