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ABSTRACT For problems related to the robust tracking of visual objects in various challenging tracking
conditions, a robust visual tracking method based on multilayer convolutional features and correlation
filtering is proposed. To solve the problems of mean deviation and insufficient discrimination ability in
traditional convolutional neural networks (CNN), this study proposes randomized parametric rectified linear
units (RPReLU) as the activation function.Meanwhile, the zero-setting operation of weights in the traditional
dropout process occurs randomly and fails to discriminate the features with different weights, which leads
to a low learning efficiency. Therefore, this study proposes an improved dropout method based on a support
vector machine (SVM), which provides a selective dropout rate to increase the manual orientation and
improve the learning efficiency of the dropout process. In addition, traditional CNN trackers only employ
the output of the last layer, which can effectively capture semantic features but not spatial features. To solve
this problem, we propose to use the rich features of the multiple convolution layers of CaffeNet as the
target representation. Furthermore, we propose an improved correlation filter to further improve the tracking
performance and improve the tracker’s capability of dealing with scale changes, which effectively solves the
problem of adaptive estimating of target size. The extensive experimental evaluations have been carried out
through the OTB2015, VOT2016 and VOT2018 datasets, proving that the proposed method is very effective
in dealing with a variety of challenging factors.

INDEX TERMS Convolutional neutral network, correlation filter, target tracking, computer vision
technology.

I. INTRODUCTION
Visual target tracking is a valuable research that has been
widely used in frontier fields such as traffic accident super-
vision, automatic driving, intelligent home, and weapon
control [1]–[4]. While much effort has been expended to
develop the robustness and efficiency of visual trackers, target
tracking still needs to address the followingmajor challenges:
1) various interference factors, including low resolution, rota-
tion, scale change, occlusion, deformation, motion blur and
so on; 2) insufficient tracking efficiency, accuracy and sta-
bility [5]–[7]. Therefore, the main task of this research is to
solve these two problems.

In recent years, a large number of visual tracking meth-
ods have been proposed to solve target tracking problems.
An et al. [8] proposed a mean shift tracking algorithm based
on 3D colour histogram. This method deals with the influence
of a low-lighting environment and similar targets on tracking.
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However, when the intensity or distribution of light changes
dramatically, its tracking effect is not ideal. Zhou et al. [9]
proposed a tracking method that can not only suppress back-
ground interference, but also increase foreground weight by
using foreground probability and candidatemodel weight his-
togram. This method solves the interference of background
change and illumination change, but the tracking failure
rate is high under the interference of target occlusion and
motion blur. Reference [10] improved particle filter tracker
(based on particle swarm optimization (PSO for short).
The iteration ability of PSO greatly improves the tracking
efficiency of particle filter tracker. However, PSO didn’t
solve the problem of diversity loss of particle filter samples,
so the accuracy and stability of the tracker are insufficient.
Danelljan et al. [11] proposed an adaptive multi-scale corre-
lation filter (DSST) method based on histogram of oriented
gradients (HOG) feature to deal with the scale change of
the target. However, this method has the disadvantages of
low accuracy and robustness. Furthermore, these traditional
trackers employ hand-crafted feature representations,
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e.g., Haar-like features [12], histograms [13], scale-invariant
feature transform (SIFT) features [14], HOG descriptors [15],
and covariance descriptors [16]. However, due to the lim-
itations of manual selection and the complexity of mixed
features, the performance enhancement of these traditional
tracking algorithms is hindered by the hand-crafted feature
representation. In addition, most of these trackers adopt a
single feature, which is only applicable to specific tracking
scenarios and lacks robustness to complex tracking scenarios.

Recent results have proved that the appearance model
of convolutional neural networks (CNN) is superior to the
hand-crafted model [17]–[19]. Unlike the traditional tracking
methosds using hand-crafted features, CNN based trackers
can automatically learn features, which are discriminative
and possess high-level visual information, from raw data.
CNN-based trackers such as TCNN [39] and C-COT [40]
have shown significant performance improvement in com-
plex tasks such as man-machine competition, disease detec-
tion and subtitle recognition. Therefore, it is very meaningful
to know how to make better use of CNN’s rich feature hier-
archy for powerful visual tracking.

Meanwhile, lots of new trackers based on correlation filters
have been developed recently. Wang et al. [48] developed an
effective framework of multi-cue analysis for robust visual
tracking. This method combines different types of features,
and constructs multiple experts by discriminating correla-
tion filter (DCF), each of which tracks the target indepen-
dently. Tang et al. [53] introduced the multi-kernel learning
(MKL) into KCF and reformulated the MKL version of CF
objective function with its upper bound, alleviating the neg-
ative mutual interference of different kernels significantly.
Kart et al. [54] presented a new long-term RGB-D tracker
by reconstruction (OTR) with view-specific discriminative
correlation filters (DCFs). The OTR tracker can perform
online 3D target reconstruction to facilitate robust learn-
ing of a set of view-specific DCFs and robustly localize
the target after out-of-view rotation or heavy occlusion.
Zhang et al. [55] proposed an end-to-end deep architecture to
incorporate geometric transformations into a CF based net-
work and tackle the issue of boundary effects and aspect ratio
variations in CF based trackers, ensuring an accurate motion
estimation inferred from the consistently optimized network.
Sun et al. [56] developed a novel region-of-interest (ROI)
pooled CF tracker for robust visual tracking. Meanwhile
this paper proposed an efficient joint training formula for
the proposed CF tracker and derived the Fourier solvers for
efficient model training. Dai et al. [57] presented an adaptive
spatially regularized correlation filters (ASRCF) model to
simultaneously optimize the filter coefficients and the spatial
regularization weight. The ASRCF tracker also exploited two
CF models to estimate the location and separately to improve
its tracking efficiency.

In view of the advantages of CF and CNN, the combination
of CF and CNN has become a new research trend of target
tracking. Chao and Wei [37] proposed a strategy to collect a

training sample set based on keypoints, which contributes to
a clear acceleration in training of DCF-based CNN trackers.
Yao et al. [49] presented a RTINet framework for deep rep-
resentation and model adaptation learning in visual tracking.
In this method, the deep convolution network is used for
feature representation, and CNN is combined with advanced
BACF tracker. Hao et al. [24] developed a new tracking algo-
rithm based on CNN, which decomposes the tracking process
into translation and scale estimation. This algorithm learns
multiple correlation filters on CNN features and adaptively
fuses these response graphs to obtain better target positions.
The combination of CNN and CF greatly improves the per-
formance and efficiency of the target tracking process, and
provides a new way to improve the robustness and efficiency
of visual trackers.

A. MOTIVATION
Existing CNN based tracking methods still need improve-
ment in efficiency, accuracy and robustness. Therefore,
the main task of this research is to solve these shortcomings.
We identify two key points to solve these problems: network
structure and feature selecting strategy.

1) NETWORK STRUCTURE
The first issue is that traditional CNN based trackers still
suffer from a lot of problems due to network structure: the
problems of mean shift and insufficient distinguishing ability
caused by unsuited activation function; precision decline in
the dropout process due to lack of pertinence; and low speed
in the convolution operation due to the large amount of
calculation. Therefore, it is critical to optimize the network
structure of the traditional CNN tracker.

2) FEATURE SELECTING STRATEGY
The second problem is that traditional CNN trackers only
use the last layer’s output. For advanced visual recognition
processes, the features of the last convolutional layer are use-
ful because they are most relevant to category-level seman-
tics and remain constant with variables such as intra-class
changes. However, the primary goal of visual tracking is to
precisely locate the target rather than to infer its semantic
class. Therefore, the best representation of the target is not
met by using only the features of the last convolutional layer.

B. CONTRIBUTIONS
This study proposes a robust visual tracker based on multi-
layer convolutional features of CNN and correlation filtering.
The main innovation and contributions of this study are:

1)Traditional CNN tracking algorithms often employ rec-
tified linear units (ReLU) or parametric rectified linear
unit (PReLU) as the activation function. The ReLU function
outputs non-negative value, which leads to the problem of
mean shift of output value. And the PReLU function can-
not discriminate the difference between different individuals
because it uses fixed invariant function coefficients. To solve
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these problems, in this paper, the randomized parametric
rectified linear unit (RPReLU) is proposed and employed as
the activation function of our CNN tracker. The proposed
RPReLU function not only contain positive output and neg-
ative output, but also add random perturbation factors in
all output. It enhances the adaptability of the algorithm to
multiple samples.

2) In the traditional dropout process, the zero-setting
operation of weights occurs randomly, which is a reflec-
tion of the idea of ‘‘average model’’. And this ‘‘average
model’’ method fails to discriminate the features with dif-
ferent weights, which leads to a low learning efficiency.
In this paper, an improved dropout method based on support
vector machine (SVM-dropout) is proposed to provide the
CNN tracker a selective dropout rate according to the feature
weights, which increases its manual orientation and improves
the learning efficiency.

3) Traditional CNN trackers only employ the target fea-
tures from the last layer. Although features from the last
layer of the CNN are better at capturing semantics, its ability
to capture spatial features, such as object location, is not
as good as that of the earlier layers. And while the earlier
layers are precise in localization, they are insufficient for cap-
turing semantics. Some of the recent researches employ the
multi-layer characteristics of the VGG-Net model [20], [21].
However, considering that traditional CaffeNet is also a deep
convolution neural network model, and CaffeNet has a sim-
pler and more efficient network structure, we propose to
employ multilayer features of CaffeNet as the target repre-
sentation to solve these problems. In particular, we use the
weighted sum of convolution features of conv3, conv4 and
conv5 as the tracking output, rather than only the last layer
for feature representation.

4) Correlation filter (CF) is introduced to our CNN tracker
to further enhance the tracking performance and improve
the tracker’s ability to deal with the scale change and effec-
tively solve the problem of adaptive estimation of target size.
However, traditional correlation filters rely heavily on the
maximum response value of the response map and becomes
unreliable when the response map becomes ambiguous.
To address this issue, we introduce the resampling method of
particle filter, which providesmore effective target candidates
for CF. Furthermore, to eliminate the loss of sample diversity,
we propose the adaptive genetic algorithm supervised by pop-
ulation convergence (SGA) and introduce it to the resampling
process to help resamplemore effective candidates and obtain
a robust CF tracking algorithm (SGACF).

II. AN IMPROVED CONVOLUTIONAL NEURAL NETWORK
BASED ON RPReLU AND THE SVM-DROPOUT METHOD
This paper improves the traditional CNN tracker in four
aspects: network structure, normalization process, activation
function and dropout process. An improved convolutional
neural network based on RPReLU and the SVM-dropout
method is proposed in this section, referred to as RSCNN.

FIGURE 1. The proposed RPReLU activation function.

A. RPReLU ACTIVATION FUNCTION
The traditional activation functions such as ReLU and PReLU
need to be improved. All output of ReLU is non-negative,
thus its output mean must be non-negative, which will cause
the problem of mean shift of output value and will lead to
the problem of non-convergence when training deep neural
networks with many layers. The output value of PReLU
contains positive and negative values, which will make the
output mean of neurons tend to zero during the training
process, thus effectively weakening the problem ofmean shift
of output value. However PReLU suffer from the problem of
poor adaptability to multiple samples because it uses fixed
invariant function coefficients and cannot discriminate the
difference between different individuals.

Compared with ReLU and PReLU, the proposed RPReLU
function contains not only positive and negative output val-
ues, but also has random perturbation factors in both positive
and negative output values. By adding random perturbation
factor in the training phase, the output value of the RPReLU
function can be randomly compressed or expanded, resulting
in a spring-like expansion. This method can recognize the
difference between different individuals in the same kind of
target, thus enhancing the adaptability of the algorithm to
multiple samples, and increasing the anti-over-fitting ability
of the model. We define RPReLU as follows:

yki,j =


rki,jx

k
i,j, if xki,j > 0

xki,j
/
ski,j, if xki,j ≤ 0

(1)

where, xki,j is the image feature with coordinates (i, j) on the
k-th input feature channel, rki,j and s

k
i,j are random numbers

obeying uniform distribution:rki,j ∼ U (1 − α, 1 + α), ski,j ∼
U (4, 7),α ∈ (0, 1). Andα represents the degree of fluctuation
in response. In the training phase, α is set to 0.3 to provide rki,j
a moderate range. In the test phase, take α = 0 and ski,j = 5.5.

The ImageNet 2012 dataset [22] contains about 1.3M
training images, including 50k validation images and 100k
test images. These images are color images, divided into
1000 object classes. Therefore, the data used in each annual
ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge) contest are all from ImageNet 2012. Meanwhile
the ILSVRC machine vision contest is a popular choice
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TABLE 1. The classification error(in%) of different activation functions for
ImageNet 2012 using benchmark model AlexNet.

of CNN. Sowe adopt the ImageNet 2012 dataset and AlexNet
model to verify whether the RPReLU activation function can
help reduce the classification error of CNN. As shown in
Table.1, AlexNet with PReLU reduces the validation error
from 41.14% to 40.83% compared with that of AlexNet
with ReLU, while the RPReLU activation function further
decreases the error from 40.83% to 39.45%.

B. SVM-DROPOUT
In the traditional dropout process, the weights of some sam-
ples are set to zero in order to enhance the sparsity. This
zero-setting operation of weights occurs randomly, which is a
reflection of the idea of ‘‘averagemodel’’. However, the value
of each convolution kernel is different. Therefore, the method
of randomly zeroing samples is not optimal. The more effec-
tive way is to selectively zero samples according to the impor-
tance of weights. This means that the zeroing probability of
convolution kernels with larger weights should be less than
that of convolution kernels with smaller weights. To address
this issue, this paper proposes an improved dropout algo-
rithm based on SVM (SVM-dropout). The flow chart of the
SVM-dropout algorithm is as follows:

As shown in Table.2, the SVM-dropout process uses sup-
port vector machine algorithm to distinguish the neurons in
each iteration for training. In the initial iteration, the neurons
whose weights are reset to zero are taken as positive samples,
and the rest of the neurons are taken as negative samples.
Then in each subsequent iteration, the weights of the neurons
are trained with SVM, and the zero-setting probability of the
positive samples identified in the former iteration is increased
in each iteration so as to increase the manual orientation and
further improve the learning efficiency on the premise of
maintaining the original sparsity of the network.

C. ARCHITECTURE OF THE RSCNN
Based on the CaffeNet model, this paper proposes the
RSCNN algorithm through network optimization. Specifi-
cally, it can be divided into four aspects: (1) Bach normal-
ization (BN) is introduced to replace LRN in CaffeNet to
enhance the efficiency, accuracy and generalization ability
of the network [23]; (2) ReLU and PReLU are replaced by
RPReLU proposed to enhance the anti-over-fitting ability
of CaffeNet; (3) The traditional dropout process is replaced
by the SVM-dropout proposed in this paper, which makes
the network more manual-oriented and further improves the
learning efficiency on the basis of maintaining the origi-
nal sparsity; and (4) The network structure is simplified

appropriately, which reduces pool 5, relu 5 and two full
connection layers, so as to improve the operation efficiency.

The architecture of the proposedRSCNN is shown in Fig.2.
The input size is set to be 64×64×1. Layer conv1 convolves
the input with 25 filters of dimension 11 × 11 to generate
25 feature-maps. Layer conv2 contains 50 feature-maps with
9×9 filter resolution and output feature-maps with dimension
32× 32× 50. Layer conv3 employs a filter group containing
75 kernels, each of dimension 7× 7. Layer conv4 convolves
75 input vectors with 100 kernels, each of dimension 5 × 5.
Layer conv5 uses a filter group of 500 kernels, each of
dimension 3 × 3. Conv1-conv4 use padding to maintain the
resolution of the input vectors and output feature maps. Max
pooling is employed after conv1-conv4. Pool2-pool4 use a
pooling operation of dimension 2 × 2 without padding. And
pool1 employs a pooling operation of dimension 3 × 3 with
single padding. All pooling layer use stride 2 to down sample
the input with a sampling multiple of 2. Batch normalization
is employed after pool 1 and pool 2 to enhance network
efficiency, accuracy and generalization ability. Meanwhile
the proposed SVM-dropout is employed before fc7 to avoid
over-fitting.

III. CORRELATION FILTER BASED ON SGA
Correlation filter can adaptively handle scale changes and can
robustly address the issue of adaptive estimation of the target
size. Therefore, it has been widely used in CNN trackers
to enhance the tracking performance [24]–[26]. However,
traditional correlation filters rely heavily on the maximum
response value of the response map and becomes unreliable
when the response map becomes ambiguous. The response
map becomes ambiguous when the correlation filter tracker
is affected by interference like illumination changes, fast
motion, motion blurs and occlusion. It’s hard to be prevented
in the traditional correlation filter tracker because the tar-
get response used in the training step is independent of the
observed frame, the error will be propagated to the newly
calculated filter, and the tracker will face the risk of unrecov-
erable drift, making it difficult to recover from the error in the
detection step. When the response map become unreliable,
the maximum response value becomes smaller [27], [28].
To address this issue, we introduce the resampling method
of particle filter (PF), which provides more effective target
candidates for CF. The particle filter is an efficient method of
providing more reasonable target candidates for CF by using
the resampling process [29], [30]. But the resampling process
of traditional PF faces the loss of sample diversity. To address
the above defects, we propose the adaptive genetic algorithm
supervised by population convergence (SGA) and introduce
it to the resampling process to help resample more effec-
tive candidates and obtain a robust CF tracking algorithm:
SGACF.

A. KERNELIZED CORRELATION FILTER
Before discussing our proposed SGACF algorithm, we first
review the details of the traditional kernelized correlation

174498 VOLUME 7, 2019



Y. Xiao, D. Pan: Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering

TABLE 2. The flow chart of the SVM-dropout process.

FIGURE 2. Architecture of proposed RSCNN.

filter (KCF) based tracking method [15]. The KCF tracker
uses filter w, which is trained on an image patch x ofM × N
pixels with HOG features, to model the appearance of the
target. The training samples xm,n, (m, n) ∈ {0,1,. . . ,M−1}×
{0,1,. . . ,N−1} are all the possible circular shifts. The filterw
can be acquired by minimizing the error between the training
sample xm,n and the regression target ym,n. The minimization
problem is:

w = argmin
∑
m,n

∣∣〈φ(xm,n),w〉− y(m, n)∣∣2 + λ1 ‖w‖2 (2)

where φ is a kernel space mapping in Hilbert space,
〈, 〉 denotes the inner product and λ is a regularization
parameter(λ ≥ 0). Since the label ym,n is not binary, the filter
w learned from the training samples contains the coefficients
of a Gaussian ridge regression.

With the fast Fourier transform (FFT) to calculate the
minimization problem, the objective function is expressed
as w =

∑
m,n α(m, n)φ(x

m,n), and the coefficient can be
obtained by:

α = F−1
(

F(y)
F(kx)+ λ

)
(3)

where F and F−1 represent FFT and its inverse (IFFT),
respectively. In the Fourier transform domain, the kernel

correlation kx = K (xm,n, x) is calculated by Gaussian kernel.
Vector α contains all the αm,n coefficients. In the tracking
process, a patch zwith the same size as x will be cropped from
the new frame. The response score is computed as follows:

f (z) = F−1(F(kz)� F(α)) (4)

where � is the Hadamard product, kz = K (zm,n, x̂), and
the target appearance is expressed as x̂ = F(x). The KCF
model is composed of the target appearance model x̂ and the
coefficient F(α).

B. ADAPTIVE GENETIC ALGORITHM SUPERVISED
BY POPULATION CONVERGENCE
This section aims to address the issue of loss of sample
diversity in the PF resampling process. Our strategy is to filter
out particles whose weights are less than average weight,
and then randomly replicate the same number of particles
from the retained samples. Meanwhile, we do not simply
copy the effective samples to fill the discarded ones, but carry
out genetic operation of the proposed SGA on the randomly
selected samples, and then bring them to the next generation.
Definition 1: The mean value of particles’ fitness is set

to ft (fitness at t moment). fmax represents the best particle
fitness(the fitness function represents the particles’ weight

VOLUME 7, 2019 174499



Y. Xiao, D. Pan: Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering

function) and f is defined as the average fitness value of
particles whose fitness value are larger than ft. Then the
population convergence is defined as 1 = fmax − f . The
equation of the probability of the crossover and mutation of
SGA algorithm is as follows:{

Pc = −1
/
(1+ exp(−k1 ·1))+ 1.5

Pm = −1
/
(1+ exp(−k2 ·1))+ 1

(5)

where k1 and k2 are positive constants, and1 is non-negative.
As a result, the range of the crossover probabilityPg is [0.5,1],
while the range of the mutation probability Pm is [0,0.5].
In traditional GA, the probabilities of the genetic operations
are constant and can easily lead to premature convergence of
population [31], [32]. In the SGAmethod, however, the prob-
ability parameters Pg and Pm can be automatically adjusted
with the current value of population convergence 1. The
genetic operators of SGA are arithmetic crossover and non-
uniform mutation, which are shown in formulas (6) and (7):{

x it+1 = β · x
i
t + (1− β) · x jt

x jt+1 = β · x
j
t + (1− β) · x it

(6)x
k
t+1 =

{
xkt + f (t, qt − x

k
t ), p < 0.5

xkt − f (t, qt − lt ), p ≥ 0.5
, xkt ∈ [lt , qt ]

f (t, y) = y · (1− p(1−t/T )
b
) ∈ (0, y) , p ∈ U (0, 1)

(7)

where β and p are random numbers in the range (0,1); t is the
current moment; x it , x

j
t and x

k
t represent particles that intersect

at time t; x it+1 and x jt+1 are new particles produced by the
crossover operation of SGA at time (t+1); xkt+1 represent new
samples produced by the mutation operation of SGA at time
(t+1); T represents the maximum iterations; b controls the
non-uniformity of the mutation operation of SGA; and f ( )
is an adaptive mutation operator, which can adjust the step
size adaptively. f ( ) is used to search the potential area of
the entire domain, but only a small neighbourhood of the
current solution is searched at the later stage of the iteration
to ensure the effective positioning and locking of the best
solution.

C. CORRELATION FILTER TRACKER BASED
ON SGA (SGACF FOR SHORT)
Correlation filter is introduced to our CNN trackers to further
enhance the tracking performance and improve the tracker’s
ability to deal with scale changes to adaptively estimate the
target size. However, traditional correlation filters rely heav-
ily on the maximum response value of the response map and
becomes unreliable when the responsemap becomes ambigu-
ous. To address this issue, we introduce the particle filter
resampling process improved by the SGA to help resample
more effective candidates and obtain a robust CF tracking
algorithm (SGACF). The flow of SGACF algorithm is as
follows:

1) SAMPLING INITIALIZATION
Based on the prior probability distribution function p(x0) ∈
U (0, 1), the sample set {x i0} (i = 1, 2, . . . , S, x i0) represents
the i-th feature map obtained by CNN, which is randomly
generated. The initial weight iswi0 = 1/S, and the probability
density initialization function is set to p(x0|y0) = p(x0).

2) IMPORTANT DENSITY SAMPLING [33]
(a) Calculation of important density function

xt ∼ q(x it |yt ) = p(x it |x
i
t−1)p(x

i
t−1|yt−1) (8)

(b) Weights update

wit = wit−1
p(yt

∣∣x it )p(x it ∣∣X it−1 )
q(x it

∣∣X it−1 ,Yt ) (9)

(c) Probability density update

p(xt
∣∣y1:t ) = S∑

i=1

witδ(xt − x
i
t ) (10)

where δ represents the Dirac function. First, S particles
are randomly produced with formula (8), then weight and
probability density are updated by formulas (9) and (10),
respectively.

3) RESAMPLING PROCESS BASED ON SGA
(d) Determination of the degree of sample diversity loss

Neff =
1

S∑
i=1

(wit )2
(11)

whereNeff refers to the degree of sample diversity loss. IfNeff
is larger than threshold Nth, the sample diversity loss is not
obvious and Step f) is carried out directly. Otherwise, serious
sample diversity loss occurs and samples at current moment
should be resampled before the updating process.

(e) Weights resetting
All the weights are reset to wit = 1/S.
(f) SGA genetic manipulation
The individuals whose weights are less than average

weight are eliminated and replaced by the same number of
individuals with larger fitness. Then SGA genetic operation
is performed to improve the sample diversity according to the
population convergence.

4) OBTAIN THE SPATIAL RESPONSE MAP
Generate the target appearance x̂ and the coefficient F(α)
according to section III.A. By using the circular displacement
of particle image, each particle image can be guided to the
mode of target state distribution. For particle i whose search
window size isM × N , we can calculate its response map as
follows:

Rm =
∑
k

F−1
(
F
(〈
zm, x̂

〉)
� F (α)) (12)
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FIGURE 3. Overview of the proposed RSCNN-SGACF tracking framework.

where � refers to the element-wise product, zm is the
m-th sample corresponding to the image patch, and Rm refers
to the response map.

5) LOCATE THE CENTER OF THE TARGET
The image patch which has the best response value is chosen
as target centre :

maxR = max(maxR1,maxR2, . . . ,maxRS ) (13)

where max R refers to the best sample, corresponding to the
sample which has the best response value, and max Rs is the
maximum response value of the s-th sample.

6) DETERMINE WHETHER TO END THE ITERATION
Determine whether it has reached the iterative termination
conditions. If continue, return to Step 2); otherwise, terminate
the iteration and output the result.

IV. RSCNN-BASED SGACF
In this section, we combine CNN and CF tracking framework
to enhance the tracker’s accuracy and robustness. We first use
the rich feature hierarchy of CaffeNet as the target represen-
tation. In particular, we use the weighted sum of convolution
features of conv3, conv4 and conv5 as the tracking output,
rather than only the last layer for feature representation.
Then we introduce the proposed SGACF to handle the mul-
tilayer features of CaffeNet to generate response maps f3,
f4 and f5, which can have the advantages of both accuracy
and robustness and improve the tracking performance when
handling target scale changes. We give an overview of the
RSCNN-based SGACF tracking framework in Fig. 3:

The step Max represents the process of estimating the
target location (xc, yc) by searching the maximum weighted
sum of SGACF responses f3, f4 and f5:

(xc, yc) = argmax
∑

i=3,4,5

βifi (x, y) (14)

The visualization of the tracking results of using CaffeNet
features from different convolutional layers are shown
in Fig.4:

Fig.4 illustrates that the CaffeNet features extracted from
higher level layers can better capture semantics information
of the target, while layers with lower level can capture more
spatial details. So we set β3, β4 and β5 to 0.25, 0.5 and

FIGURE 4. Visualization of the tracking results of using CaffeNet features
from different convolutional layers on 3 video sequences with diverse
challenges.

1 respectively to combine the advantages of these multi-
layer convolutional features and achieve a better tracking
performance.

V. EXPERIMENTAL ANALYSIS
We used MATLAB to implement the proposed tracker on a
machine equipped with an Intel Core i-7-6700@3.40GHz,
64 GB RAM and a GeForce GTX 1070 GPU card, which
is used only to compute the CNN features. The proposed
RSCNN-SSGACF tracking method achieves a practical
tracking speed of an average of 14.7 frames per second (FPS).

OTB2015 [34], VOT2016 [35] and VOT2018 [50] are
the most classic and most widely used evaluation databases
in the visual target tracking field and are still adopted by
most tracking papers [36]–[38]. For experimental verifica-
tion, we employ the above three tracking datasets. And we
compare the proposed RSCNN-SSGACF tracking method
with ten state-of-the-art trackers including the ECO [1],
TCNN [39], C-COT [40], SRDCFdecon [41], MUSTer [42],
BACF [43], LMCF [44], Staple [45], SAMF [46] and
DSST [11]. To better evaluate and analyze the strength and
weakness of the tracking approaches, we evaluate the trackers
with 11 attributes based on various interference factors.

A. QUALITATIVE COMPARISONS
In the qualitative comparison, we selected eight challeng-
ing sequences to intuitively evaluate the RSCNN-SSGACF
method. The result is shown in Fig.5, where 11 different
colors represent different tracking methods. These methods
are qualitatively compared as follows:
1. Illumination variation: Take the ‘‘Shaking’’ video as

an example. When the illumination changes rapidly, LMCF,
SAMF and DSST fail to locate the target in the end. Only
RSCNN-SGACF, ECO, C-COT and MUSTer succeed in
locating the target without drift.

VOLUME 7, 2019 174501



Y. Xiao, D. Pan: Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering

FIGURE 5. Qualitative comparisons of 11 trackers(represented in different colors) on nine challenging sequences(from top to bottom are
Shaking, BlurCar4, Bolt2, MountainBike, Skiing, Singer2, Gym and Skating2).

2. Motion variation: It is divided into fast motion and
motion blur. Both motion variation occur in ‘‘BlurCar4’’. For
objects in the ‘‘BlurCar4’’ video, the target moves with a fast
speed, blurring the target area. Most trackers track the object
successfully. However only RSCNN-SGACF and ECO can
track the target accurately and constantly, different degrees
of tracking drift occurred in other trackers.
3. Deformation: For the target in ‘‘Bolt2’’, target deforma-

tion occurs. BACF, LMCF, Staple, SAMF and DSST fail to
track the target after #210. Other trackers can successfully
track the target all the time.
4. Background clutters: In ‘‘MountainBike’’, all trackers

succeed in tracking the target. However the tracking drift
occurs in SAMF, Staple, BACF and LMCF. Meanwhile only
RSCNN-SGACF and ECO can always track the whole part
of the target.
5. Low resolution: For low-resolution targets, such as the

object in ‘‘Skiing’’, the feature of the object is too small to
be extracted. DSST lose the target since #52. SAMF lose the
target since #61. LMCF and Staple lose the target since #80.
Tracking drift arises in BACF and SRDCFdecon. Only our
tracker succeeds in tracking the whole part of the target all
the time.

6. Scale variation: In ‘‘Singer2’’, all trackers suc-
ceed in tracking the target. However only RSCNN-
SGACF, ECO and C-COT can match the whole target
consistently.
7. Rotation: Both in-plane and out-of-plane rotation defor-

mations occurred in the ‘‘Gym;’’ video. Taking the trackers
performance in frame 175 and 393 as examples, the rotational
deformation of the target is large and fast. Obvious drift(such
as head loss, leg loss or mixing too much useless background)
arises in the tracking process of SRDCFdecon, BACF, Staple,
SAMF and DSST.
8. Occlusion: In the ‘‘Skating2’’ video, the target is com-

pletely or partially occluded. RSCNN-SGACF, ECO, C-COT
and TCNN succeed in tracking most part of the target object
effectively and immediately all the time. Large drift and
target loss occurs in BACF, LMCF, Staple, SAMF and DSST
especially in #298.

B. QUANTITATIVE COMPARISONS
In order to further evaluate our tracker comprehensively and
reliably, we employ the success and precision rate for quan-
titative comparisons.
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FIGURE 6. The success plots and precision plots of OPE for the trackers:(a) success plots and (b) precision plots.

TABLE 3. Average success rate scores of different trackers for each individual attribute on the OTB2015 dataset.

1) SUCCESS RATE
Given the threshold t0, the tracker is considered success-
ful only if the overlap parameter α is greater than t0. The
success rate represents the percentage of the successful
frames, and the higher the value, the better the tracker’s
performance.

2) PRECISION
Precision refers to tracking frames’ ratio of center position
error within a given threshold, and the larger the value,
the better the tracker’s performance.

In quantitative comparisons, we evaluate the trackers in
two aspects: the overall performance and the attribute-based
performance in OTB2015 [34].

To analyze the overall performance in OTB2015 [34],
we plot the success and precision charts of all the track-
ing methods. The success plot displays the success rates of
different overlap threshold t0 within the interval [0,1], and
the precision map displays the precisions of different center

location error threshold from 0 to 50 pixels. The overall
performance plots of all the tracking methods are shown
in Fig.6:

The success plots proves that the RSCNN-SGACF track-
ing method outperforms these advanced trackers and can
obtain satisfactory tracking performance in various challeng-
ing tracking scenarios.

In order to further evaluate the performance of our tracker
in various conditions, we compare these tracking meth-
ods on 11 attributes of the tracking dataset OTB2015. The
average success rate and precision scores of these tracking
methods on each attribute of dataset OTB2015 are shown
in Tables.3 and 4 respectively.

As shown in Tables 3 and 4, whether in success rate
or precision comparisons, our tracker ranks in first place
in at least five attributes and ranks in the top 3 in all
11 attributes. These attribute-based comparison result proves
that RSCNN-SGACF has no obvious weaknesses and per-
forms well in all the challenging scenarios.
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TABLE 4. Average precision scores of different trackers for each individual attribute on the OTB2015 dataset.

TABLE 5. Statistical comparison on VOT2016.

TABLE 6. Statistical comparison on VOT2018.

C. STATISTICAL COMPARISON
To further evaluate the robustness and stability of RSCNN-
SGACF, a statistical comparison is carried out with the
VOT2016 [35] and VOT2018 [50] datasets, as shown
in Table 5:

In Table 5 we compare the proposed RSCNN-SGACF
trackingmethod, in terms of average overlap (EAO), accuracy
(Acc.) and robustness (R.Fail. for failure rate) with the other
9 trackers in the VOT2016 (To make a more comprehen-
sive comparison with other CF-based tracking algorithms,
this section introduces DeepSTRCF [47], MCCT [48],
RTINet [49], which are outstanding in VOT2016 dataset).
It can be seen in Table 5 that RSCNN-SGACF ranks in top
three in accuracy, EAO and R.Fail.. Specifically, the EAO
value of RSCNN-SGACF is 4.6% less than the second best
EAO value, the accuracy value of RSCNN-SGACF is 1.2%
less than the second best accuracy value, and the R. Fail. value
of RSCNN-SGACF is 5.9% larger than the second least value
of R.Fail..

Similarly, a statistical comparison on VOT2018 [50] is
carried out as shown in Table 6. A new CF-based tracker
LADCF [51] and a new CNN-based tracker SiamVGG [52],
which both perform very well in VOT2018, are introduced
in this section to make a more comprehensive comparison.

It can be seen in Table 6 that the RSCNN-SGACF tracking
method ranks third in EAO and fourth in Acc. and R.Fail..
Specifically, the EAO value of RSCNN-SGACF tracker is
8.1% less than the second best EAO value, the Acc. value
of RSCNN-SGACF is 1% less than the third best Acc. value,
and the R.Fail. value of RSCNN-SGACF is 6.2% larger than
the third least value of R.Fail..

In a word, our tracking method has a distinct advantage
over the state-of-the-art tracking methods out there, perform-
ing well in all three areas of statistical comparison.

VI. CONCLUSION
We propose a robust visual tracking method based on mul-
tilayer convolutional features of CNN and correlation fil-
tering. The randomized parametric rectified linear unit is
developed as the activation function of CNN to solve the
mean shift and insufficient distinguishing ability problems
in traditional CNN activation functions. Then an improved
dropout method based on SVM is proposed to provide a
selective dropout rate to increase the manual orientation and
improve the learning efficiency of the traditional dropout
process. Meanwhile, the weighted sum of output of multiple
CNN layers is employed to ensure the efficiency of capturing
both semantics and spatial details of the target. Moreover, we
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propose an improved correlation filter and introduced it to
our CNN tracking process to improve our tracker’s ability
to adaptively estimate the scale change of the visual target.
Extensive experimental results on OTB2015, VOT2016 and
VOT2018 datasets prove the efficiency and robustness of our
tracking method against the state-of-the-art trackers.

REFERENCES
[1] M. Danelljan, G. Bhat, M. Felsberg, M. Felsberg, and F. S. Khan, ‘‘ECO:

Efficient convolution operators for tracking,’’ in Proc. IEEEConf. Comput.
Vis. Pattern Recognit., Jul. 2017, pp. 6931–6939.

[2] H. Fujita and D. Cimr, ‘‘Computer aided detection for fibrillations and
flutters using deep convolutional neural network,’’ Inf. Sci., vol. 486,
pp. 231–239, Jun. 2019.

[3] Y. Xie, Y. Huang, and T. L. Song, ‘‘Iterative joint integrated probabilis-
tic data association filter for multiple-detection multiple-target tracking,’’
Digit. Signal Prog., vol. 72, pp. 232–243, Jan. 2018.

[4] S. Zhang, Y. Qi, F. Jiang, X. Lan, P. C. Yuen, and H. Zhou, ‘‘Point-to-set
distance metric learning on deep representations for visual tracking,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 187–198, Jan. 2018.

[5] Y. Fang, C.Wang,W.Yao, X. Zhao, H. Zhao, andH. Zha, ‘‘On-road vehicle
tracking using part-based particle filter,’’ IEEE Trans. Intell. Transp. Syst.,
to be published.

[6] S. Zhang, X. Lan, Y. Qi, and P. C. Yuen, ‘‘Robust visual tracking via
basis matching,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 3,
pp. 421–430, Mar. 2017.

[7] S. Zhang, H. Zhou, F. Jiang, and X. Li, ‘‘Robust visual tracking using
structurally random projection and weighted least squares,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 11, pp. 1749–1760, Nov. 2015.

[8] X. An, J. Kim, and Y. Han, ‘‘Optimal colour-basedmean shift algorithm for
tracking objects,’’ IET Comput. Vis., vol. 8, no. 3, pp. 235–244, Jun. 2014.

[9] Z. Zhou, M. Zhou, and X. Shi, ‘‘Target tracking based on foreground
probability,’’Multimedia Tools Appl., vol. 75, no. 6, pp. 3145–3160, 2016.

[10] X. Wang, W. Wan, X. Zhang, and X. Yu, ‘‘Annealed particle filter based
on particle swarm optimization for articulated three-dimensional human
motion tracking,’’ Opt. Eng., vol. 49, no. 1, 2010, Art. no. 017204.

[11] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, ‘‘Accurate scale
estimation for robust visual tracking,’’ inProc. Brit. Mach. Vis. Conf., 2014.

[12] H. Song, ‘‘Robust visual tracking via online informative feature selection,’’
Electron. Lett., vol. 50, no. 25, pp. 1931–1933, Dec. 2014.

[13] W. Zhong, H. Lu, and M.-H. Yang, ‘‘Robust object tracking via sparsity-
based collaborative model,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Providence, RI, USA, Jun. 2012, pp. 1838–1845.

[14] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. ICCV IEEE Comput. Soc., Sep. 1999, pp. 1150–1157.

[15] J. F. Henriques, R. Caseiro, P.Martins, and J. Batista, ‘‘High-speed tracking
with kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[16] J. Gao, H. Ling, W. Hu, and J. Xing, ‘‘Transfer learning based visual
tracking with Gaussian processes regression,’’ in Proc. 13th Eur. Conf.
Comput. Vis., Zürich, Switzerland, 2014, pp. 188–203.

[17] Q. Liu, X. Lu, Z. He, C. Zhang, and W.-S. Chen, ‘‘Deep convolutional
neural networks for thermal infrared object tracking,’’ Knowl.-Based Syst.,
vol. 134, pp. 189–198, Oct. 2017.

[18] A.-H. A. El-Shafie, M. Zaki, and S. E.-D. Habib, ‘‘Fast CNN-based object
tracking using localization layers and deep features interpolation,’’ 2019,
arXiv:1901.02620. [Online]. Available: https://arxiv.org/abs/1901.02620

[19] Y. Li, X. Cao, J. Liu, and B. Zhang, ‘‘CNN-detector-based multiple homo-
geneous objects tracking under stochastic wide-range occlusions,’’ inProc.
IEEE Global Conf. Signal Inf. Process., Nov. 2018, pp. 808–812.

[20] Y. Qi, S. Zhang, L. Qin, Q. Huang, H. Yao, and J. Lim, ‘‘Hedging deep
features for visual tracking,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 5, pp. 1116–1130, May 2019.

[21] S. Zhang, X. Lan, H. Yao, H. Zhou, D. Tao, and X. Li, ‘‘A biologically
inspired appearance model for robust visual tracking,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2357–2370, Oct. 2017.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1106–1114.

[23] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[24] Z. Hao, G. Liu, and H. Zhang, ‘‘Correlation filter-based visual tracking
via adaptive weighted CNN features fusion,’’ IET Image Process., vol. 12,
no. 8, pp. 1423–1431, Aug. 2018.

[25] Z. Han, P. Wang, and Q. Ye, ‘‘Adaptive discriminative deep correlation
filter for visual object tracking,’’ IEEE Trans. Circuits Syst. Video Technol.,
to be published.

[26] Y. Li, Z. Xu, and J. Zhu, ‘‘CFNN: Correlation filter neural network for
visual object tracking,’’ in Proc. 26th Int. Joint Conf. Artif. Intell., 2017,
pp. 2222–2229.

[27] A. Bibi, M. Mueller, and B. Ghanem, ‘‘Target response adaptation for cor-
relation filter tracking,’’ in Computer Vision—ECCV. Cham, Switzerland:
Springer, 2016.

[28] Z. Chen, Z. Hong, and D. Tao, ‘‘An experimental survey on correla-
tion filter-based tracking,’’ 2015, arXiv:1509.05520. [Online]. Available:
https://arxiv.org/abs/1509.05520

[29] T. Zhang, C. Xu, andM.-H. Yang, ‘‘Learningmulti-task correlation particle
filters for visual tracking,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 2, pp. 365–378, Feb. 2018.

[30] M. Dai, S. Cheng, X. He, andD.Wang, ‘‘A structural correlation filter com-
bined with a multi-task Gaussian particle filter for visual tracking,’’ 2018,
arXiv:1803.05845. [Online]. Available: https://arxiv.org/abs/1803.05845

[31] C. H. Dai, Y. F. Zhu, and W. R. Chen, ‘‘Adaptive probabilities of crossover
and mutation in genetic algorithms based on cloud model,’’ in Proc. IEEE
Inf. Theory Workshop Chengdu (ITW), vol. 24, Oct. 2006, pp. 710–713.

[32] T.-P. Hong, H.-S. Wang, W.-Y. Lin, and W.-Y. Lee, ‘‘Evolution of appro-
priate crossover and mutation operators in a genetic process,’’ Appl. Intell.,
vol. 16, no. 1, pp. 7–17, 2002.

[33] R. Al Mallah, A. Quintero, and B. Farooq, ‘‘Distributed classification of
urban congestion using VANET,’’ IEEE Trans. Intel. Trans. Syst., vol. 18,
no. 9, pp. 2435–2442, Sep. 2017.

[34] Y.Wu, J. Lim, andM. H. Yang, ‘‘Object tracking benchmark,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, Sep. 2015.

[35] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder,
L. Čehovin, T. Vojir, G. Hager, A. Lukezic, A. Eldesokey, and Fernandez,
G., ‘‘The visual object tracking VOT2016 challenge results,’’ in Proc.
ECCV Workshop, 2016, pp. 777–823.

[36] W. Yang, Y. Liu, Q. Zhang, and Y. Zheng, ‘‘Comparative object sim-
ilarity learning-based robust visual tracking,’’ IEEE Access, vol. 7,
pp. 50466–50475, 2019.

[37] C. Zheng and Z. Wei, ‘‘Real-time tracking based on keypoints and dis-
criminative correlation filters,’’ IEEE Access, vol. 7, pp. 32745–32753,
2019.

[38] X. Sheng, Y. Liu, H. Liang, F. Li, and Y. Man, ‘‘Robust visual tracking via
an improved background aware correlation filter,’’ IEEE Access, vol. 7,
pp. 24877–24888, 2019.

[39] H. Nam, M. Baek, and B. Han, ‘‘Modeling and propagating CNNs in
a tree structure for visual tracking,’’ 2016, arXiv:1608.07242. [Online].
Available: https://arxiv.org/abs/1608.07242

[40] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, ‘‘Beyond corre-
lation filters: Learning continuous convolution operators for visual track-
ing,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 472–488.

[41] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, ‘‘Adaptive decon-
tamination of the training set: A unified formulation for discriminative
visual tracking,’’ in Proc. IEEE Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 1430–1438.

[42] Z. Hong, Z. Chen, X. Mei, D. Prokhorov, D. Tao, and C. Wang, ‘‘Multi-
store tracker (MUSTer): A cognitive psychology inspired approach to
object tracking,’’ in Proc. IEEE Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 749–758.

[43] H. K. Galoogahi, A. Fagg, and S. Lucey, ‘‘Learning background-aware
correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1135–1143.

[44] M. Wang, Y. Liu, and Z. Huang, ‘‘Large margin object tracking with cir-
culant feature maps,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4021–4029.

[45] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and
P. H. S. Torr, ‘‘Staple: Complementary learners for real-time tracking,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, vol. 38,
no. 2, pp. 1401–1409.

VOLUME 7, 2019 174505



Y. Xiao, D. Pan: Robust Visual Tracking via Multilayer CaffeNet Features and Improved Correlation Filtering

[46] Y. Li and J. Zhu, ‘‘A scale adaptive kernel correlation filter tracker with
feature integration,’’ in Proc. ECCV Workshops, 2014, pp. 254–265.

[47] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, ‘‘Learning spatial-
temporal regularized correlation filters for visual tracking,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 4904–4913.

[48] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, ‘‘Multi-cue
correlation filters for robust visual tracking,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 4844–4853.

[49] Y. J. Yao, X.Wu, L. Zhang, S. Shan, andW. Zuo, ‘‘Joint representation and
truncated inference learning for correlation filter based tracking,’’ in Proc.
ECCV, 2018, pp. 552–567.

[50] M.Kristan, A. Leonardis, J.Matas,M. Felsberg, R. Pflugfelder, L. Cehovin
Zajc, T. Vojir, G. Bhat, A. Lukezic, A. Eldesokey, and Fernández, G. ‘‘The
sixth visual object tracking VOT2018 challenge results,’’ in Proc. ECCV
Workshop, 2018, pp. 3–53.

[51] Y. Li and X. Zhang, ‘‘SiamVGG: Visual tracking using deeper siamese
networks,’’ 2019, arXiv:1902.02804. [Online]. Available: https://arxiv.
org/abs/1902.02804

[52] T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler, ‘‘Learning adaptive discrimina-
tive correlation filters via temporal consistency preserving spatial feature
selection for robust visual tracking,’’ 2018, arXiv:1807.11348. [Online].
Available: https://arxiv.org/abs/1807.11348

[53] M. Tang, B. Yu, J. Wang, and F. Zhang, ‘‘High-speed tracking with
multi-kernel correlation filters,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 4874–4883.

[54] U. Kart, A. Lukezic, M. Kristan, J.-K. Kamarainen, and J. Matas, ‘‘Object
tracking by reconstruction with view-specific discriminative correlation
filters,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 1339–1348.

[55] M. Zhang, J. Xing, J. Gao, P. Peng, W. Hu, S. Maybank, and Q. Wang,
‘‘Visual tracking via spatially aligned correlation filters network,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 469–485.

[56] Y. Sun, C. Sun, D. Wang, Y. He, and H. Lu, ‘‘ROI pooled correlation filters
for visual tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 5783–5791.

[57] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, ‘‘Visual tracking via adaptive
spatially-regularized correlation filters,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4670–4679.

YUQI XIAO was born in Yiyang, Hunan, China,
in 1991. He received the B.E. and M.E. degrees
in transportation engineering from Central South
University, China, in 2013 and 2016, respectively,
where he is currently pursuing the Ph.D. degree.
His research interests include traffic efficiency,
safety applications, and artificial intelligence.

DIFU PAN was born in Xingning, Guangdong,
China, in 1957. He received the M.E. degree
in railway traction electrification and automa-
tion from Southwest Jiao Tong University, China,
in 1988. He is currently a Full Professor with the
Department of Transportation Engineering, Cen-
tral South University, China. He has coauthored
over 60 technical publications, including journal
and proceedings papers.

174506 VOLUME 7, 2019


