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ABSTRACT The localization algorithm for mobile robots working in narrow space needs to handle the
scenario that the geometric shape of reference nodes tends to a line, which results in the matrix of least
squares localization approaches ill-conditioned. Estimator bias becomes an important factor that can degrade
the localization performance. In this paper, we present a fast unbiased range-based localization algorithm
to resist the ill-conditioned problem. The main strategy is to augment objective function in the resultant
optimization formulations via introducing a measurement distance into the locating model, which forms a
least squares problemwith cone constrained. The proposedmodel decouples themeasurement distances from
the matrix of least squares, which avoids the ill-conditioned problem when the target is around the geometric
center. The closed-form expression of locating position ensures that the proposed algorithm is unbiased and
low computation burden in the presence of zero-mean disturbance. Moreover, the robustness improvement
of the augmented objective function is analyzed. Numerical simulations are used to corroborate the analytic
results which demonstrate the good performance, robustness, and fastness of the proposed method.

INDEX TERMS Constrained least-square, narrow space, range-based localization.

I. INTRODUCTION
Indoor localization for autonomous robots becomes an attrac-
tive subject with the rapid development and application of
the autonomous robots technology [1], [2]. The robots need
localization systems to provide position information which is
critical and fundamental for the control algorithm. Since the
distance information can be sourced from various physical
signals, such as, laser, ultrasound, ultrawideband (UWB),
time-of-arrival (TOA), time-difference-of-arrival (TDOA),
received signal strength (RSS), channel state information
(CSI) and in various combinations [3]–[9], the robots can
flexibly equip the suitable ranging device to adapt working
circumstance. Therefore, range-based localization algo-
rithms, which estimate the target position by using dis-
tance information, are widely used for robot navigation.
To pursue efficient localization performance, methods are
proposed, such as using more sensitive ranging sensors, opti-
mizing calculation methods, cooperating localization among
the target nodes, etc. Since cooperative localization [10],
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which utilizes the information among the target nodes, sig-
nificantly improves the localization accuracy, it has become
the current lines of research. However, only a single robot is
deployed in some applications, such as inspecting the safety
of the underground tunnel. In this paper, we focus on the
range-based localization algorithm for a single target node.

Position estimation is not a trivial task because the mea-
surement model constituted by measurement distances is a
nonlinear one. The Taylor-series method [11], [12] and the
maximum likelihood method [13], [14] are proposed for
solving the nonlinear equations directly. An iterative pro-
cess is needed for those algorithms. Thus, converge and
complexity problems are twisted with those algorithms.
Recently, circular localization via Euclidean norm elimina-
tion (CLENE) [15] explores the way of improving com-
putational efficiency. However, it still needs to guess a
proper initiation to achieve the optimum estimation per-
formance. Another idea of solving nonlinear measurement
equations is to convert the equations into a set of linear
equations so that global convergence is ensured or fast imple-
mentation is allowed, which includes subspace [16]–[20]
and linear (constrained) least squares [21]–[28] approaches.
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Linear least squares (LLS) method [21] constructs a linear
localization system by squaring measurement distance equa-
tions and subtracting one of them. LLS only uses the infor-
mation of distance-difference, which is adopted by TDOA
localization system. The weighted least squares (WLS)
method, which adds the information of measurement distance
errors into LLS, is proposed to improve the localization
accuracy. LLS and WLS omit the constraint relation of vari-
ables during the linearization process. Constrained weighted
least squares (CWLS) [23]–[25] restore the omitting infor-
mation to improve the localization accuracy. Compared
with LLS and WLS, CWLS can be considered as an LLS
which puts the relationship of the variables back. However,
CWLS is an unbiased estimator only on the condition of
high signal to noise ratio. Two-step weighted least squares
(TWLS) [22], [26] produces an unbiased estimator while it
performs poorly in the scenario where the geometry is a
uniform circular array, in which case the localization sys-
tem is ill-conditioned. Separated CWLS (SCWLS) [27], [28]
circumvents the ill-conditioned problem by separating the
variables to different sides of the linear equation. SCWLS
uses iterative quadratic maximum likelihood technique in
relaxation procedure, which is not able to guarantee the global
optimal solution. To avoid the ill-conditioned problem and
reach a global solution efficiently, literature [28] derive a
primal-dual interior point algorithm.

Actually, besides the ill-conditioned problem when the
target is around the geometric center of reference nodes,
the localization system for mobile robots working in narrow
space needs to resist the ill-conditioned problem when the
reference nodes are almost in a line with high probability.
When the geometric shape approaches a line, the matrix
condition number of the localization system is larger which
amplifies the estimation errors. The localization system is
also expected to be low computation burden because of the
robots’ mobility. In the scenario of narrow space, the afore-
mentioned algorithms do not perform well because those
estimators are either biased or iterative, which is demon-
strated as numerical simulation in Section IV. In this paper,
we propose a fast and robust localization algorithm that can
handle the ill-conditioned problems when the target is around
the geometric center and the geometric shape approaches a
line.

The main contributions of this paper are: a fast unbiased
CWLS (UCWLS) for range-based localization in narrow
space is modeled and a closed-form estimation algorithm
is also proposed. UCWLS introduces the measurement dis-
tance equation into the objective function meanwhile keep
the system linear, which improves the robustness against
the ill-conditioned situation when the geometric shape
approaches a line. Also, UCWLS does not have iterative steps
in the calculation process, which decreases the computational
complexity.

The remained of the paper is organized as follows. Relative
methods are briefly introduced in Section II. In Section III,

the development and the description of UCWLS are presented
in detail. Subsequently, an analytical study of the devised
scheme is proposed by comparing with CWLS, TWLS,
SCWLS, and CNELE. Numerical simulation and experimen-
tal tests results are given in Section IV to corroborate the
performance of the proposedmethod. Finally, conclusions are
drawn in Section V.

II. PROBLEM STATEMENT
In this section, symbols are defined. Also, models of CWLS,
TWLS, and SCWLS are briefly introduced, which enlightens
our method.

Let θ = [x, y]T denotes the coordinate of the target
node, θ i = [xi, yi]T (i = 1, · · · ,m) represents the coor-
dinates of i-th anchor nodes, m is the number of reference
nodes, d̂i means the measurement distance between the target
node and i-th anchor node, the measurement distances are
expressed in matrix form as−2x1 −2y1 1

...
...

...

−2xm −2ym 1


︸ ︷︷ ︸

Am

 x
y

x2 + y2


︸ ︷︷ ︸

θ̂m

=

 d̂
2
1 − x

2
1 − y

2
1

...

d̂2m − x
2
m − y

2
m


︸ ︷︷ ︸

b̂m

.

(1)

Locating target node is to solve Eq.(1).
It is notable that (a) the equations are nonlinear because of

the term x2 + y2 in θ̂m, (b) the measurement distance d̂i is
imprecise because of the inevitable measurement noise.

CWLS [23]–[25], which is a biased estimator, models the
localization problem as

CWLS : argmin
θ̂m

∥∥∥Wcw(Amθ̂m − b̂m)
∥∥∥2
2

s.t. pTθ̂m + θ̂
T
mPmθ̂m = 0 (2)

where

p =

 0
0
−1

 and Pm =

1 0 0
0 1 0
0 0 0

. (3)

As discussed in [24], this algorithm derives a biased
estimator. And the bias is

E(θ̂m)− θ = −
1
2
Gmp+

∑∞

n=1
(−λGmPm)n θm

−
λ

2

∑∞

n=1
(−λGmPm)nGmp, (4)

whereE(·) is the expectation operator,Gm = (ATmW
−1
m Am)−1,

λ is a root of an equation which minimizes the Lagrangian
function sourced from Eq.(4).

To eliminate the bias of CWLS, TWLS [26] transforms the
measurement equations into

Atwθ̂ tw = b̂tw (5)

VOLUME 7, 2019 174963



Y. Hu et al.: Efficient Quadratic Constrained Least Squares Localization Method for Narrow Space

where

r1 =
√
(x − x1)2 + (y− y1)2 ,

ri,1 = d̂i − d̂1 (i = 2, 3, · · · ,m) ,

Atw =

x2 − x1 y2 − y1 r2,1
...

...
...

xm − x1 ym − y1 rm,1

,
θ̂ tw =

x − x1y− y1
r1

,
b̂tw =

1
2

 (x2 − x1)2 + (y2 − y1)2 − r22,1
...

(xm − x1)2 + (ym − y1)2 − r2m,1

. (6)

Then, TWLS models the localization problem as

TWLS : argmin
θ̂ tw

∥∥∥Wtw(Atwθ̂ tw − b̂tw)
∥∥∥2
2

s.t. θ̂
T
twPtwθ̂ tw = 0 (7)

where

Ptw =

1 0 0
0 1 0
0 0 −1

. (8)

Two steps are carried out to solve Eq.(7). The first step is
to obtain a unconstrained solution of the object function.
A second weighted least squares step utilizes the relationship
of variables. Since only the differences of measurement dis-
tances are used, the size of matrix Atw is m− 1 by m− 1. The
rank of Atw is less than the rank of Acw.
The matrix Atw is singular or ill-conditioned when the tar-

get node is around the geometric center. To fix this problem,
SCWLS [27], [28] reforms the Eq.(7) as

SCWLS : argmin
η

∥∥∥Wsw(Gη − b̂tw + gR)
∥∥∥2
2

s.t. θ̂
T
twPtwθ̂ tw = 0 (9)

where G =
[
[Atw]:,1 [Atw]:,2

]
and g = [Atw]:,3 with [Atw]:,i

being the i-th column of the matrix Atw; η = [[θ̂ tw]1 [θ̂ tw]2]T

and R = [θ̂ tw]3 with [θ̂ tw]i being the i-th element of the
vector θ̂ tw.
In summary, CWLS uses all measurement distances infor-

mation while it produces a bias. TWLS trade off distance
information for eliminating the biased estimator. SCWLS
only amends the performance of TWLS when the target node
is around the geometric center of reference nodes. Those
algorithms either produce a biased estimator or insufficiently
use the measurement distances.

III. MODEL AND ALGORITHM
A. UCWLS MODEL
The idea of our model is to restore the subtracted mea-
surement distance information while keeping the constraint
relation of variables.

Without loss of generality, assume the target node is closest
to the first anchor node, we firstly move the origin coordinate
to the position of first anchor node. It results that the mea-
surement system, Eq.(1), becomes

x ′2 + y′2 − 2x ′1x
′
− 2y′1y

′
+ x ′21 + y

′2
1 = d̂21

x ′2 + y′2 − 2x ′2x
′
− 2y′2y

′
+ x ′22 + y

′2
2 = d̂22

...

x ′2 + y′2 − 2x ′mx
′
− 2y′my

′
+ x ′2m + y

′2
m = d̂2m,

(10)

where x ′ = x − x1, y′ = y − y1, x ′i = xi − x1, y′i = yi − y1,
respectively.

[
x ′ y′

]T is the position of the target node in
the moved coordinate system. To compact the symbols in
the following discussion, we still use

[
x y

]T to denote the
coordination of target node in the moved coordinate system.
Subtracting the first sub-equation in Eq.(10), which can be
reduced to x2 + y2 = ˆd21 , from the other sub-equations gives
that 

x2 + y2 = d̂21
2x ′2x + 2y′2y = d̂21 − d̂

2
2 + x

′2
2 + y

′2
2

...

2x ′mx + 2y′my = d̂21 − d̂
2
m + x

′2
m + y

′2
m/

(11)

Since the first sub-equation isolates from the other
sub-equations in Eq.(11), we can replace the first
sub-equation from x2+ y2 = ˆd21 to

√
x2 + y2 = d̂1. Thus, we

transform the measurement system into

Auwθ̂uw = b̂uw (12)

where

Auw=


x2 − x1 y2 − y1 0
...

...
...

xm − x1 ym − y1 0
0 0 1

,

θ̂uw=

 x
y√

x2 + y2

,

b̂uw=


(d̂21+x

2
1+y

2
1−d̂

2
2+x

2
2+y

2
2−2x1x2−2y1y2)/2
...

(d̂21+x
2
1+y

2
1−d̂

2
m+x

2
m+y

2
m−2x1xm−2y1ym)/2

d̂1

.
(13)

Remark: (a) Compared with Eq.(1), Eq.(12) shows that
UCWLS introduces

√
x2 + y2 as an intermediate vari-

able while CWLS adopts x2 + y2. (b) Compared with
Eq.(5), Eq.(12) indicates that UCWLS uses all mea-
surement distances information while TWLS and SCWLS
do not.
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Base on this measurement system, we form the localization
problem as

UCWLS : argmin
θ̂uw

‖ W 1/2
uw (Auwθ̂uw − b̂uw) ‖22

s.t. θ̂
T
uwQθ̂uw = 0 (14)

where

Q =
[
I(k−1)×(k−1) 0(k−1)×1
01×(k−1) −1

]
. (15)

k = 3, Wuw is a weight matrix that is used to improve
performance.

It is clear that the proposed method is a quadratic con-
strained weighted least squares method, which naturally has
low computational complexity. In addition, the structure of
Auw suggests that UCWLS uses not only the difference of
measurement distances but also a measurement distance d̂1.
It augments the information used in the objective function
which leads to better performance.

B. ALGORITHM DESCRIPTION
To solve Eq.(14), we convert it to an unconstrained normal
equation by constructing a Lagrange function

L(θ̂uw, λ) =‖ W 1/2
uw (Auwθ̂uw − b̂uw) ‖22 +λθ̂

T
uwQθ̂uw. (16)

Differentiate L(θ̂uw, λ) with respect to θ̂uw,

∂L(θ̂uw, λ)
∂ θ̂uw

=2(ATuwWuwAuw+λQ)θ̂uw−2ATuwWuwb̂uw.

(17)

Equate the Eq.(17) to zero, the minimum of Lagrange func-
tion is obtained as

θ̂uw = (ATuwWuwAuw + λQ)−1ATuwWuwb̂uw (18)

where multiplier λ has yet to be determined.
To find λ, we substitute Eq.(18) into the equality constraint

of Eq.(14), which is

[(ATuwWuwAuw + λQ)−1ATuwWuwb̂uw]T

Q(ATuwWuwAuw + λQ)−1ATuwWuwb̂uw = 0. (19)

Note that ATuwWuwAuw and Q are both real symmetric matri-
ces, (ATuwWuwAuw)−1 can be diagonalized as

(ATuwWuwAuw)−1 = U3U−1 (20)

where D = diag(d1, d2, d3) and di(i = 1, 2, 3) are the
eigenvalues of the matrix (ATuwWuwAuw)−1. Putting Eq.(20)
into Eq.(19) gives

0 = [U3U−1(ATuwWuwAuw)]TQ

× [U3U−1(ATuwWuwAuw)]

= (U−1ATuwWuwAuw)T

×diag
(
(d1 + λ)−2, (d2 + λ)−2,−(d3 − λ)−2

)
× (U−1ATuwWuwAuw). (21)

To clarify the equation, a vector c = U−1ATuwWuwAuw is
introduced. The polynomial of λ is

c21
(d1 + λ)2

+
c22

(d2 + λ)2
−

c23
(d3 − λ)2

= 0 (22)

where

c = U−1ATuwWuwAuw = [c1, c2, c3]T . (23)

Among the four roots of Eq.(22), we use a positive real one
to minimize the effect of ill-conditioned problem.

Since we carry out a coordinate transformation in the first
step, an inverse coordinate transformation is done on the θ̂uw
to yield θ̃ ru. The position of the target node which consists of
the first and second elements of θ̃ ru is finally obtained.

To summarize, the position of the target node is calculated
by Algorithm 1.

Algorithm 1 UCWLS Algorithm
input : Reference nodes coordinates

(xi, yi)(i = 1, · · · ,m) and measurement data
d̂i(i = 1, · · · ,m).

output: The position of the target node (x, y)

Find the reference node which is closest to the target
node.
Move the coordinate origin to the found reference node.
Construct the localization system Auwθ̂uw = b̂uw using
Eq.(12).
Decompose (ATuwWuwAuw)−1 to obtain U and 3 using
Eq.(20).
Generate the polynomial of λ using Eq.(22).
Find the maximum real root λmax among the four roots
of Eq.(22).
Calculate θ̂ ru,λmax and θ̂ ru,λ0 with λ = λmax and λ = 0
using Eq.(18), respectively.
Let θ̂uw is the one being smaller of residual errors,

θ̂uw = argmin
θ̂ ru,λmax ,θ̂ ru,λ0

{‖ Auwθ̂ ru,λmax − b̂uw ‖2,

‖ Auwθ̂ ru,λ0 − b̂uw ‖2}.

Return the position [1 1 0]θ̂uw carried on an inverse
coordinate transformation.

C. ALGORITHMS ANALYSIS
In briefly, compared with TWLS, CWLS, SCWLS, and
CLENE, the performance of UCWLS is expected in Table 1.

1) ESTIMATOR BIAS
Proposition 1: On conditions that (a) the mean of mea-

surement noise is zero, and (b) the measurement noise is
small compared with the physical distance, the UCWLS is an
unbiased estimator.

For the measurement error is sufficiently small, which
is the practical situation, the squared value d̂i can be
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TABLE 1. Performance comparison.

approximated as

d̂2i = (di + εi)2 ≈ d2i + 2diεi (24)

where εi is measurement noise. Since the mean of noise
is zero, which means E(d̂i − di) = 0. It conducts that
E(1b) = 0. Based on this fact, the mean of localization bias
1θ̂ is

E[1θ̂] = E[(ATWA+ λQ)−1ATW1b]

= (ATWA+ λQ)−1ATW · E[1b]

= 0. (25)

2) COMPUTATION TIME
Actually, all algorithms, CWLS, TWLS, SCWLS and
UCWLS have the same time complexities in each iteration
if we use Big-O to describe the algorithms’ computation
complexity. It is because that a least squares process is carried
out in each iteration. Conceptually, in each iteration, the com-
putational complexity of these algorithms is almost the same
because all of them estimate the position by solving a system
of equations like Aθ = b. Therefore, iterative times dominate
the computation burden.

Inspect the whole process of Algorithm 1, each step is
determinable with a closed-form expression. The only doubt
might be calculating λ which is the solution of Eq.(22).
Actually, Eq.(22) is a polynomial of degree four also known
as quartic polynomial which has a closed-form solution for-
mula proposed by Ferrari’s algorithm. A fast and highly
accurate algorithm for solving quartic equations is introduced
in literature [29], which declares that it is more than six times
as fast than the quasi-standard companion matrix eigenvalue
quartic solver.

The SCWLS has the sameway of calculating λ as UCWLS.
However, SCWLS needs an iterative process to counter solv-
ing difficulty, which is caused by intermediate variables cou-
pling with measurement distances. Therefore, we consider
that SCWLS is medium complexity.

CWLS obtains a λ by solving a fifth degree polynomial
known as quintic polynomial. It is well known that there are
no general solutions to polynomials of degree higher than
four. The solutions only are calculated by iteration or evolu-
tionary algorithm. Therefore, we consider that the computa-
tion burden of CWLS is high. Also, TWLS has a second step

of weighted least squares step beside the first weighted least
squares step. Although TWLS also needs iteration, it does not
need to update λ, so the complexity is not as high as CWLS
and SCWLS.

The initial value, the power of the noise, and the algorithm
itself have different effects on the convergence of the iterative
process. Due to the uncertainty of the number of iteration
rounds, we use numerical simulation results to illustrate the
computational complexity, as shown in Table 1. As can be
seen from Table 1, UCWLS has the lowest computational
complexity. Although TWLS, CWLS, SCWLS, and UCWLS
all have a closed-form expression, UCWLS only needs to
solve the closed expression once, while other algorithms,
including CLENE without closed-form expression, need to
update the target node location in an iteration manner, so the
computational complexity of UCWLS is relatively low.

3) ROBUSTNESS DISCUSSION
The localization system for mobile robots working in narrow
space needs to resist two ill-conditioned problems: (i) the
distances from the target node to reference nodes are approx-
imately the same, (ii) the reference nodes are almost in a line.

As it is discussed in [27], TWLS and CWLS are unable to
handle the scenario where the distances from the target node
to reference nodes are approximately the samewith the geom-
etry of reference nodes is likely a uniform circular array. The
issue is that the coefficients matrix Atw couples with the mea-
surement distances in that case. Therefore, SCWLS separates
the additional variable, which is relative with measurement
distances, from the coefficients matrix G to overcome matrix
ill-conditioned problem.
Proposition 2: When the target node is close to the

geometry center of reference nodes, UCWLS avoids being
ill-conditioned.

Note the relationship of Auw and G, which is

Auw =
[
G 01×(m−1)

02×1 1

]
(26)

and express Wuw and b̂uw as block matrix form whose size
match the Auw

Wuw =

[
WG 0
0 wm

]
and b =

[
bG
bm

]
, (27)

it is easily to verify that the position of target node is[
0 1 0
0 0 1

]
θ̂uw = (GTWGG+ λI )−1GTWGbG. (28)

Eq.(28) shows that UCWLS is same way adapted by SCWLS
to avoids ill-conditioned situation.

Furthermore, we declare that UCWLS is more robust than
SCWLS which is the state-of-the-art of quadratic constrained
weighted least squares method.
Proposition 3: The localization variance of UCWLS is

small than the one of SCWLS.
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Proof: SCWLS is equivalent to a generic unconstrained
estimation problem as follows:

η̂sc = argmin
ηsc

Jsc(η) (29)

where

J (η)sc = (Gη − b̂tw + gR)TWsw(Gη − b̂tw + gR). (30)

The covariance matrix Csc associated with J (η)sc can be
expressed as

Csc ≈ E
[
∂2J (η)sc
∂η∂ηT

]−1
E

[(
∂J (η)sc
∂η

)(
∂J (η)sc
∂η

)T
]

× E
[
∂2J (η)sc
∂η∂ηT

]−1∣∣∣∣∣
η=ηsc

. (31)

And the localization variance of SCWLS, denoted as vsc, is

vsc = trace{Csc}. (32)

Based on Eq.(14), Eq.(26) and Eq.(27), UCWLS is
equivalent to

θ̂uw = argmin
θ

J (θ ) (33)

where

J (θ ) = Jsc(η)+ wm(d̂1 − η̂
T
scη̂sc)

2. (34)

Therefore, it is easy to verify that the localization variance of
UCWLS is small than vsc. �

IV. NUMERICAL SIMULATIONS AND
EXPERIMENTAL TESTS
Simulations are done to assess the performance of UCWLS,
SCWLS, TWLS, CWLS and CLENE. It is worthy notable
that CLENE is a nonlinear least squares method, which trade
localization with computation time. Therefore, CLENE is
used as representative of localization accuracy of nonlinear
least squares. Since the performance of CLENE depends on
the initial value, two types of setting initiations are used in
the simulations. The first way is to set the initiation as the
output of LS algorithm, named CLENE-1. The second way
is simply to set [0 0]T, named CLENE-2.
The performance measure uses mean squared error (MSE)

as a function of average noise power p = 10 log10(σ
2) dB,

where σ 2 is the variance of the noise. The MSE is com-
puted by

MSE = 10 log10

(∑M
l=1 ‖ θ (l)− θ ‖

2
2

M

)
dB (35)

where θ (l) is the estimate of θ at the l-th trial, M is trials
times. In addition, Cramér-Rao lower bound (CRLB) [22] is
used to indicate the optimality of localization results.

The ideal weighting matrix is that Wuw = E(b̂uwb̂
T
uw)
−1,

which involves the accurate distances between the target node
and reference nodes. The error of b̂uw can be modeled as

zero-mean Gausssian process [27]. Ignoring the second-order
error term, the weighting matrix is approximated as

Wuw ≈ diag(d̂22 , d̂
2
m, · · · , d̂

2
1 )
−1 (36)

Eq.(36) is used as a weighting matrix in simulation. It is
worth noting that CWLS, SCWLS, and CLENE use an itera-
tive process to obtain an optimal weighting matrix. UCWLS
can also adopt a process of optimizing weighting matrix
to improve locating accuracy. However, UCWLS trades off
a small MSE for a low computation complexity, which is
discussed and illustrated in Section IV-A and Section IV-B.
If the measurement errors are large, the weighting matrix
heavily betrays ideal weighting, UCWLS will produce a low
localization accuracy.

A. SCENARIO 1
Let us consider the same localization geometry used in [27],
where the four reference nodes configuration are at coordi-
nates [0 0]T, [0 10]T, [10 10]T, [10 0]T, and the target
node is at [5.1 4.9]T, as shown in Fig.1. This scenario
simulates the ill-conditioned problem that the reference nodes
geometry is a uniform circular array and the source is close
to the array center [27], [28].

FIGURE 1. Location deployment of the nodes in Scenario 1.

FIGURE 2. Average MSE versus noise power at θ = [5.1 4.9]T with
500 trials.

Show as Fig.2, for p < −5 dB, the proposed algorithm
avoids the ill-conditioned as same as SCWLS, which is
expected as proposition 2. UCWLS does not improve local-
ization accuracy, meanwhile, it is the fastest one shown as
Fig.3. The different performance of CLENE-1 and CLENE-2
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FIGURE 3. Corresponding computation time of the algorithms in Fig.2.

illuminates the importance of proper guess to a nonlinear
least squares method. For p > −5 dB, except TWLS and
CLENE-2, all algorithms have MSEs that are close to the
CRLB. It is because the higher noise power reduces the
sensitivity of the algorithms to data errors.

Both SCWLS and CLENE have MSEs exactly on the
CRLB, which benefits from the iterative process. In contrast,
UCWLS can not stick to the CRLB when the p > −20 dB.
It is because that UCWLS constructs the weighting matrix
directly from the measurement distance.

B. SCENARIO 2
As shown in Fig.4, four reference nodes are configured at
coordinates [0 0]T, [0 2.4]T, [8 2.4]T, [8 0]T, and the
target node is node 1 in the figure, whose coordinate is
[0.4 1.2]T.

FIGURE 4. Location deployment of the nodes in Scenario 2 and
Scenario 3.

Observe Fig.5, only UCWLS and CLENE-1 are close to
CRLB. Meanwhile, In addition to TWLS, UCWLS is the
fastest algorithm of several other algorithms shown as Fig.6.
The localization error of SCWLS climbs up with an increase
in the noise power because the condition number of the
localization system amplifies the bias in this scenario.

In this scenario, UCWLS is slightly above not on the CRLB
when p > 0 dB. It is still caused by the weighting matrix.
Based on Eq. (24) and Eq. (36), in this case, the smallest
distance, which has the smallest error in measurement error,
dominates the localization error.

FIGURE 5. Average MSE versus noise power at θ = [0.4 1.2]T with
500 trials.

FIGURE 6. Corresponding computation time of the algorithms in Fig.5.

C. SCENARIO 3
Keep the configuration of four reference nodes, which are at
[0 0]T, [0 2.4]T, [8 2.4]T, [8 0]T, and the target node
is set at [7.6 0.4]T,which is node 2 in Fig.4.

FIGURE 7. Average MSE versus noise power at θ = [7.6 0.4]T with
500 trials.

Compare Fig.7 with Fig.5, SCWLS is no longer close
to CRLB with a smaller error, which is -18 dB. However,
UCWLS still approaches on the CRLB with low computa-
tion burden shown as Fig.7 and Fig.8, which is expected as
proposition 2.

In this scenario, UCWLS shows its advantage that it can
achieve a good localization accuracy with low computation
complexity, at a cost of a small deviation from CRLB under
large noise.
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FIGURE 8. Corresponding computation time of the algorithms in Fig.7.

D. SCENARIO 4
Keep the configuration of four reference nodes, which are at
[0 0]T, [0 2.4]T, [8 2.4]T, [8 0]T, and the target node
is within the square area formed by four receivers but is at a
random position for each of the 500 trials.

FIGURE 9. Average MSE versus noise power at random target node
position with 500 trials.

As can be seen from Fig.9, the curve of CRLB shows jitter
because the target node position of each trial is different, and
the CRLB is no longer proportional to 10 log 10(σ 2). Fig.9
also shows that UCWLS has a smaller MSE than TWLS,
CWLS, and SCWLS. Compared with CLENE-1, UCWLS
approaches it in the case of small noise, with a difference
of about 1.3dB and when the noise is large, the gap of
their MSEs gradually increases. It is because that CLENE-1
benefits from iteration and the weighting matrix of UCWLS
heavily betrays ideal weighting when the measurement errors
are large, UCWLS produces a low localization accuracy.
Fig.9 and Fig.10 indicate that UCWLS has higher positioning
accuracy and the lowest complexity once again.

E. EXPERIMENTAL TESTS
Experimental tests are carried out. The experimental scenario
is shown in Fig.11. Four reference nodes are configured as the
scenarios of IV-B and IV-C. The geometry of reference nodes
is a rectangle with 8meters by 2.4 meters. The nodes combine
aDW1000UWBmodule and a STM32F407microcontroller,
which are powered via batteries.

In the first experiment, the target node was placed at
[0.4 1.2]T. As can be seen from Fig.12, the CLENE-1 has

FIGURE 10. Corresponding computation time of the algorithms in Fig.9.

FIGURE 11. Experimental scenario.

FIGURE 12. MSE and computation time of the algorithms at
θ = [0.4 1.2]T with 500 trials.

the highest localization accuracy. The MSE of UCWLS is
about 1dB higher than CLENE-1, however, its computa-
tion time is much lower. In addition, in contrast to TWLS,
UCWLS has smaller MSE but similar computation time. The
experimental results are basically matched to the numerical
simulations of Section IV-B. It is verified that UCWLS can
achieve a good localization accuracy with low computation
complexity.

The target node was placed at [7.6 0.4]T in the sec-
ond test. It is also basically consistent with the numerical
simulation of Section IV-C. Show as Fig.13, the difference
in localization accuracy between CLENE-1 and UCWLS is
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FIGURE 13. MSE and computation time of the algorithms at
θ = [7.6 0.4]T with 500 trials.

small, but the MSE of UCWLS is significantly lower than
other algorithms, and UCWLS has the lowest computational
complexity.

V. CONCLUSION
In this paper, an efficient range-based localization algorithm
for mobile robots acting in narrow space was explored. The
proposed algorithm augmented the information used in objec-
tive function to resist the ill-conditioned problems caused by
nodes’ geometry. It utilized a measurement distance besides
all of the difference of measurement distance. Compared with
CLENE, SCWLS, TWLS, and CWLS, the performance was
analysed. Simulation results have confirmed our analytical
results that the proposed method can efficiently avoid the
ill-conditioned problems.
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