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ABSTRACT Multiconlitron is a general theoretical framework for constructing piecewise linear classi-
fier. However, it contains a relatively large number of linear functions, resulting in complicated model
structure and poor generalization ability. Learning to prune redundant or excessive components may be
a very necessary progression. We propose a novel greedy method, i.e., greedy support multiconlitron
algorithm (GreSMA) to simplify themulticonlitron. In GreSMA, a procedure of greedy selection is first used.
It generates the initial linear boundaries, each of which can separate maximum number of training samples
under the current iteration. In this way, a minimal set of decision functions is established. In the second
stage of GreSMA, a procedure of boundary adjustment is designed to retrain the classification boundary
between convex hulls of local subsets, instead of individual samples. Thus, the adjusted boundary will fit the
data more closely. Experiments on both synthetic and real-world datasets show that GreSMA can produce
minimal multiconlitron with better performance. It meets the criteria of ‘‘Occam’s razor’’, since simpler
model can help prevent over-fitting and improve the generalization ability. More significantly, the proposed
method does not contain parameters that depend on the datasets or make assumptions of the underlying
statistical distributions of the samples. Therefore, it should be regarded as an attractive advancement of
piecewise linear learning in the general framework of multiconlitron.

INDEX TERMS Greedy method, model simplification, multiconlitron, piecewise linear classifier, support
vector machine.

I. INTRODUCTION
In pattern recognition, piecewise linear classifier (PLC) is
effective when a statistical model cannot express the under-
lying distribution of samples [1]. It approximates the true
classification boundary by a combination of hyperplanes.
Since each piece is linear, a PLC is very simple to implement
with requirement of low memory usage. Therefore, it has the
potential to be applied to the scenarios of small reconnais-
sance robots, intelligent cameras, embedded and real-time
systems, and portable devices [2].

Despite the simplicity in implementation, constructing a
PLC usually requires complex computational procedure [3].
In general, there are two criteria that need to be consid-
ered, i.e., selecting appropriate number of hyperplanes and
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minimizing the error of classification. Under their guidance,
many methods have been presented to synthesize PLCs over
the last few decades.

Hierarchical partitioning is one of the common ways.
In 1996, Chai et al. [4] achieved a binary tree structure
with genetic algorithm to design a PLC in the sense of
maximum impurity reduction. For simplifying the construc-
tion of a decision-tree PLC, in 2006 Kostin [2] developed
and implemented a simple and fast multi-class PLC with
acceptable classification accuracies, based on tree division
of subregion centroids. In 2016, Wang et al. [5] proposed
hierarchical mixing linear support vector machines (SVMs)
for nonlinear classification, which can be seen as special
form of a PLC. Furthermore, Ozkan et al. [6] designed
a highly dynamical self-organizing decision tree structure
for mitigating overtraining issues. The resulting PLC adap-
tively partitions the feature space into small regions and
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combines the local classification models specialized in those
regions. However, for the hierarchical structure, it will pro-
duce cumulative classification errors, affecting the prediction
accuracy.

The optimizationmethod is also employed to exploit piece-
wise linear structure [7]. As early as 1968, Mangasarian [8]
used a linear programming to construct the PLCs. With a
reference ofMangasarian’s work, Herman and Yeung [9] pro-
posed a similar but better method based on linear abnormality
functions. However, it needs to perform the optimization
process many times, involving a lengthy computation. From
2005 to 2015, Bagirov et al. [10]–[12] and Ozturk et al. [13]
proposed and improved an approach of max-min separabil-
ity. In this approach, a piecewise linear function with the
max-min form is determined by using the discrete gradient
to minimize the nonconvex and nonsmooth error function.
The resulting classifier has good discriminant ability, but the
relevant optimization problem is difficult to solve and the
number of hyperplanes needs to be pre-determined.

The local training method is another strategy to construct
PLCs. In 1980, Sklansky and Michelotti [14] proposed a
versatile technique for piecewise linear classification. This
technique first uses Forgy’s algorithm to form prototypes,
then finds all close-opposed pairs of prototypes to carry
out local training. Eventually, a piecewise-linear approxima-
tion of the Bayes-optimum decision surface is generated.
Along with the idea of local training, Park and Sklansky [15]
further described a Tomek-link-cutting method for design-
ing a multi-class PLC. However, it may suffer from under-
fitting due to insufficient hyperplanes. For addressing the
problem, Tenmoto et al. [1] employed minimum description
length (MDL) to choose an appropriate number of hyper-
planes. In 2010, Gai and Zhang [16] introduced a two-step
method to develop discriminative piecewise linear model.
In the first step, some boundary points are sampled and a
nonparametric decision surface is determined. To simplify
the surface, in the second step an approach for linear surface
segmentation is presented using Dirichlet process mixtures.
However, this method requires a hypothetical statistical dis-
tribution of data.

In fact, it is a hard task to pre-determine the number of
hyperplanes or assume the statistical distribution of data.
The question that deserves our consideration is whether we
can design a better PLC without these constraints. In 2011,
Li et al. [17] presented a general framework for con-
structing a PLC, named multiple convex linear perceptron
(Abbr. multiconlitron). In the framework, each hyperplane
of multiconlitron can be dynamically constructed without
pre-specified number and distribution assumption. From the
viewpoint of large margin, multiconlitron can be regarded as
the nonkernel generalization of SVMs. Recently, some new
variants and applications on multiconlitron have emerged,
such as alternating multiconlitron [18] and quasi-linear
SVM [19].

The advantages of multiconlitron over SVMs are as
follows:

• It does not need to achieve space mapping and ker-
nel selection, whereas there are some difficulties in
the selection of kernel functions and in explaining the
change of spatial metric for SVMs [20].

• The construction algorithm is quite straightforward
to implement without a lengthy optimization process.
In addition, it only includes a precision parameter that
can be set directly without tuning.

The original method for constructing a multiconlitron is
called support multiconlitron algorithm (SMA) [17]. How-
ever, considering the crucial effect of model complexity on
prediction, a multiconlitron by SMAmay contain a relatively
large number of linear functions, which results in poor gen-
eralization ability.

In this paper, we propose a greedy method to improve mul-
ticonlitron for designing better PLCs. This method sequen-
tially generate decision hyperplanes of multiconlitron, each
of which achieves a maximum separation of training samples
under the current iteration. This procedure is called greedy
selection. It aims to simplify the classification model of a
PLC by reducing the number of linear functions. In order to
maintain the merit of the local margin maximization, a pro-
cedure of boundary adjustment is further introduced. More
samples are used to retrain the classification hyperplanes so
that they are adjusted to more appropriate positions. The two
procedures constitute the main body of the greedy method.

In the convexly separable case, we develop a new iterative
algorithm, i.e., greedy support conlitron algorithm (GreSCA)
to simplify the convex linear perceptron (Abbr. conlitron).
Using GreSCA as the key component, in the commonly
separable case, we establish a greedy support multiconlitron
algorithm (GreSMA) for constructing minimal multiconl-
itron. Then, we evaluate the performance of GreSMA with
SMA, Kostin’s decision tree, linear SVM, and radial basis
function (RBF) SVM on both synthetic datasets and UCI
benchmark datasets. Finally, we summarize the main contri-
butions and discuss future research.

II. PRELIMINARIES
A. CONVEX HULL AND SEPARABILITY
We first give one definition and three lemmas to illustrate
the relationship between the separability of datasets and the
convex hulls.
Definition 1: let Rn be the n-dimensional Euclidean space.

For any finite set X ⊆ Rn, its convex hull (CH) is defined as

CH (X) =

x
∣∣∣∣∣∣x =

∑
1≤i≤|X |

αixi,
∑

1≤i≤|X |

αi=1, xi ∈ X , αi ≥ 0


(1)

where |X | stands for the cardinality of the set X. Next,
we introduce the separability of datasets [17].
Lemma 1: Given two finite datasets X ,Y ⊆ Rn, if their

convex hulls are disjoint, namely CH (X )∩CH (Y ) = ∅, then
X and Y are linearly separable.
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FIGURE 1. Separability description of datasets: (a) X and Y are linearly
separable; (b) X is convexly separable to Y ; (c) X and Y are commonly
separable.

Lemma 2: For two finite datasets X ,Y ⊆ Rn, if ∀y ∈
Y , y /∈ CH (X ), then X is convexly separable to Y . If X is
convexly separable to Y , or Y is convexly separable to X,
we call X and Y convexly separable.
Lemma 3: For two finite datasets X ,Y ⊆ Rn, if X∩Y = ∅,

i.e., they have no common points, then X and Y are commonly
separable.

Fig.1 shows an example for illustrating the three separable
cases. Note that the appellation ‘‘commonly separable’’ is
introduced not only for the sake of simplicity, but also for
the conceptual comparison with ‘‘linearly separable’’ and
‘‘convexly separable’’.

B. HARD-MARGIN SVM
Hard-margin SVM is an optimized linear classifier, which
is closely related to the convex hulls of datasets [21]. For
two finite datasets X ,Y ⊆ Rn, if they are linearly separable,
solving their hard-margin SVM can be converted into the
problem of computing the nearest point pair between CH (X )
and CH (Y ) [22].
We here introduce the Schlesinger-Kozinec (SK) algo-

rithm [23] to express the hard-margin SVM, and also use
it as the basis for subsequent algorithms. For the linearly
separable datasetsX and Y , SK algorithmwill find the nearest
point pair between their convex hulls to construct a ε-optimal
hyperplane. The optimization goal is

min ‖x − y‖ s.t. x ∈ CH (X ), y ∈ CH (Y ). (2)

If the nearest point pair (x∗, y∗) is the solution of (2),
namely d(CH (X ),CH (Y )) = ‖x∗ − y∗‖, the separating
hyperplane can be calculated as the perpendicular bisector of
x∗ and y∗,

f (x) = w∗ · x + b, (3)

where w∗ = x∗−y∗, b = (‖y∗‖2 − ‖x∗‖2)/2. The details of
SK algorithm are described in Algorithm-1.

The SK algorithm starts from two arbitrary points x∗ ∈ X
and y∗ ∈ Y . Then it searches a point vt ∈ X ∪ Y which
allows vt−y∗

x∗−y∗ to obtain the smallest projection length on the
vector (x∗ − y∗), i.e., m(vt ) = min{m(vi), i ∈ {1, ..., |X | +
|Y |}} (see Fig.2). Assume that under the current situation, y∗

is the nearest point from CH (Y ) to x∗. Then we will find vt =
xt to evaluate the ε-optimal criterion. If the criterion ||x∗ −
y∗|| − m(vt ) < ε is not satisfying, then y∗ is fixed and x∗ is

Algorithm 1 Schlesinger-Kozinec (SK) Algorithm
Input: Two finite disjoint sets X ,Y ⊆ Rn,

precision parameter ε.
1: Pick x∗ ∈ X , y∗ ∈ Y ;
2: vt = argmini∈{1,...,|X |+|Y |} m (vi), where

m (vi) =


(vi−y∗)·(x∗−y∗)
‖x∗−y∗‖ , for vi ∈ X ,

(vi−x∗)·(y∗−x∗)
‖x∗−y∗‖ , for vi ∈ Y .

3: if ‖x∗ − y∗‖ − m (vt) < ε, goto Step 5;
4: if vt ∈ X , x∗ = (1− q)x∗ + qvt , where

q = min(1, ((x∗ − y∗) · (x∗ − vt ))/||x∗ − vt ||2);
else if vt ∈ Y , y∗ = (1− q)y∗ + qvt , where
q = min(1, ((y∗ − x∗) · (y∗ − vt ))/||y∗ − vt ||2);

goto Step 2;
5: w∗ = x∗ − y∗, b = (||y∗||2 − ||x∗||2)/2;

Output: f (x) = w∗ · x + b.

FIGURE 2. The geometric meaning of m(vt ):
m(vt = xt ) = ||p1 − y∗|| < m(xi 6=t ) = ||p2 − y∗||.

FIGURE 3. The geometric meaning of x∗new : (a) q = 1, x∗new = xt ;
(b) 0 < q < 1, x∗new = (1− q)x∗ + qxt .

moved towards y∗ by update rule x∗new = (1 − q)x∗ + qx∗.
q is determined so that the distance between x∗new and y∗ is
minimal.

Fig.3 shows the update rule of SK algorithm. If q = 1,
then x∗new = xt is a point in X . if 0 < q < 1, then x∗new =
(1−q)x∗+qxt is the vertical point from y∗ to the line segment
CH{x∗, xt }. If x∗ is not the nearest point from CH (X ) to y∗,
there must exist another point x∗new = xt or x∗new = (1−q)x∗+
qxt , so that d(x∗new, y

∗) < d(x∗, y∗). Since the dataset is finite,
we can easily get that the SK algorithm must be convergent.
It can finally find the nearest point pair between two convex
hulls, and calculate the classification hyperplane as f (x) = 0.
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FIGURE 4. Intuitive difference between (a) SCA and (b) GreSCA.

The time complexity of SK algorithm is estimated as
O(D · (|X | + |Y |)/ε), where D = maxx∈X ,y∈Y {||x − y||}, and
ε is a precision parameter, for controlling the convergence
condition. The value of D/ε is related to the distribution of
samples, indicating the maximum number of iterations.

III. GREEDY SUPPORT CONLITRON ALGORITHM
Based on the concept of ‘‘convexly separable’’, the conlitron
(convex linear perceptron) [17] is presented. A conlitron is a
set of linear functions, which can separate any two convexly
separable datasets. For X ,Y ⊆ Rn, if X is convexly separable
to Y , then there must exist a conlitron from X to Y denoted
as

CLP = {fl(x) = wl · x + bl, (wl, bl) ∈ Rn × R, 1 ≤ l ≤ L}

(4)

satisfying

∀x ∈ X ,∀1 ≤ l ≤ L, fl(x) = wl · x + bl > 0,

∀y ∈ Y , ∃1 ≤ l ≤ L, fl(y) = wl · y+ bl < 0. (5)

The decision function of a conlitron from X to Y is defined
as

CLP(x) =
{
+1, ∀1 ≤ l ≤ L, fl(x) > 0,
−1, ∃1 ≤ l ≤ L, fl(x) < 0.

(6)

Equation 6 represents the discriminant model of the con-
litron. Each fl(x) in it is a linear discriminant function. The
original method for constructing a conlitron is called support
conlitron algorithm (SCA). Given training direction from X
to Y , in each iteration, SCA chooses the nearest point yt
from Y to CH (X ), and then constructs a hard-margin SVM,
f (x), which cuts off some points in Y . When Y is empty
the SCA will finish executing. Eventually, a series of linear
functions constitute a conlitron. The time complexity of SCA
is estimated asO(D ·(|X | · |Y |)/ε). The geometric explanation
of SCA can be seen in Fig.4a.

Obviously, SCA calculates each linear function between
CH (X ) and an individual point of Y . From a quantitative
viewpoint, individual training points will produce a large
number of linear functions, leading to a decline in general-
ization ability. In this paper, we present a greedy method,
i.e., greedy support conlitron algorithm (GreSCA) to con-
struct minimal conlitron by generating as few linear functions
as possible.

Algorithm 2Greedy Support ConlitronAlgorithm (GreSCA)
Input: Two finite disjoint sets X ,Y ⊆ Rn,

precision parameter ε.
1: l ← 1, m = |Y |;
2: G(x) = {gi(x)|gi(x)=SK (X , {yi}, ε), 1≤ i≤m};
3: p = argmaxi{CutNum(Y , G(x));
4: Yt={y|gp(y)≤gp(yp), y∈Y },Gt (x)={gj(x)|yj∈Yt };
5: fl(x) = SK (X ,Yt , ε);
6: Y = Y − Yt ,G(x) = G(x)− Gt (x);
7: l ← l + 1;
8: if Y 6= ∅, goto Step 3;
9: CLP = {fi(x), 1 ≤ i ≤ l};

Output: A conlitron CLP.

Given the training direction from X to Y , in each iteration,
GreSCA chooses the linear function gp(x) as the initial deci-
sion function that can separate the most points of Y from X .
We define these separated points of Y as the local training
samples corresponding to gp(x). They satisfy gp(yi) ≤ gp(yp)
and form a subset Yt ⊆ Y . Subsequently, Yt will be cut off
and removed from Y through the hyperplane gp(x) = 0.
Different from the original SCA that uses the nearest point
to construct a separating hyperplane, GreSCA produces a
hyperplane by finding the point that achieves a maximum
separation between X and Y . It ultimately reduces the number
of linear functions with the greedy strategy. Fig.4 shows the
intuitive differences between SCA and GreSCA. In Fig.4a,
SCA generates two linear functions f1(x) and f2(x) by locating
the nearest points y1 and y2 from Y to CH (X ). In Fig.4b,
GreSCA finds the point yt and generates one linear function
g1(x). Using the greedy strategy, it is easy to see that g1(x)
cuts off more training points.

The procedure, called greedy selection, repeats similarly
until no point left in Y . As a result, a series of linear functions
constitute an initial conlitron. Since Y is a finite set, after
cutting for many times, this procedure will stop, satisfying
Y = ∅. Algorithm-2 shows the details of GreSCA. In it,
‘‘CutNum’’ is used to compute the number of points cut off
by gi(x).

From Algorithm-2, we can see that each linear function
gi(x) ∈ G(x) can separates CH (X ) from a subset Yt ⊆ Y .
However, gi(x) was initially trained by SK using an individual
point in Y and the total points in X . From a statistical point of
view, an individual training point does not represent a real
class boundary well, and it will also be affected by noise.
Hence, in Step 5 of the GreSCA, we retrain the classification
boundary by using the total points of Yt and the total points
of X , so that the initial boundary is adjusted to appropriate
position.

An intuitive explanation of the boundary adjustment is
shown in Fig.5. The initial boundary g1(x) = 0 is obtained
by greedy schema from an individual point yt to CH (X ) (see
Fig.5a). It cuts off a set of points Yt satisfying gi(yi ∈ Yt ) > 0.
Using the procedure of boundary adjustment, the new
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FIGURE 5. Boundary adjustment for GreSCA: (a) the initial boundary;
(b) the adjusted boundary.

FIGURE 6. Two conlitrons respectively generated by (a) SCA and
(b) GreSCA.

boundary H1 is obtained by retraining between CH (Yt ) and
CH (X ) (see Fig.5b). It is worth noting that the classification
boundary is changed from g1(x) = 0 to H1, which includes
not only the procedure of boundary adjustment, but also the
procedure of greedy selection. The two procedures constitute
the main body of the GreSCA.

Fig.6 shows a real example for illustrating the difference
of constructing conlitron between GreSCA and SCA. The
conlitron by SCA (see Fig.6a) contains 11 linear functions,
whereas the conlitron by GreSCA (see Fig.6b) contains only
6 linear functions. Intuitively, GreSCA with greedy strategy
produces a simpler model structure than SCA. It is expected
that GreSCAwill perform better in high-dimensional or com-
plex classification.

Since both X and Y are finite sets, GreSCA will converge
after a limited number of iterations. Its time complexity is
higher than the original SCA. For convenience, we discuss
the time complexity of GreSCA in two parts. The first part
indicates the time GreSCA performs the procedure of greedy
selection. It is similar to the original SCA and can be roughly
evaluated as O(D · (|X | · |Y |)/ε). The second part represents
the time used for the procedure of boundary adjustment.
In the case that X is convexly separable to Y , each adjustment
invokes the SK algorithm once and computes a separating
hyperplane between X and a subset Yt ⊆ Y . We consider
the worst situation that Yt = Y and then we can get the com-
plexity of O(D · (|X | + |Y |)/ε) for one adjustment. Since the
maximum number of boundary adjustment is |Y |, we can fur-
ther obtain the time complexity ofO(|Y | · (D · (|X |+ |Y |)/ε)).
Similarly, when Y is convexly separable to X , the time com-
plexity of boundary adjustment is O(|X | · (D · (|X |+ |Y |)/ε)).

FIGURE 7. Intuitive difference between (a) SMA and (b) GreSMA.

Finally, we summarize the results with two parts and
estimate the overall time complexity of GreSCA as
O(D · (|X | + |Y |)2/ε).

IV. GREEDY SUPPORT MULTICONLITRON ALGORITHM
If two finite datasets X ,Y ⊆ Rn are convexly separable, they
can be separated by a conlitron. However, if X and Y are com-
monly separable (see Lemma 3), a conlitron might not work.
Ref. [17] has proved that for any two finite disjoint datasets,
there must exist a multiconlitron for separating them.

Multiconlitron is a union of multiple conlitrons. Given
the training direction from X to Y , a multiconlitron can be
expressed asMCLP = {CLPk , 1 ≤ k ≤ K }, satisfying

∀x ∈ X , ∃1 ≤ k ≤ K ,CLPk (x) = +1

∀y ∈ Y ,∀1 ≤ k ≤ K ,CLPk (y) = −1 (7)

Accordingly, the decision function is defined as

MCLP(x) =
{
+1, ∃1 ≤ k ≤ K ,CLPk (x) = +1
−1, ∀1 ≤ k ≤ K ,CLPk (x) = −1

(8)

Equation 8 represents the discriminant model of the multi-
conlitron. Each CLPk (x) in it is a convex discriminant conl-
itron, namely a convex polyhedron. The original method for
constructing a multiconlitron is called support multiconlitron
algorithm (SMA). Given training direction fromX to Y , SMA
chooses the nearest point xt from X to Y in each iteration.
Since xt is convexly separable to Y , we can construct a
conlitron from xt to Y , which cuts off a number of points in X .
The SMAwill not stop execution untilX = ∅. Finally, a union
of multiple conlitrons constitute a multiconlitron. The time
complexity of SMA is estimated as O(|X | · |Y | · (|X | + |Y |)).
The geometric explanation to SMA can be seen in Fig.7a.

Note that SMA generates each conlitron by an individual
point of X and the total points of Y . However, each conl-
itron contains a large number of linear functions. From the
quantitative viewpoint, a multiconlitron usually has a com-
plex model structure, resulting in poor generalization ability.
Therefore, we present a greedy method, i.e., greedy support
multiconlitron algorithm (GreSMA) to construct a minimal
multiconlitron for simplifying the classification model.

Given the training direction from X to Y , GreSMA first
produces a candidate set of conlitrons, each of which is
trained between Y and an individual point in X . Next, in each
iteration, GreSMA chooses the gCLPp(x) ∈ GCLP as the ini-
tial conlitron. It can surround the most points of X in a convex
polyhedron that is defined by gCLPp(x) = +1 under the cur-
rent iteration. These points surrounded by gCLPp(x) = +1
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Algorithm 3 Greedy Support Multiconlitron
Algorithm (GreSMA)
Input: Two finite disjoint sets X ,Y ⊆ Rn,

precision parameter ε.
1: k ← 1, n = |X |;
2: GCLP = {gCLPi|gCLPi = GreSCA({xi},Y , ε), 1 ≤ i ≤
n};

3: p = argmaxi{CutNum(X , gCLPi));
4: Xt = {x|gCLPp(x)=+1, x ∈ X},GCLPt = {gCLPj|xj ∈
Xt };

5: CLPk = GreSCA(Xt ,Y , ε);
6: X = X − Xt ,GCLP = GCLP− GCLPt ;
7: k ← k + 1;
8: if X 6= ∅, goto Step 3;
9: MCLP = {CLPi, 1 ≤ i ≤ k};

Output: A multiconlitronMCLP.

are defined as local training samples. They form a subset
Xt ⊆ X . Subsequently, Xt will be removed from X . Different
from the original SMA that uses the nearest point to construct
a conlitron, GreSMA produces a conlitron by finding the
point that implements a maximum separation between X and
Y . After repeated iterations of the algorithm, it can ultimately
reduce the number of the global conlitrons. Fig.7 shows the
intuitive differences between SMA and GreSMA. In Fig.7a,
SMA generates two conlitrons CLP1 and CLP2 by two points
xp, xq ∈ X . In Fig.7b, GreSMA finds the point xt ∈ X and
generates only one conlitron CLPnew. By adopting the greedy
strategy, each conlitron in the multiconlitron may surround
more points.

The procedure of greedy selection repeats similarly until
no point left in X . Consequently, a series of conlitrons consti-
tute an initial multiconlitron. Algorithm-3 shows the descrip-
tion of GreSMA. As in GreSCA, we still use ‘‘CutNum’’ to
compute the number of points surrounded by gCLPi.

Through Algorithm-3, we can get that each conlitron
gCLPi ∈ GCLP can separates a subset Xt ⊆ X from Y .
However, gCLPi was initially trained by GreSCA using an
individual point in X and the total points in Y . From the
statistical point of view, an individual training point cannot
represent a subset of X well. The resulting conlitron may not
be a good approximation to the real classification boundaries.
Therefore, in Step 5 of GreSMA, we employ a procedure of
boundary adjustment, for retraining the boundary by using the
total points of Xt and the total points of Y . Xt is initially estab-
lished via the procedure of greedy selection. It is convexly
separable to Y (Lemma 2). We can use GreSCA to construct
a conlitron between Xt and Y , i.e., a convex separator consist-
ing of multiple hyperplanes. The separator surrounds Xt in a
convex area and excludes Y outside. Each separating hyper-
plane in it is exactly the perpendicular bisector connecting the
nearest points of CH (Xt ) and CH (Yt ). Obviously, the set of
local training samples (Xt ) is the unique subset of X under the
current iteration. Correspondingly, the adjusted boundary is

FIGURE 8. Boundary adjustment for GreSMA: (a) the initial boundary;
(b) the adjusted boundary.

FIGURE 9. Two multiconlitrons respectively generated by (a) SMA and
(b) GreSMA.

also unique. Since the boundary is calculated between convex
hulls instead of individual points, the initial boundary can be
adjusted, and its position will be more reasonable in general.

The boundary adjustment for GreSMA is shown in Fig.8.
The initial conlitron CLPt is obtained by greedy strategy
between Y and an individual point xt in X (see Fig.8a).
It surrounds a set of points Xt in X , excluding Y outside.
After using the procedure of boundary adjustment, the new
conlitron CLPnew is trained between two point sets, Xt and Y
(see Fig.8b). It is worth noting that the decision function is
adjusted from CLPt to CLPnew, which contains not only the
greedy selection of the conlitrons, but also the appropriate
adjustment of the boundary.

Fig.9 shows the difference for constructing multiconlitron
between SMA and GreSMA. The multiconlitron by SMA
(see Fig.9a) contains 36 conlitrons and 86 linear functions,
whereas the multiconlitron by GreSMA (see Fig.9b) con-
tains only 12 conlitrons and 44 linear functions. Obviously,
GreSMA with greedy strategy produces a simpler classifica-
tion model structure than SMA. In the experimental section,
we will show that the multiconlitrons by GreSMA have better
classification ability on real-world datasets.

Since both X and Y are finite sets, GreSMA will converge
after a limited number of iterations. Its time complexity is
higher than the original SMA. As for GreSCA, we also
discuss the time complexity of GreSMA in two parts. The
first part indicates the time of performing the procedure of
greedy selection. It is similar to the original SMA and can be
roughly evaluated as O(|X | · |Y | · (|X | + |Y |)). The second
part represents the time used for the procedure of boundary
adjustment. When the training direction is from X to Y , each
adjustment must call GreSCA once between a subset of X ,
Xt , and Y . In the worst case that Xt = X , one adjustment will
take GreSMA a GreSCA’s time, i.e., O(D · (|X | + |Y |)2/ε).
The maximum number of boundary adjustment for GreSMA
is |X |. We can get the time complexity is O(|X | · (D · (|X | +
|Y |)2/ε)) for all adjustments. Similarly, when the training
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FIGURE 10. Comparative experiments for (a) SMA and (b) GreSMA on four synthetic datasets.

direction is from Y to X , the time complexity of boundary
adjustment is O(|Y | · (D · (|X | + |Y |)2/ε))
Finally, we summarize the results of greedy selection and

boundary adjustment and estimate the overall time complex-
ity of GreSMA as O((|X | + |Y |) · (|X |2 + |Y |2)/ε).

V. EXPERIMENTAL RESULTS
In this section, we conduct numerical experiments to evaluate
the performance of GreSMA. Since the current GreSMA
is designed only for two classes, we select a number
of two-class datasets and report the experimental results.
We first compare GreSMA with SMA on 4 synthetic
datasets. Then, we compare GreSMA with SMA, KDT
(Kostin’s decision tree synthesized with piecewise linear
boundaries [2]), linear SVM, and RBF SVM on 12 bench-
mark datasets. All experiments are performed on a PC with
I5-3230M(2.60GHz), 4-GB memory, and Windows8.1 oper-
ating system. The precision parameter ε is set to 10−3.

A. EXPERIMENTS ON THE SYNTHETIC DATASETS
To intuitively compare the decision boundaries generated
by SMA and GreSMA, we introduce 4 synthetic datasets,
i.e., two-moon dataset [17], horse-saddle dataset [16],
double-parabola dataset [24], and checkerboard dataset [25].
For each of them, GreSMA and SMA are respectively
applied. Fig.10 shows the real classification boundaries, and
Table 1 lists the corresponding number of conlitrons (CLPs)
and the number of linear functions (LFs).

From Fig.10 and Table 1, we can see that the multiconl-
itrons (i.e., classification models) computed by GreSMA are
generally simpler than that computed by SMA. Especially
for the checkerboard dataset, the multiconlitron by SMA
contains 164 conlitrons and 822 linear functions, whereas
the multiconlitron by GreSMA contains only 19 conlitrons
and 64 linear functions. Since a simpler model will have the
effect of preventing overfitting, we expect that GreSMA can
outperform SMA in generalization ability.

TABLE 1. Comparison of GreSMA and SMA on four synthetic datasets.

TABLE 2. Datasets used in the experiments.

B. EXPERIMENTS ON BENCHMARK DATASETS
We further evaluate GreSMA on 12 selected benchmark
datasets. These datasets are from the UCI machine learning
repository [26], and listed in Table 2. For the last three
datasets, we perform evaluation on them by using the indi-
cated training and testing sets. For the first nine datasets,
we randomly divide each of them into two halves for 10 times,
one half for training and the other for testing, and then report
the results averaged over the 10 times.

By scaling each feature of all datasets to [0, 1], we perform
the comparison experiment of GreSMA with SMA and KDT.
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TABLE 3. Testing accuracies of GreSMA with SMA, KDT, linear SVM, and
RBF SVM.

We also employ a library of SVMs, i.e., LIBSVM [27] to
conduct experiments. Two types of SVMs are used as base-
lines, namely, linear SVM with parameter C and RBF SVM
with parameters (C, γ ). The optimal values for C and γ ,
from candidate sets {2i|i = −4,−3, . . . , 3, 4} and {2i|i =
−7,−6, . . . , 4, 5}, are determined by the grid search scheme
and 10-fold cross validation.

We summarize the testing accuracies of GreSMA with
SMA, KDT, linear SVM, and RBF SVM in Table 3. It is
shown that GreSMA has higher accuracies than SMA on nine
datasets (BRE, GER, HEA, ION, MAG, MUS, MO1, MO2,
MO3), but slightly lower on the remaining three datasets
(PAR, PIM, SON). This means that the multiconlitrons gen-
erated by GreSMA with greedy strategy obtain a better
classification ability in general. Compared with KDT that
is essentially a PLC based on the tree division of the sub-
region centroids, GreSMA performs better on nine datasets
(BRE, ION, MAG, MUS, PAR, SON, MO1, MO2, MO3).
More remarkably, on the ‘‘MO1’’ dataset, GreSMA has a
testing accuracy of 93.75%, which is much higher than that
of 65.74% for KDT. Compared with the baselines, GreSMA
outperforms linear SVM on ten datasets (BRE, ION, MAG,
MUS, PAR, PIM, SON, MO1, MO2, MO3), but not perform-
ing as well as RBF SVMexcept for two datasets (PAR,MO1).
Although the RBF SVM is more accurate than GreSMA,
it has to tune the two parameters C and γ at the same time,
which may be inconvenient in practical applications. There-
fore, we expect the proposed method to be prioritized in some
important real-world scenarios, such as real-time systems and
portable devices.

Table 4 and Fig. 11 provide the comparative results of
GreSMA with SMA on the numbers of conlitrons and linear
functions.We can see that on all selected benchmark datasets,
the multiconlitron by GreSMA contains much fewer conl-
itrons andmuch fewer linear functions than themulticonlitron
by SMA. For example, on the dataset MUS, the multicon-
litron by GreSMA has only 45 conlitrons and 126 linear
functions, whereas the multiconlitron by SMA has 133 con-
litrons and 5095 linear functions. The simplified model is

TABLE 4. Comparison of GreSMA and SMA on the numbers of conlitrons
and linear functions.

FIGURE 11. Comparison of the numbers of conlitrons and linear
functions in logarithmic scale.

usually able to bring about the improvement of classification
accuracy, which has been confirmed in Table 3. This meets
the criteria of ‘‘Occam’s razor’’, i.e., the simpler model will
fit the data better. More importantly, it is very convenient to
integrate a multiconlitron with minimal model into real-time
systems and portable devices.

Table 5 reports the training time and testing time. In gen-
eral, GreSMA takes more training time than SMA because it
costs a lot of time to retrain the classification boundary. As for
testing time, GreSMA takes less than SMA due to its sim-
pler model structure. For instance, on dataset MAG, it takes
GreSMA about 520ms, but it takes SMA about 3282ms.
Compared with KDT, GreSMA has a slower training phase
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FIGURE 12. Variation of classification accuracies with the parameter ε.

TABLE 5. Comparison of training time in seconds (testing time in
milliseconds).

but a faster testing phase. Compared with SVMs, GreSMA
takes less training time, where the training time for SVMs
includes in part the time of choosing optimal parameters.
On testing time, GreSMA takes less than SVMs, since it
need not reconstruct the prediction model by using the whole
support vectors.

C. DETERMINATION OF THE PARAMETER
Here, we discuss the determination of the parameter ε for
GreSMA. ε indicates the stop criterion both for (Gre)SMA
and for SVMs. It should be noted that SMA is hardly affected
by the parameter ε. At each piece, it calculates a hyperplane
between two original subsets. And for GreSMA, it is sensitive
to the parameter ε because it requires the calculation of each

separating hyperplane between the convex hulls correspond-
ing to two local subsets. Hence it is significant to choose an
appropriate value of ε for GreSMA. Fig.12 shows the classifi-
cation accuracies of GreSMA, SMA, RBF SVM varying with
the parameter ε, where ε takes value from {1, 0.5, 0.1, 0.05,
0.01,..., 0.00005, 0.00001}. From Fig.12, we can see a com-
mon trend on all the six selected datasets, that is, the accu-
racies gradually increase as ε becomes smaller, and then
arrives at a stable value. For most of these datasets, the best ε
with desirable accuracies is in [0.005, 0.00001]. Meanwhile,
the training time should also be taken into account. There-
fore, we would recommend that [0.005, 0.001] is a candidate
interval of ε for GreSMA.

VI. CONCLUSION
In this paper, we have proposed a greedy method,
i.e., GreSMA for constructing minimal multiconlitron. It is
worth noting that we use the term ‘‘minimal’’ rather than the
term ‘‘minimum’’, because the GreSMA is heuristic. And
from another point of view, constructing a minimum PLC
may be an NP-hard problem. GreSMA includes two core pro-
cedures, namely greedy selection and boundary adjustment.
With greedy selection, we can separate the maximum number
of training samples under the current iteration.With boundary
adjustment, we can involve all of the samples separated in
the retraining phase for further improving the generalization
ability. Experimental results have proved that, compared with
the original SMA, GreSMA produces minimal prediction
model, and takes less testing time. Moreover, in terms of
accuracy, it has a clear superiority over SMA. This is in
line with the principle of Occam’s razor that aims to choose
the simplest assumption that fits the data well. Although it
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is not as good as the RBF SVM as a whole, GreSMA still
has some advantages that need to be noticed. (1) It does not
contain parameters that depend on the datasets. (2) It makes
no assumptions of the underlying statistical distributions of
the samples. These advantages are important for integrating
a PLC into a small device or portable terminal.

It should be noticed that the proposed method has some
weaknesses and limitations. GreSMA can only handle binary
classification problem at present. However, most real-world
scenarios correspond to multi-class classification problems.
Therefore, we are ready to introduce some well-knownmulti-
class technologies (such as one-versus-one [29], one-versus-
all [30], and binary tree architecture [31]) to extend GreSMA
in the future. Also, GreSMA has a lengthy training process.
In the current situation, it is not suitable for large-scale prob-
lems such as computer vision. As future work, we plan to
introduce a more effective learning method (such as surrogate
modeling [28]) to further improve the multiconlitron, so that
it can be prioritized in some important real-world applica-
tions.
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