
Computer Communications 150 (2020) 413–420

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Migration strategy of cloud collaborative computing for delay-sensitive
industrial IoT applications in the context of intelligent manufacturing
Ke Wang
Department of Information Engineering, Zhengzhou Tourism College, Zhengzhou City, Hennan Province 451464, China

A R T I C L E I N F O

Keywords:
Intelligent manufacturing
Industrial Internet of Things
Cloud cooperation
Computing migration

A B S T R A C T

In the context of intelligent manufacturing, machinery and equipment in the industrial manufacturing process
form the ‘‘industrial Internet of Things.’’ In this process of interlocking production, the requirements for
sensor data delay typically reach the millisecond level. Once the data is delayed, the equipment will be shut
down, which will make the production difficult or dangerous. In the context of intelligent manufacturing,
local computers have been unable to complete calculations and decisions quickly and on time for the huge
computing demands. Therefore, the cloud computing migration mode needs to be introduced, but cloud
computing migration will cause additional delays. Based on the above problems, this paper designs a cloud
cooperative migration strategy based on the information exchange structure of the industrial Internet of Things
and the delay mechanism caused by the migration. The feasibility of selecting the optimal migration strategy
based on task partitioning is verified by simulation.

1. Introduction

In the history of mankind, it has experienced three industrial rev-
olutions. Currently, it has entered the fourth industrial revolution
(Industry 4.0). Its main feature is to make full use of Internet tech-
nology, database technology, embedded technology, wireless sensor
network, machine learning and other multi-domain technologies to
achieve the intelligent, remote measurement and control transforma-
tion of manufacturing. It is also known as the modern information
technology era. Its core is ‘‘Internet of Things + Intelligent Manufac-
turing’’ [1]. The development of the new generation of information
technology in the new century has promoted the process of informa-
tionization in the manufacturing industry, and triggered an industrial
revolution centered on smart manufacturing on a global scale. Intelli-
gent manufacturing workshops put forward higher requirements for the
agile response speed of the production process and the high efficiency
of management decisions.

In the industrial wireless network system, various micro wireless
sensor nodes are installed on the machine. Each sensor node typically
contains sensors, wireless communication devices, micro-computing
units, and power supplies. Sensors are used to collect various data
such as temperature, humidity, pressure, and illumination. The wireless
communication device is configured to send or receive a message,
and the computing unit performs simple processing on the data col-
lected or received by the computing unit. Finally, a sink node collects
and analyzes the data from each sensor node. For a large industrial
manufacturing process, it contains thousands of sensors. The amount

E-mail address: wangke_2107@163.com.

of data summarized in the end is huge, and the amount of data
processing and calculation brought by it is also a geometric growth
of the process. Traditional servers and workstations cannot meet the
above calculation requirements [2]. Related scholars proposed a low
complexity task migration algorithm based on Lyapunov optimization
theory, while reducing the energy consumption and task execution time
of intelligent mobile terminals [3–5]. Compute tasks are migrated to
various types of resource-rich cloud processing tasks, thereby reducing
the resource consumption that is required for the calculation itself and
saving energy [6,7]. The computational migration technique migrates
computational tasks to large nodes with strong computing power on
the transmission path for processing. However, migrating tasks to
cloud virtual hosts for processing will introduce large additional delays
(network latency and virtualization latency), making it difficult to meet
the needs of delay-sensitive industrial manufacturing. This is reflected
in the contradiction between real-time communication and business
delay [8]. Therefore, in the actual situation, it is necessary to meet the
computing needs of the industrial Internet of Things, and to minimize
the communication delay, which is the core difficulty in calculating the
choice of migration strategy.

This paper first analyzes the delay factors caused by computational
migration for the industrial characteristics of the Internet of Things and
the network information exchange structure in the context of intelli-
gent manufacturing. Subsequently, a cloud-based computing migration
strategy is designed. Finally, the different task division modes are
compared, and the feasibility of optimal strategy selection is verified
by simulation.

https://doi.org/10.1016/j.comcom.2019.12.014
Received 15 October 2019; Received in revised form 30 November 2019; Accepted 5 December 2019
Available online 9 December 2019
0140-3664/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2019.12.014
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2019.12.014&domain=pdf
mailto:wangke_2107@163.com
https://doi.org/10.1016/j.comcom.2019.12.014


K. Wang Computer Communications 150 (2020) 413–420

Fig. 1. Three-tier architecture of traditional Internet of Things.

2. Industrial IoT architecture under the background of intelligent
manufacturing

2.1. Traditional internet of things structure

The Internet of Things (IoT) refers to a network that uses various
information sensing devices to connect with the Internet to realize
a comprehensive network of people, people and things, and things
without time and geographical restrictions [9]. This can be divided into
three levels according to the bottom-up process: the perception layer,
the network layer and the application layer, as shown in Fig. 1.

The perception layer is at the bottom of the entire architecture and
is the core to realize the comprehensive perception of the Internet
of Things. It consists of various sensing devices, such as RFID (radio
frequency identification) electronic tags and readers, QR code tags and
recognizers, various types of sensors, cameras, GPS, and so on. Its
main role is to identify connected objects, collect and capture various
monitoring information in real time. If the Internet of Things is likened
to a person, then the level of the perception layer is equivalent to the
skin and facial features of the human body [10].

The network layer is located in the middle of the entire architec-
ture and is responsible for deep integration of various communication
networks (telecom network, mobile communication network, intranet,
satellite network, wide-area network, small local area network, etc.)
with the Internet, and is used to acquire the sensing layer. The in-
formation is passed to each network, usually over long distances. In
addition, under the support of large data centers, cloud computing
centers and other platforms, it is also responsible for the intelligent
processing of the collected massive information; the status is equivalent
to the human nerve center and brain. The application layer belongs
to the uppermost layer of the entire architecture, and builds various
intelligent application platforms for various practical business needs.
So, different users can use the analyzed and processed information
to provide a rich and intelligent solution [11], such as smart home,
smart medical, intelligent building, intelligent transportation, smart
agriculture, smart city, remote meter reading, etc.; the status is equal
to the social division of labor.

2.2. Industrial IoT architecture in the context of intelligent manufacturing

Under the background of the birth of IoT technology and the rapid
development of the Internet, the traditional industrial field has also
ushered in deep reforms under the impetus of Internet of Things tech-
nology. DCS refers to a modern industrial control system that monitors
and controls industrial and agricultural production processes based on
fieldbus technology. It integrates computer technology, communication
technology and control technology. At present, DCS is widely used
in many fields such as modern science and technology, industrial
production, national defense, meteorology, etc. It is one of the most

mature and most widely used measurement and control system ar-
chitectures [12]. A typical DCS architecture is shown in Fig. 2. The
architecture takes the microcontroller as the core, and uses the fieldbus
technology to connect the measurement and control terminals to each
other, and connects to the Internet through the main control station
module, so that it has the functions of monitoring and control.

The DCS is divided into three layers from the architecture: the mea-
surement and control terminal layer, the network communication layer,
and the business logic layer. The measurement and control terminal
layer is composed of each terminal equipment node distributed in the
measurement and control site, and completes the real-time collection
of field data and equipment control. This is responsible for returning
data to the upper layer through fieldbus technology and executing
commands from the upper layer. The network communication layer is
responsible for the mutual communication between the measurement
and control terminal layer and the business logic layer, and is respon-
sible for the conversion between the underlying field bus protocol and
the high-level network communication protocol. The business logic
layer is at the top of the overall architecture. It usually consists of
an operator terminal, an engineer terminal, and an application server.
The operator terminal is responsible for monitoring and controlling the
actual measurement and control site [13]. The engineer terminal is
responsible for managing the system hardware and software resources
and other important components. The application server is responsi-
ble for providing network communication services and data storage
functions for the entire architecture.

2.3. Industrial IoT information exchange structure

In recent years, the industrial modernization process has intensified;
traditional industrial control has been improved and developed rapidly;
and industrial automation and production line intelligent unmanned
has become a new development trend. As production equipment and
process requirements become higher and higher, which makes pro-
duction equipment and production lines more and more complex, the
analysis on remote intelligent control and regulatory is becoming more
and more important. The Internet of Things remote data transmission
system can automatically upload device operation data to the Internet.
It is aggregated, processed and stored in the database in the Internet
Data Service Center [14]. Then, it helps to transform and disassemble
the data information. Finally, it is displayed in the form of intuitive
graphs, line graphs, pie charts and tables, so that engineering moni-
tors can quickly obtain data transmission information and accurately
control the production and operation of machinery and equipment.

With the continuous evolution and transformation of intelligent
manufacturing control technology, various types of production equip-
ment have become more advanced and intelligent. The demand for
remote data transmission technology has also become more and more
urgent, which will bring more opportunities for the industrial IoT data

414



K. Wang Computer Communications 150 (2020) 413–420

Fig. 2. The architecture of DCS.

transmission field. With the advent of more modern technologies such
as cloud platform, intelligent control, and intelligent management, the
data transmission method has gradually evolved into an effective mon-
itoring method and a new type of resource management. In the future,
IoT remote data transmission technology will evolve towards integra-
tion, intelligence and production. In an enterprise information network
consisting of information management layer, process monitoring layer,
and field device layer (as shown in Fig. 3). Ethernet is already the de
facto standard protocol in the information management layer, and the
process monitoring layer network also basically transitions from serial
communication to Ethernet technology [15]. Therefore, industrial users
hope that Ethernet technology will directly extend from the upper
information management level to the process monitoring level and
field device level of the vertical communication, thereby providing a
network foundation for information exchange between different layers
of the automation system.

3. Industrial IoT delay analysis

3.1. Industrial IoT performance requirements for data latency

Data latency, which refers to the time difference between the data
being generated from the data source and being received by the data
target, is also one of the basic indicators for evaluating network perfor-
mance. With the improvement of the precision and speed of modern
industrial production, the requirements for data delay in industrial
wireless networks are gradually increasing. On the one hand, the
shorter delays help the system react more quickly and accurately,
thereby improving product quality and productivity; On the other
hand, in industrial systems, the collected data is often only valid for
a short period of time, and the expired data is not only useless or
even harmful. The need for data latency can often be divided into
two broad categories: soft real-time systems and hard real-time sys-
tems. In a soft real-time system, real-time performance guarantees a
predetermined probability, that is, a small amount of over-time delay
is allowed. In a hard real-time system, the end-to-end delay boundary

Table 1
Demand for industrial communication delay.

Traffic type Response time Shaking

Soft Rt 10–100 ms ≥100%
RT 1–10 ms ≥15%
IRT <1 ms <1 μs

must be strictly determined, and the delay of information beyond the
boundary means the failure of the system. Industrial communication
systems must meet the real-time requirements of the technical process.
Depending on the application of the system, real-time requirements can
be divided into three different orders of magnitude. For example, in
process automation, data acquisition requires an appropriate time limit.
The typical response time is about 100 ms. When the response time
changes, its performance does not deteriorate significantly. In motion
control systems, high determinism and low jitter of data transmission
delay must be guaranteed, with a response time of less than 1 ms and
jitter of less than 1 μs, as shown in Table 1.

At the field device level, two major issues must be considered, which
are predictability and real-time. In particular, predictability refers to
reading and writing variables in a certain time interval; real-time refers
to the maximum time allowed for an event communication task to
run. Periodic data exchange between field-level field devices. The data
length is small; the update period is short; the jitter is small; and the
enterprise management layer and the control monitoring layer pene-
trate into the field device level, which will bring huge data transmission
amount. The quality of service of the system must be guaranteed, and
the significant yardstick for judging the quality of its service is the
end-to-end delay.

3.2. Calculating network delay caused by migration

The modern industrial Internet of Things cloud-based computing
migration solution will bring additional communication overhead to
mobile terminals. For example, in industrial communication, it is firstly

415



K. Wang Computer Communications 150 (2020) 413–420

Fig. 3. Industrial IoT information exchange structure.

Fig. 4. Network delay system model.

necessary to extract the operation information of the technician and
then transmit it to the corresponding control network for processing. Of
course, before submitting to the cloud, the user operation information
will be extracted, encoded and compressed firstly, and then uploaded.
After the control network processes the user operation information, the
corresponding feedback information is fed back to the client in the form
of a stream. The entire process from collection, uploading, processing,
and returning information to the client must be completed in millisec-
onds. Only in this way can the normal interaction time between the user
and the device be met. Therefore, even if the computing resources in
the cloud are sufficient, the network delay introduced by the computing
migration in the cloud environment is still a key factor in determining
whether industrial production control is smooth.

In large-scale network systems, the cumulative distribution function
(CDF) of information delay is a very important indicator to measure
the internal reliability of the system. Also in industrial communication
networks, if control information or feedback information is not success-
fully delivered due to delays, network performance may be degraded
or even destructive [16,17]. Therefore, when designing a reliable com-
munication protocol, a powerful tool is needed to accurately model and
analyze the end-to-end delay profile. In the design and optimization of
large-scale industrial networks, it is necessary to fully capture the end-
to-end delay characteristics and distribution according to the statistical
characteristics of network components and protocols. This establishes
an accurate end-to-end delay model to provide network reliability and
quality of service assurance.

A typical delay system can be represented by a series of component
nodes and link node delay time models. Fig. 4 is a typical networked
delay system model. 𝑉 =

{

𝑣𝑖(𝑠)
}

represents the delay distribution
function of the component node; 𝐸 =

{

𝑒𝑖𝑗 (𝑠)
}

represents the delay
distribution function of the link node.

In control theory, if 𝑉1(𝑠) is used as the input signal, 𝑉3(𝑠) is used as
the output signal. Then the expression between the input and output of

the system can be expressed by the transfer function G(s):

𝐺(𝑠) =
𝑁(𝑠)
𝑀(𝑠)

=
𝑎𝑚𝑠𝑚 + 𝑎𝑚−1𝑠𝑚−1 +⋯ + 𝑎1𝑠 + 𝑎0
𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 +⋯ + 𝑏1𝑠 + 𝑏0

(1)

where a and b are positive numbers and 𝑚 < 𝑛.
Similarly, it is also possible to create a system that describes the de-

layed cumulative output of data after passing through multiple network
nodes. If each node is represented as the delay distribution function of
the node, the total transfer function from the input node to the output
node is the delay cumulative distribution function from the source node
to the destination node [18]. Therefore, as long as we know the delay
distribution of data on each network node, the analysis based on the
frequency domain method can produce an accurate delay time model.
Moreover, an accurate delay time model can be obtained, and high-
order characteristics of the delay are captured. Once the accurate delay
time model is obtained, the mature theory in control engineering, such
as root locus and Bode plot, is utilized. It is extremely convenient for
analyzing network delay bottlenecks, and improving network real-time
performance and reliability.

4. Cloud cooperation computing migration strategy selection

4.1. Cloud collaborative computing migration architecture

Cloud cooperative computing migration refers to an open platform
that integrates network, computing, storage, and application core ca-
pabilities on the side close to the source of data or data itself, and
provides services nearby. Its applications are launched on the edge
side, thereby resulting in faster network service response, and meeting
the industry’s basic needs for real-time processing, smart applications,
security and privacy protection. Cloud collaborative computing mi-
gration is between physical entities and industrial connections, or at
the top of physical entities. In the cloud computing, historical data of
cloud cooperative computing migration can still be accessed. If cloud
computing is likened to the brain of the entire computer intelligence
system, the cloud collaborative computing migration is the eyes, ears
and hands of the system. The core server gives the intelligent system
a strong artificial intelligence, but if the artificial intelligence is a
scorpion, it will not play a big role. A common problem in big data
applications is that no suitable data is collected. Cloud collaborative
computing migration provides the most accurate and timely source of
data for the core server’s big data algorithms.

The combination of cloud collaborative computing migration and
cloud computing makes the entire intelligent system clear-headed,
smart and flexible. A computer system that relies entirely on cloud
computing is like asking the army of the command for everything.
When it takes a lot of interaction with the outside world, it will appear

416



K. Wang Computer Communications 150 (2020) 413–420

Fig. 5. Architecture of cloud collaborative computing migration.

rigid and slow to respond, and in the event of network problems,
the system will be completely paralyzed. In addition, after the cloud
cooperation calculation migration, it is like letting the middle and
lower-level officers also begin to exert subjective initiative; and it can
make intelligent judgments and action decisions to a certain extent [19–
21]. At the same time, only a part of the filtered information needs
to be uploaded to the headquarters, which greatly eases the pressure
of network communication. Even if you temporarily lose contact with
the headquarters, you can make some decisions on your own. The
architecture and application diagram of cloud cooperative computing
migration is shown in Fig. 5:

4.2. Calculating migration decision making

Cloud task migration mainly includes six steps: environment aware-
ness, task partitioning, migration decision, task upload, edge server
execution, and return result. Among them, task division and migration
decision are two core steps. The specific flow chart of task migration is
shown in Fig. 6:

Migration decisions are an important step in the task migration
process. It refers to the process of using a certain indicator as an
optimization goal, measuring the utility of the migration through rel-
evant scientific methods, and making sub-tasks to the remote server.
Task migration is usually divided into method-level migration, task-
level migration, and application-level migration. Ordinary research is
based on task-level migration. Task-level migration refers to the task-
based granularity of dividing the application code into multiple parts
and making partial modifications to ensure that each task can run
independently. The mobile device uses an indicator to optimize the
target, and feeds back the monitored bandwidth, the mobile device, and
the parameters of the remote server’s CPU and memory to the migra-
tion decision module. By calculation and measurement, the process of
whether to uninstall and which subtasks to uninstall is made. Migration
destination selection strategy based on supply and demand similarity
and dynamic price model can ensure load balancing of cloud computing
platform, improve resource utilization, and effectively reduce delay and
user cost.

5. Optimal migration strategy selection based on task partitioning

In the traditional task migration strategy, the entire mobile terminal
application is generally used as a migration object, or the task is
divided into multiple subtasks of a chain-linear relationship before
the migration decision is made. These do not take into account the

complexities of multiple dependencies within mobile terminal applica-
tions. This paper will make a migration decision for mobile terminal
applications with complex topological relationships, and obtain the
migration decision result for each sub-task, which is the minimum delay
migration scheme.

5.1. Linear task partitioning model

In the traditional task migration strategy, an entire mobile terminal
application is often used as a migration object, and it is not divided into
multiple subtasks. In this coarse-grained migration strategy, the low
latency advantage of the mobile edge computing platform is not fully
utilized, and the capabilities of the mobile edge computing platform are
not considered to be lower than those of the cloud computing center.

The execution flow diagram of the fine-grained linear task migration
scenario is shown in Fig. 7. It considers that each subtask is either
executed on the mobile terminal side or on the mobile edge side. It
records the calculation delay generated when the task is executed on
the mobile terminal side as C(ME), and also calculates the calculation
delay generated when the task is performed on the mobile edge side as
C(EE). Moreover, when the execution location of a current subtask and
the execution location of the latter subtask are different, a transmission
delay occurs. The current person is executed at the mobile terminal, and
when the latter is executed on the mobile edge side, a transmission
delay and a transmission delay are generated, and the transmission
delay is recorded as C (SID); the current performer is performed on
the mobile edge side; and when the latter is executed on the mobile
terminal side, a reception delay and a reception delay are generated,
and the reception delay is recorded as C (ROD); it should be noted that
the initial task data is stored on the mobile terminal side, and when
all the subtasks are completed, the final processing result needs to be
returned to the mobile terminal.

The above task partitioning model does not consider that the input
data of a subtask may come from the output of multiple subtasks. It
must be completed after these subtasks are complete.

5.2. Fine-grained directed acyclic graph-like task partitioning model

Fig. 8 is a topological model of a fine-grained directed acyclic
graph. It uses a directed acyclic graph (DAG) to represent complex
dependencies between subtasks. For Fig. 9, G = (V, E), where the node
set V represents the set of tasks to be processed, and 𝜐 ∈ 𝑉 represents
the divided subtasks; E represents a set of directed edges, indicating
the dependencies between tasks; 𝑒𝑢𝑣 ∈ 𝐸 represents the amount of data

417



K. Wang Computer Communications 150 (2020) 413–420

Fig. 6. Flow chart of task migration.

Fig. 7. Fine-grained status task execution process.

Fig. 8. Task topology model diagram with fine-grained directed acyclic graph.

transferred between task u and task v. It means that when the task u is
executed, it will transmit the uve size data to the task v; task v execution
can only be started after the task u has been executed and the data
transmitted by the task u has been received.

5.3. Simulation condition

This article is based on Cloud Analyst software (CloudSim-based
visual simulator, cloud computing simulation software developed by

Table 2
Configuration of network access points in this study.

Name AP1 AP2 AP3 AP4

Region 1 3 2 0

Table 3
User configuration.

Name User one User two User three User four

Region 1 3 2 0
Request Per Hr 60 60 60 60
Date size per request 100 100 100 100

Table 4
Delay matrix (units in millisecond).

Region 0 1 2 3 4 5

0 50 100 150 250 250 150
1 100 50 200 500 300 200
2 125 200 50 150 200 300
3 150 500 150 50 400 500
4 250 350 200 400 50 300
5 200 250 250 500 500 50

the Buyya cloud computing research team), which improves the main
components by modifying the Cloud Analyst simulation platform code.
This enables it to be transformed into a minimal delay simulation
software for simulation experiments on the improved simulator.

The simulation scenarios in this chapter are as follows:
Within a certain geographical range, different network access points

have different coverage ranges. Multiple mobile terminal users are also
randomly distributed within the signal coverage of each network access
point. In the simulation scenario, there are 4 mobile terminal users
User1, User2, User3 and User4. They are in areas 2, 1, 3, 0; there are
4 network access points AP1, AP2, AP3, and AP4, which are located in
areas 1, 2, 0, and 3. There are 9 MEC servers in this study, of which
MECS7, MECS8 and MECS9 are on the AP3 side of the access point
and are located in area 0; MECS4 is located on the AP1 side of the
access point and is located in area 1; MECS1, MECS2, and MECS3 are
on the AP2 side of the access point and are located in area 2; MECS5
and MECS6 are on the AP4 side of the access point and are located in
area 3. The network access point configuration is shown in Table 2:

User configuration is shown in Table 3:
The delay matrix configuration is shown in Table 4:

5.4. Analysis of simulation results

In order to analyze the performance of the migration location selec-
tion strategy based on fine-grained directed acyclic graph-like tasks this

418



K. Wang Computer Communications 150 (2020) 413–420

Fig. 9. Delay time comparison chart for different strategies.

chapter discusses that the linear task partitioning selection strategy is
used as the comparison strategy. The task completion time comparison
diagram of the two strategies is shown in Fig. 9. The figure shows the
comparison of the average task completion time of the two strategies
in the MEC environment with different number of application tasks
participating in the migration. The task completion time is the time
interval from the start of the task to the completion of the task and the
return of the result to the user.

It can be seen from Fig. 9 that the fine-grained directed acyclic
graph-like task partitioning strategy is always superior to the linear
task partitioning strategy, and its task completion average time is
always the smallest. When the number of migration tasks is small,
the advantage of the fine-grained directed acyclic graph task division
strategy on the average task completion time is not obvious. This is
because the available resources at the beginning are sufficient; the
resource utilization is relatively balanced; and the corresponding vir-
tual machine can be deployed. As the number of tasks participating
in the migration increases, the average task completion time is much
lower than the linear task partitioning strategy. This is because the
total amount of resources calculated by the mobile edge is fixed. When
making the migration decision, the strategy fully considers the resource
requirements of the mobile terminal application and the remaining
amount of resources of the MEC server, and always migrates the task
to the most suitable computing resource as much as possible, aiming to
balance the resource utilization of the MEC server. This allows you to
deploy more virtual machines to perform tasks with minimal latency.

Fig. 10 is a comparison of task overhead under two strategies. A
comparison of the average mission overhead costs of the algorithms is
shown in Fig. 10. The task overhead cost refers to the actual scheduling
overhead cost paid by the user for completing the migration of a task
in the mobile edge computing environment.

As can be seen from Fig. 10, as the number of tasks increases, the
competition between tasks is fierce, and the task waiting time is longer.
Therefore, the average completion time of the task increases; the unit
price of the resource increases dynamically; and the average task cost
increases. Based on fine-grained directed acyclic graph-like tasks, the
average task migration overhead of a migration strategy is significantly
better than the other. This is because the former makes the migration
decision and takes into account the utilization and price of computing
resources. It is always more inclined to migrate the task to a computing
node with a relatively low price and a relatively low price. This reduces
the migration overhead cost of application tasks to a certain extent.

Fig. 10. Comparison of task costs for the three strategies.

6. Conclusions

The large capacity, large bandwidth, low latency, and low power
consumption have gradually become the main demands of the indus-
trial Internet of Things, with the rapid development of intelligent manu-
facturing. This paper proposes a fine-grained directed acyclic graph-like
task partitioning strategy, abandoning the traditional stochastic se-
lection idea, and proposes the concept of supply–demand similarity.
Considering the similarity between the resource requirements of the
task and the amount of computing node resources of the mobile edge
computing platform, this study improves the resource utilization bal-
ance to ensure that more virtual machines can be deployed to perform
tasks and perform simulation experiments under the CloudAnalyst
simulation platform. The results show that the fine-grained directed
acyclic graph-like task partitioning strategy is superior to the stochastic
selection strategy in terms of task average completion time and delay,
especially in the case of a large number of tasks. The IoT open platform
provides access, storage and access services for data. However, the deep
mining of data applications is far from enough. The specific business
of BI (business intelligence) in enterprise information systems, such
as decision support and predictive alarms, still needs data analysis
system implementation. Providing intelligent services to users is the
most important goal of the Internet of Things, big data mining is still a
research direction for us in the future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Ke Wang: Conceptualization, Methodology, Writing - original draft.

References

[1] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, B.H. Li, CCIoT-CMfg: cloud computing
and internet of things-based cloud manufacturing service system, IEEE Trans.
Ind. Inf. 10 (2) (2014) 1435–1442.

[2] F. Tao, Y. Zuo, L. Da Xu, L. Zhang, IoT-based intelligent perception and access
of manufacturing resource toward cloud manufacturing, IEEE Trans. Ind. Inf. 10
(2) (2014) 1547–1557.

419

http://refhub.elsevier.com/S0140-3664(19)31377-5/sb1
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb1
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb1
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb1
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb1
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb2
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb2
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb2
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb2
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb2


K. Wang Computer Communications 150 (2020) 413–420

[3] H. Topcuoglu, S. Hariri, Min-You Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274.

[4] Shafii Muhammad Abdulhamid, Muhammad Shafie Abd Latiff, Syed Hamid Hus-
sain Madni, Mohammed Abdullahi, Fault tolerance aware scheduling technique
for cloud computing environment using dynamic clustering algorithm, Neural
Comput. Appl. 29 (1) (2018) 279–293.

[5] Wonsub Lim, Dongil Yang, Youngoo Yang, An antenna proximity sensor for
mobile terminals using reflection coefficient, Sensors 18 (7) (2018) 2103.

[6] Anup Das, Francky Catthoor, Andre Bourdoux, Bert Gyselinckx, Energy efficient
mapping of lte-a phy signal processing tasks on microservers, IEEE Trans. Green
Commun. Netw. 2 (2) (2018) 397–407.

[7] Luís Ferreira, Goran Putnik, Maria Manuela Cruz-Cunha, Zlata Putnik, Leonilde
Varela, A cloud-based architecture with embedded pragmatics renderer for
ubiquitous and cloud manufacturing, Int. J. Comput. Integr. Manuf. 30 (4)
(2017) 483–500.

[8] L. Maglaras, L. Shu, A. Maglaras, J. Jiang, H. Janicke, D. Katsaros, T.J. Cruz,
Industrial internet of things (I2oT), Mob. Netw. Appl. 23 (4) (2018) 806–808.

[9] S.G. Pease, R. Trueman, C. Davies, J. Grosberg, K.H. Yau, N. Kaur, A. West, An
intelligent real-time cyber-physical toolset for energy and process prediction and
optimisation in the future industrial Internet of Things, Future Gener. Comput.
Syst. 79 (2018) 815–829.

[10] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, A.V. Vasilakos, Software-
defined industrial internet of things in the context of industry 4.0, IEEE Sens. J.
16 (20) (2016) 7373–7380.

[11] M. Liu, J. Ma, L. Lin, M. Ge, Q. Wang, C. Liu, Intelligent assembly system for
mechanical products and key technology based on internet of things, J. Intell.
Manuf. 28 (2) (2017) 271–299.

[12] Z. Bi, L. Da Xu, C. Wang, Internet of things for enterprise systems of modern
manufacturing, IEEE Trans. Ind. Inform. 10 (2) (2014) 1537–1546.

[13] D. Bandyopadhyay, J. Sen, Internet of things: Applications and challenges in
technology and standardization, Wirel. Pers. Commun. 58 (1) (2011) 49–69.

[14] L. Zhang, Y. Luo, F. Tao, B.H. Li, L. Ren, X. Zhang, Y. Liu, Cloud manufacturing:
a new manufacturing paradigm, Enterp. Inf. Syst. 8 (2) (2014) 167–187.

[15] R.Y. Zhong, X. Xu, E. Klotz, S.T. Newman, Intelligent manufacturing in the
context of industry 4.0: a review, Engineering 3 (5) (2017) 616–630.

[16] Y. Bai, Industrial internet of things over tactile internet in the context of
intelligent manufacturing, Cluster Comput. 21 (1) (2018) 869–877.

[17] M.C. Chen, S.Q. Lu, Q.L. Liu, Global regularity for a 2d model of electro-kinetic
fluid in a bounded domain, Acta Math. Appl. Sin. Engl. Ser. 34 (2) (2018)
398–403.

[18] Y. Cheng, F. Tao, L. Xu, D. Zhao, Advanced manufacturing systems: supply–
demand matching of manufacturing resource based on complex networks and
Internet of Things, Enterp. Inf. Syst. 12 (7) (2018) 780–797.

[19] Imene Djelloul, Zaki Sari, Mehdi Souier, Fault isolation in manufacturing systems
based on learning algorithm and fuzzy rule selection, Neural Comput. Appl. 31
(8) (2019) 3211–3225.

[20] O. Zimmermann, Architectural refactoring for the cloud: a decision-centric view
on cloud migration, Computing 99 (2) (2017) 1–17.

[21] M. Ellison, R. Calinescu, R.F. Paige, Evaluating cloud database migration options
using workload models, J. Cloud Comput. 7 (1) (2018) 6.

420

http://refhub.elsevier.com/S0140-3664(19)31377-5/sb3
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb3
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb3
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb3
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb3
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb4
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb5
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb5
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb5
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb6
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb6
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb6
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb6
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb6
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb7
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb8
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb8
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb8
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb9
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb10
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb10
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb10
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb10
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb10
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb11
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb11
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb11
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb11
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb11
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb12
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb12
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb12
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb13
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb13
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb13
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb14
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb14
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb14
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb15
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb15
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb15
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb16
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb16
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb16
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb17
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb17
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb17
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb17
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb17
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb18
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb18
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb18
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb18
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb18
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb19
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb19
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb19
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb19
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb19
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb20
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb20
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb20
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb21
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb21
http://refhub.elsevier.com/S0140-3664(19)31377-5/sb21

	Migration strategy of cloud collaborative computing for delay-sensitive industrial IoT applications in the context of intelligent manufacturing
	Introduction
	Industrial IoT architecture under the background of intelligent manufacturing
	Traditional internet of things structure
	Industrial IoT architecture in the context of intelligent manufacturing
	Industrial IoT information exchange structure

	Industrial IoT delay analysis
	Industrial IoT performance requirements for data latency
	Calculating network delay caused by migration

	Cloud cooperation computing migration strategy selection
	Cloud collaborative computing migration architecture
	Calculating migration decision making

	Optimal migration strategy selection based on task partitioning
	Linear task partitioning model
	Fine-grained directed acyclic graph-like task partitioning model
	Simulation condition
	Analysis of simulation results

	Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	References


